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Abstract: This work investigates a new error source for angular velocity or attitude-based 
transfer alignment, which is caused by the coupling influence of dynamic flexure with ship 
angular motion. Most traditional studies do not consider this coupling error, as they often assume 
that dynamic flexure and ship angular motion are uncorrelated. However, the correlation between 
the dynamic flexure and the ship angular motion generally exists, which will cause a static error 
in measurements. We adopt the Bernoulli-Euler beam as a simplified ship vibration model to 
obtain the phase and amplitude relationships for the ship dynamic flexure angle and the ship 
angular motion. Simulation experiments are then conducted to test the phase delay on alignment 
accuracy based on the angular velocity matching approach. It is found that the estimation error 
has a strong correlation with this phase delay, and the error behaves like a sin wave function with 
the phase delay angle variation. The coupling error of ship dynamic flexure with ship angular 
velocity is deduced based on the spatial geometric modelling method, and the analysis 
demonstrates that this coupling error exists in angular velocity or attitude matching systems, 
which depends on the phase delay and amplitude ratio of ship dynamic flexure and angular 
velocity. 
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1 Introduction 

Large ships are often equipped with arrays of peripheral 
apparatus, such as radar, launching vehicles and 
optoelectronic sensors, whose attitudes must be determined 
to a high degree of accuracy when in service. Transfer 
alignment (TA) is an important approach to align these 
equipments by using accurate information from the master 
inertial navigation system (MINS) of the ship (Schnider, 
1983). The MINS measures the rotation rates and 
accelerations along three orthogonal axis to propagate the 
position, velocity and attitude (Zhang et al., 2012). The 
difference measured for these three values by the MINS and 
the slave inertial navigation system (SINS) contains the 
misalignment angle information of the two coordinate 
frames, and can be resolved by utilising Kalman filtering 
methods. TA procedures are mature due to extensive 
research and have found successful applications to 
numerous airborne and shipboard systems (Lawrence, 1966; 
Browne and Lackowski, 1976; Kain and Cloutier, 1989; 
Spalding, 1992; Groves, 2003; Majeed and Fang, 2009). For 
shipboard system alignment, angular rate and attitude 
matching methods are proved to be more feasible than 
velocity matching methods, because rapid manoeuvre will 
cause large level-arm estimation error, which will decrease 
the velocity matching alignment accuracy (Browne and 
Lackowski, 1976; Majeed and Fang, 2009). 

The challenge of angular velocity and attitude matching 
methods for high accuracy shipboard equipment alignment 
is how to utilise the physical error model to separate and 
identify various alignment errors, such as instrument errors 
and ship dynamic flexure influence. According to the study 
(Zheng et al., 2011), the gyro error may result in non-linear 
measurement error, but this error is observable and can be 
compensated using feedback methods. Another error source 
is the ship dynamic flexure error, which is caused by the 
ship motion from waves and manoeuvres and the vibration 
due to a variety of sources. The works (Day and Arrud, 
1999; Petovello et al., 2009) demonstrate that the maximum 
value of ship dynamic flexure can reach several millirads 
(mrad), which is unacceptable for high accuracy shipboard 
devices. To reduce the dynamic flexure influence, extensive 
works have studied ship dynamic flexure modelling and 
compensation approaches in the recent years (Mochalov and 
Kazantasev, 2002; Sun et al., 2007; Joon and Lim, 2009), 
among which the second-order Markov stochastic process is 
mostly adopted to depict the dynamic flexure according to 
its time characteristics. 

Most existing studies on TA treat the dynamic flexure 
and the ship angular motion as two uncorrelated processes 

(Sun et al., 2007; Majeed and Fang, 2009; Joon and Lim, 
2009). However, from our previous shipboard 
measurements and laboratory experiments1, we have found 
that the TA procedure has a large static estimation error 
even when the MINS and SINS are all equipped with high-
quality gyro instruments and the dynamic flexure model 
parameters are determined. In other words, an inherent 
measurement error exists which may be caused by the 
coupling influence of dynamic flexure and ship angular 
motion. The works (Browne and Lackowski, 1976; 
Mochalov, 1999) also mentioned that the alignment error 
and estimation time has strong correlation with the ship 
angular motion and ship dynamic flexure. However, no 
previous analysis was carried out to investigate this issue 
further. The dynamic flexure and angular motion are all the 
response of the ship structure to the wave loads (Jensen and 
Dogliani, 1996; Wu and Sheu, 1996) and, therefore, they are 
likely to be correlated in general. Thus, a coupling error is 
introduced by the projection of the additional dynamic 
flexure velocity on the ship angular velocity. This has 
important implications. For example, in a high accuracy 
attitude requirement environment, such as the shipboard 
missile defense system (Day and Arrud, 1999) which 
requires about 0.1 mrad alignment accuracy, it is critical to 
take into account this coupling influence of the ship 
dynamic flexure and ship angular motion. 

This motivates our current study to investigate the 
alignment error caused by the coupling influence of the 
dynamic flexure with the ship attitude motion in angular 
velocity or attitude matching methods. It is worth 
emphasising that this study is neither about the modelling of 
dynamic flexure nor about the modelling of ship angular 
motion. Unlike most of the existing works which assume 
that the dynamic flexure and the ship angular motion are 
uncorrelated, our aim is to demonstrate that these  
two processes are inherently correlated, and our study 
analyses this correlation relationship. In Section 2, the 
angular velocity matching function and Kalman filtering 
model are introduced. Section 3 endeavours to establish a 
mathematical relationship between the dynamic flexure and 
the ship angular motion by utilising a simplified ship 
vibration model, based on which the gyros data for the 
MINS and SINS are simulated. Following this, the 
simulation experiments are carried out and the results are 
analysed in Section 4. Specifically, analysis shows that a 
phase angle difference exists between the dynamic flexure 
angle and the ship attitude angle, which will cause a 
significant estimation error in high accuracy TA. A coupling 
error function is deduced based on the spatial  
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geometric modelling and mathematical analysis. The results
obtained clear demonstrate that the coupling error depends
on the phase delay and amplitude ratio of the dynamic
flexure and ship angular velocity. Finally, our conclusions
and remarks are presented in Section 5.

2 TA approach

Consider three different coordinates whose coordinate
frames are defined respectively as follows

1 Inertial reference coordinate frame (i-frame), whose
origin is at the centre Oi of the Earth. The x-axis is
positive along the Earth’s east direction, the y-axis lies
in the Earth’s north direction, and the z-axis is vertical
upward.

2 Ship body coordinate frame (b-frame), whose origin is
at the centre Ob of the ship. The x-axis is positive
along the longitudinal axis of the ship body, the y-axis
is perpendicular to the horizontal plane upward, and
the z-axis complements the right-hand rule.

3 Peripheral sensor body frame (s-frame), whose origin
is at the centre Os of the perpendicular sensor centre,
and the coordinates are accordance with the sensor
measurement frame coordinates.

2.1 Angular velocity matching function

As shown in Figure 1, assume that the MINS’s coordinates
Om(xm, ym, zm) have been aligned with the b-frame, and
the SINS’s coordinates Os(xs, ys, zs) are in accordance
with the s-frame. When serviced in the sea, the ship will
undergo angular rotation with respect to the inertial space,
caused by wave or wind induced pitching, rolling and
yawing, as well as purposeful turning manoeuvres. If the
ship hull is rigid, the angular velocities measured by the
MINS and SINS with respect to the i-frame are equal.
Since the ship hull is elastic, the bending will cause an
additional angular rotation for the SINS, relative to the
MINS. When this flexure changes in time, there is an
additional angular velocity measured by the SINS but not
by the MINS. In Figure 1, φ is the total misalignment
Euler angle between the MINS and SINS, which includes a
static component ϕ0 and a dynamic component θ. Provided
that the misalignment angle can be compensated to within
several mrad using the initial course estimation results,
in other words, if the misalignment angle is small, the
relationship between φ, ϕ0 and θ can be written in a vector
form

φ = ϕ0 + θ. (1)

The detailed derivation of equation (1) is given in the
Appendix.

The MINS measures the ship inertial angular velocity
projected onto the Om(xm, ym, zm) coordinates, which
can be written as Ω⃗b

ib, while the SINS measures

the ship inertial angular velocity projected onto the
Os(xs, ys, zs) coordinates, denoted as Ω⃗s

ib. The angular
velocity relationship can be expressed as (Mochalov and
Kazantasev, 2002)

Ω⃗s
ib = C

s
b (φ)Ω⃗

b
ib +

˙⃗
θ, (2)

where Cs
b (φ) denotes the direction cosine matrix (DCM)

from the b-frame to the s-frame, and ˙⃗
θ an additional

velocity caused by the dynamic flexure of the s-frame
relative to the b-frame, while the dot operator ˙(•) represents
the differentiation with respect to time t. The expression of
a DCM can be found in the Appendix.

Figure 1 Schematic diagram of ship angular measurement
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The difference between the angular velocities measured by
the MINS and SINS with respect to the b-frame is therefore
given by

∆Ω⃗ = Ω⃗b
ib − Ω⃗s

ib =
[
I3 −Cs

b (φ)
]
Ω⃗b

ib −
˙⃗
θ, (3)

where I3 denotes the 3× 3 identity matrix. If the
misalignment angle is small, that is, the misalignment angle
can be compensated to within several mrad by the initial
course alignment, equation (3) can be approximated as
(Mochalov and Kazantasev, 2002)

∆Ω⃗ ≈ Ω̂
b

ibφ− ˙⃗
θ, (4)

where Ω̂
b

ib is a skew-symmetric matrix with the form

Ω̂
b

ib =

 0 Ωb
ibz −Ωb

iby

−Ωb
ibz 0 Ωb

ibx

Ωb
iby −Ωb

ibx 0

 , (5)

while (Ωb
ibx,Ω

b
iby,Ω

b
ibz) are the three coordinate values

of Ω⃗b
ib. As can be seen from equations (4) and (5), the

rank of Ω̂
b

ib is r = 2, while the dimension of the vectors
involved is n = 3. Since r < n, the differential equation (4)
has no analytical solution. One approach to determine the
misalignment angle is to take successive measurements and
to apply a Kalman filter.

2.2 Kalman filtering function

For processing with a Kalman filter, the measurement
function for equation (4) is presented in a standard matrix
form as

z =Hx+ v, (6)
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where z and v are the 3× 1 measurement vector and
measurement error vector, respectively, while H and x
denote the measurement matrix and the state vector,
respectively.

Assume that the MINS and SINS are all the ring laser
gyro (RLG) systems, and the instrument noise includes the
gyro constant bias ε̄ and the gyro random walk noise ε̃.
Then the state vector is of the size 15× 1, specified by

x =
[
ϕ0x ϕ0y ϕ0z θx θy θz θ̇x θ̇y θ̇z

∆ε̄x ∆ε̄y ∆ε̄z ∆ε̃x ∆ε̃y ∆ε̃z
]T
, (7)

where T denotes the vector and matrix transpose operator,
(ϕ0x, ϕ0y, ϕ0z), (θx, θy, θz) and (θ̇x, θ̇y, θ̇z) are the three
coordinate values of ϕ0, θ and ˙⃗

θ, respectively, while
(∆ε̄x,∆ε̄y,∆ε̄z) and (∆ε̃x,∆ε̃y,∆ε̃z) are the three
coordinate values of the gyro constant bias difference ∆ε̄
and the gyro random walk noise difference ∆ε̃ between
the MINS and SINS, respectively. The 3× 15 measurement
matrix is given by

H =
[
Ω̂

b

ib Ω̂
b

ib − I3 I3 I3
]
. (8)

In various applications (Browne and Lackowski, 1976;
Schnider, 1983; Mochalov and Kazantasev, 2002; Majeed
and Fang, 2009), the dynamic flexure is typically modelled
by three independent second-order Markov processes for
pitching, rolling and yawing, respectively. The related
differential equation can be written as (Mochalov and
Kazantasev, 2002)

θ̈i + 2µiθ̇i + b2i θi = 2biσi
√
µiei(t), (9)

where the index i indicates the x, y or z coordinate, µi

is the irregularity coefficient, bi is the prevailing variation
frequency and σi is the standard deviation of the dynamic
flexure, while ei(t) is a Gaussian white noise with unit
variance. The gyro random walk noise on the other hand
can be represented using three independent first-order
Markov processes (Schnider, 1983)

˙̃εi + µ̃iε̃i = σ̃i
√
2µ̃iẽi(t), (10)

where µ̃i is the irregularity coefficient, σ̃i is the standard
deviation of the gyro random walk noise, and ẽi(t) is a
Gaussian white noise with unit variance.

Remark 1: The dynamic flexure is induced by wave
or wind induced load on the ship structure, which is
traditionally modelled as a second-order Markov process
(Browne and Lackowski, 1976). Most of the works
choose three independent second-order Markov processes
to model the dynamic flexure on the pitch, roll and
yaw axes, respectively. We also adopt this approach to
simplify the analysis. Researchers are well aware that more
accurate dynamic flexure model, possibly involving the
three components of the dynamic flexure being correlated,
may be desirable in applications, depending on the accuracy
requirement (Schnider, 1983). Actually, we may also point
out that the true dynamic flexure may exhibit non-linear

dynamics and, therefore, accurate modelling would involve
non-linear dynamic model. However, the focus of our
study is on investigating the coupling influence of the
dynamic flexure with the ship angular motion, not on
accurate modelling of dynamic flexure. The simplified
model (9) is sufficient for our purpose. In fact, if we can
demonstrate that the dynamic flexure and the ship angular
motion are correlated under this simplified dynamic flexure
model, then the true dynamic flexure process, whose three
components are not independent, will surely be correlated
with the ship angular motion.

The state equation for the Kalman filter is then defined as

ẋ = Fx+w, (11)

where the state-space equation matrix F takes the form

F =

O3×3O3×6O3×6

O6×3 F
1
6×6 O6×6

O6×3O6×6 F
2
6×6

 , (12)

with Ol×m denoting the l ×m zero matrix, and

F 1
6×6=


O3×3 I3

−b2x 0 0 −2µx 0 0
0 −b2y 0 0 −2µy 0
0 0 −b2z 0 0 −2µz

 , (13)

F 2
6×6 =


O3×3 O3×3

−µ̃x 0 0
0 −µ̃y 0 O3×3

0 0 −µ̃z

 . (14)

The 15× 1 state noise vector w has the covariance matrix

E
[
wwT] = diag

{
0, · · · , 0︸ ︷︷ ︸

6

, 4b2xσ
2
xµx, 4b

2
yσ

2
yµy, 4b

2
zσ

2
zµz,

0, 0, 0, 2µ̃xσ̃
2
x, 2µ̃yσ̃

2
y, 2µ̃zσ̃

2
z

}
, (15)

where E[•] denotes the expectation operator.
In the procedure of measurement, the Kalman filter acts

as an observer, and the misalignment angle between the
MINS and SINS frames can be optimally estimated by
utilising the dynamic flexure model.

3 Angular motion and dynamic flexure modelling

According to the hydrodynamic principle, ship angular
motion and dynamic flexure are all the responses of
ship to sea wave loadings (Jensen and Dogliani, 1996;
Gu et al., 2011). In theoretical and numerical analysis,
the Bernoulli-Euler beam is usually adopted to depict a
simplified ship hull model (Wu and Sheu, 1996; Watanabe
and Soares, 1999; Abu-Hilal and Mohsen, 2000). In order to
study the coupling error influence, the phase and amplitude
relationships for dynamic flexure angle and ship attitude
angle are deduced based on the Bernoulli-Euler beam
function. Then, the simulation data is generated using this
relationship.
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3.1 Attitude and dynamic flexure model

The transverse vibration of a uniform elastic
Euler-Bernoulli beam is described by the partial differential
equation (Abu-Hilal and Mohsen, 2000)

EI
∂4y

∂x4
+mÿ + βẏ = q(x, t), (16)

where EI is the flexure rigidity of the beam, m is the mass
per unit length of the beam, β is the damping coefficient,
and q(x, t) is the excitation force.

When q(x, t) = 0, the solution for the free vibration
function is defined as

y(x, t) =
∞∑
k=1

Xk(x)pk(t), (17)

where y(x, t) denotes the total linear displacement which
includes the rigid motion displacement yr(x, t) and the
elastic motion displacement yd(x, t), k denotes the kth

mode of the beam, pk(t) is the kth generalised deflection
mode of the beam, and Xk(x) is the kth normal mode of
the beam which takes the form

Xk(x) = Ak sin(Gkx) +Bk cos(Gkx)

+ Cksinh(Gkx) +Dkcosh(Gkx). (18)

In equation (18), Ak, Bk, Ck, Dk and Gk are constants
that are determined by the boundary conditions of the beam.
Considering the ship hull floating on the waves, the free
boundary conditions at the two ends can be given as{

∂2Xk(x)
∂x2

∣∣
x=0

= 0, ∂
3Xk(x)
∂x3

∣∣
x=0

= 0,
∂2Xk(x)

∂x2

∣∣
x=l

= 0, ∂3Xk(x)
∂x3

∣∣
x=l

= 0,
(19)

where l is the length of the beam. Substituting equation (19)
into equation (18) yields the matrix equation 0 −1 0 1

−1 0 1 0
− sin(Gkl)− cos(Gkl) sinh(Gkl) cosh(Gkl)
− cos(Gkl) sin(Gkl) cosh(Gkl) sinh(Gkl)


Ak

Bk

Ck

Dk

= 0. (20)

The condition for equation (20) to have a unique solution
requires that the determinant of the 4× 4 matrix equals to
zero, which leads to

cos(Gkl)cosh(Gkl) = 1. (21)

Notice that equation (21) is a transcendental equation with
the roots

G1l = 0,
G2l = 4.73,
G3l = 7.85,
...

(22)

When q(x, t) ̸= 0, we substitute equation (17) into
equation (16) and multiply the both sides of the equation by

Xj(x). Then, integrating the resulting equation with respect
to x between 0 and l yields

∞∑
k=1

∫ l

0

(
EI

∂4Xk

∂x4
Xjpk +mp̈kXkXj + βṗkXkXj

)
dx

=

∫ l

0

Xjq(x, t)dx. (23)

By considering the orthogonality condition∫ l

0

XkXjdx =

∫ l

0

∂4Xk

∂x4
Xjdx = 0, for k ̸= j, (24)

we derive the differential equation of the kth generalised
deflection mode as

p̈k(t) + 2ωkξkṗk(t) + ω2
kpk(t) = Qk(t), (25)

where the kth natural circular frequency ωk, damping ratio
ξk and generalised force Qk are expressed respectively as
follows

ωk =

√
Gk

Mk
= K2

k

√
EI

m
, (26)

ξk =
β

2
√
KkMk

, (27)

Qk(t) =
1

Mk

∫ l

0

Xk(x)q(x, t)dx, (28)

with the generalised stiffness Kk and generalised mass Mk

for the kth mode given by

Kk =

∫ l

0

EI
∂4Xk

∂x4
Xkdx, (29)

Mk =

∫ l

0

mX2
k(x)dx. (30)

Assume that the excitation force distribution along the
beam is

q(x, t) = F0 sin(ωt), (31)

where ω is the circular frequency of the excitation force
and F0 is the constant force amplitude. Substituting
equation (31) into equation (25), we obtain the steady-state
solution

pk(t) = ck sin(ωt+ ψk), (32)

where the kth response amplitude ck is given by

ck =
F0λ

2
k

Mkω2
√
(1− λ2k)

2 + (2ξkλk)2

∫ l

0

Xk(x)dx, (33)

and the kth phase delay angle ψk is defined by

ψk = arctan
2ξkλk
λ2k − 1

, (34)

in which λk = ω/ωk denotes the frequency ratio.
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According to equation (22), we can see G1 = 0, while
from equation (26) we can obtain ω1 = 0. Then, it can be
shown that the first order normal mode is given as

X1(x) = ax+ b, (35)

where a and b are the constants determined by the initial
displacement conditions of the beam according to{

a = ∂y(x,t)
∂x

∣∣
x=l

− ∂y(x,t)
∂x

∣∣
x=0

,
b = y(l, t)− y(0, t).

(36)

On the other hand, the first generalised deflection mode is
given by

p1(t) = c1 sin(ωt), (37)

with

c1 =
3F0(al + 2b)

2mω2(a2l2 + 3abl + 3b2)
. (38)

As a result, the rigid body displacement yr(x, t) can be
written as

yr(x, t) = X1(x)p1(t) = c1(ax+ b) sin(ωt). (39)

The rigid body rotation angle around the z-axis can then be
derived by

Θz(t) =
∂yr(x, t)

∂x
= c1a sin(ωt). (40)

For k > 1, the natural circular frequency ωk ̸= 0. The
elastic motion displacement yd(x, t) can be derived by

yd(x, t) =

∞∑
k=2

Xk(x)ck sin(ωt+ ψk). (41)

Thus, the dynamic flexure angle around the z-axis is
approximated by

θz(x, t) =
∂yd(x, t)

∂x
=

∞∑
k=2

∂Xk(x)

∂x
ck sin(ωt+ ψk). (42)

The amplitude ratio of the ship attitude and dynamic flexure
can be defined as

Tz(x) =
c1a

∞∑
k=2

∂Xk(x)
∂x ck

. (43)

For simplicity and tractability reasons, if we assume that
the ship attitude motion and dynamic flexure are rotational
symmetry, then the relationships for rolling and yawing can
be approximated in the same way.

3.2 Attitude and dynamic flexure data generation

Compared equation (40) with equation (42), it can be seen
that the attitude motion and the dynamic flexure angle
have the same angular frequency of the excited force
frequency. In an analysis of aircraft vibration using the
exactly same Bernoulli-Euler beam driven by white noise,
Lee and Whaley (1976) have shown that the second-order

vibration mode contributes about 93% of the total energy
in the dynamic flexure. It is reasonable to believe that in
our case the second-order vibration mode will account for
the majority of the total energy in the dynamic flexure.
Therefore, we will also approximate the dynamic flexure
by the second-order vibration mode. More specifically, we
approximate the dynamic flexure angle θz by

θz ≈ ∂X2(x)

∂x
c2 sin(ωt+ ψ2) =

∂X2(x)

∂x
c2 sin(ωt+ ψz),

while approximating the amplitude ratio Tz by

Tz ≈ c1a
∂X2(x)

∂x c2
.

Applying the same approximation to the relationships for
rolling and yawing, we obtain the phase delay Euler angles,
(ψx, ψy, ψz), around the x, y and z axes, respectively, as
well as the amplitude ratio matrix T

T =

Tx 0 0
0 Ty 0
0 0 Tz

 . (44)

We will also refer to (Θx,Θy,Θz) as the attitude Euler
angles around the x, y and z axis, respectively.

The ship attitude angle can be derived by rotating the
given dynamic flexure by an angle ψ and multiplying the
result with the amplitude ratio TΘx

Θy

Θz

 = TC(ψ)

θxθy
θz

 , (45)

in which the DCM C(ψ) can be approximately
calculated by

C(ψ) =

 1 −ψz ψy

ψz 1 −ψx

−ψy ψx 1

 , (46)

if the rotation angle ψ is small, as explained in the
Appendix.

Table 1 Model parameters of dynamic flexure

µi (rad/s2) bi (rad/s) σi (mrad)

Pitching angle 0.013 1.010 0.282
Rolling angle 0.006 1.414 0.490
Yawing angle 0.024 1.180 0.380

In our simulation, the dynamic flexure angles are treated
as three independent second-order Markov processes whose
parameters are identified from the real measurement data.
The identified parameters µi, bi and σi for equation (9)
are listed in Table 1, while Figure 2 shows the pitching
angle of the dynamic flexure generated by using the given
parameters.

The attitude Euler angles of the MINS, denoted
as ΘMINS, are then derived based on the generated
dynamic flexure angles according to equation (45).
Figure 3 depicts the pitching angle curve so generated
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at the condition of ψ = [5 deg 5 deg 5 deg]T and
Tx = Ty = Tz = 300. Assume that the course alignment
between the MINS and SINS has been completed and the
static misalignment angles between the MINS and SINS
are ϕ0 = [0.2 deg 0.2 deg 0.2 deg]T. Then the attitude Euler
angles of the SINS, denoted as ΘSINS, can be obtained by
rotating ΘMINS with the angle φ, where φ is defined in
equation (1). More specifically, ΘSINS = C(φ)ΘMINS, with
C(φ) taking the same form of equation (46) by substituting
ψ with φ.

Figure 2 Pitching dynamic flexure angle (see online version
for colours)
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Figure 3 Pitching attitude angle (see online version
for colours)
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To obtain the gyro output sample values of the MINS and
SINS for the test, the gyro noise parameters are given as
follows:

1 The constant biases of the MINS gyros are
ε̄MINS = [0.005 deg/hr 0.005 deg/hr 0.005 deg/hr]T,
and the related random walk noises are ε̃MINS =
[0.001 deg/

√
hr 0.001 deg/

√
hr 0.001 deg/

√
hr]T ;

2 The constant biases of the SINS gyros are
ε̄SINS = [0.02 deg/hr 0.02 deg/hr 0.02 deg/hr]T, and
the related random walk noises are ε̃SINS =
[0.005, deg/

√
hr 0.005 deg/

√
hr 0.005 deg/

√
hr]T .

The generated gyro data of the MINS and SINS contain the
phase and amplitude relationship between the ship attitude
and the dynamic flexure, which will be processed by using
the Kalman filtering method.

4 Simulation results and analysis

4.1 Simulation results

We first fixed the amplitude ratios for the dynamic flexure
and ship attitude to Tx = Ty = Tz = 300, and performed
a number of simulation runs to investigate the alignment
performance under different phase delay angles. When there
existed no phase delay, i.e., ψ = 0, the alignment results
obtained are shown in Figure 4(a), where it can be seen that
the alignment errors for the three coordinates are all within
0.1 mrad at the end of 10-minutes alignment. For the case
of ψz = 5 deg and ψx = ψy = 0, the alignment error of the
pitching angle reaches the value of 0.65 mrad, as can be
seen in Figure 4(b).

Figure 4 Alignment errors for different phase delay angles
given Tx = Ty = Tz = 300, (a) no phase delay and
(b) ψx = ψy = 0 and ψz = 5 deg (see online version
for colours)
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When the phase delay angles of the (x, y, z) coordinates
increased simultaneously from 0 to π by 5 deg increment,
the alignment errors obtained at the end of ten minutes
alignment are shown in Figure 5. It can be observed that
the estimation error varied dramatically as the phase delay
angle increased. The minimum errors were found around
the angles of 0, π

2 and π, while the maximum values were
reached around the angles of π

4 and 3π
4 . Specifically, the

coupling error of dynamic flexure and ship attitude behaves
like a sin function as the phase delay angle increases,
given the fixed Tx = Ty = Tz = 300, and the maximum
alignment errors can reach to 5.0 mrad, 6.1 mrad and
6.4 mrad for the pitching, rolling and yawing angles,
respectively.

Figure 5 Alignment error as the function of the phase delay
angle ψx = ψy = ψz varying from 0 to π, given
Tx = Ty = Tz = 300 (see online version
for colours)
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Figure 6 Alignment error as the function of the amplitude
ratio Tx = Ty = Tz = T for different phase delay
angle values ψx = ψy = ψz = ψ (see online
version for colours)
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Next, we set Tx = Ty = Tz = T and further investigated
the influence of the amplitude ratio value T to the
alignment accuracy. Given different values of the phase
delay angle, ψx = ψy = ψz = ψ, Figure 6 depicts the
corresponding alignment error curves as the function of the
amplitude ratio Tx = Ty = Tz = T . The simulation results

show that both the amplitude ratio and the phase delay
angle have significant influence to the alignment accuracy.
Specifically, the smaller the amplitude ratio T , the larger
the alignment error, while the alignment error decreases as
the phase delay angle ψ decreases.

From the above simulation results, it can be observed
that the standard TA procedure, as outlined in Section 2,
results in an inherent estimation error, which agrees
with our previous shipboard measurement and laboratory
experiment data. The results also show that this estimation
error is correlated with the phase delay angle between the
dynamic flexure and the ship angular motion. However, this
coupling error has not been drawn sufficient attention in the
previous literatures which often treat the dynamic flexure
and the ship angular motion as two independent processes
in theoretical study and simulation test (Sun et al., 2007;
Majeed and Fang, 2009; Joon and Lim, 2009). This is the
underlying cause of the significant alignment error of the
standard TA procedure. Below, we present an analysis of
this coupling error.

4.2 Coupling error modelling

A simple approach to derive this coupling error function
is to use a geometric modelling method. According to
equation (4), the angular velocity vectors Ω⃗b

ib, Ω⃗s
ib and

˙⃗
θ are

all projected onto the b-frame, and their spatial relationships
are illustrated in Figure 7. Thus, the rotation of angular
velocity vectors can be explained as follows. Firstly, the
MINS angular velocity vector Ω⃗b

ib is rotated by an angle of
φ to obtain Ω⃗′s

ib, and this rotation function can be expressed
as

Ω⃗′s
ib = C

s
b (φ)Ω⃗

b
ib. (47)

Figure 7 Spatial relationship of the angular velocity vectors
and the additional dynamic flexure velocity vector
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As |Cs
b (φ)| = 1, the magnitude relationship between

Ω⃗b
ib and Ω⃗′s

ib is |Ω⃗b
ib| = |Ω⃗′s

ib|. Considering the additional
dynamic flexure velocity ˙⃗

θ, we obtain the SINS angular
velocity vector Ω⃗s

ib given by

Ω⃗s
ib = Ω⃗′s

ib +
˙⃗
θ. (48)
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If the vector ˙⃗
θ is parallel with Ω⃗′s

ib, the angle between Ω⃗b
ib

and Ω⃗s
ib is φ, and the angular velocity matching function

is given in equation (4). Otherwise, the additional dynamic
flexure velocity ˙⃗

θ will introduce an coupling error angle
∆ϕ0 and, if ∆ϕ0 is small, the angular velocity matching
function can be modified as

∆Ω⃗ = Ω⃗b
ib − Ω⃗s

ib = Ω⃗b
ib −Cs

b (φ+∆ϕ0)Ω⃗
b
ib −

˙⃗
θ′

≈ Ω̂
b

ib(φ+∆ϕ0)−
˙⃗
θ′, (49)

where ˙⃗
θ′ is the projection of ˙⃗

θ onto Ω⃗s
ib, and its direction is

in accordance with Ω⃗s
ib. Therefore,

˙⃗
θ′ can be expressed as

˙⃗
θ′ =M

( ˙⃗
θ
)
C(α)υ⃗sib, (50)

where α is the angle between the vectors ˙⃗
θ and Ω⃗s

ib, while
the magnitude matrix M

( ˙⃗
θ
)
, the unit direction vector υ⃗sib

and the DCM C(α) are expressed respectively as

M
( ˙⃗
θ
)
=

|θ̇x| 0 0

0 |θ̇y| 0

0 0 |θ̇z|

 , (51)

υ⃗sib =
Ω⃗s

ib

|Ω⃗s
ib|
, (52)

C(α) =
(
I3 −

1

2

(
Ŝφ + Ŝ∆ϕ0

))(
I3 −

1

2
Ŝψ

)
≈ I3 −

1

2

(
Ŝφ + Ŝ∆ϕ0 + Ŝψ

)
, (53)

in which Ŝφ, Ŝ∆ϕ0 and Ŝψ are the skew-symmetric
matrices of φ, ∆ϕ0 and ψ, respectively, defined
similarly to equation (5). Substituting equation (50) into
equation (49) yields

∆Ω⃗ ≈ Ω̂
b

ib

(
φ+∆ϕ0

)
−M

( ˙⃗
θ
)
υ⃗sib

+
1

2
M

( ˙⃗
θ
)(
Ŝφ + Ŝ∆ϕ0 + Ŝψ

)
υ⃗sib

= Ω̂
b

ibφ−M
( ˙⃗
θ
)
υ⃗sib + Ω̂

b

ib∆ϕ0 (54)

− 1

2
M

( ˙⃗
θ
)
Ŝυ⃗s

ib

(
φ+∆ϕ0 +ψ

)
= ∆Ω⃗1 +∆Ω⃗2,

where Ŝυ⃗s
ib
is the skew-symmetric matrix of υ⃗sib, while ∆Ω⃗1

and ∆Ω⃗2 are given respectively by

∆Ω⃗1 = Ω̂
b

ibφ−M
( ˙⃗
θ
)
υ⃗sib, (55)

∆Ω⃗2 = Ω̂
b

ib∆ϕ0 −
1

2
M(

˙⃗
θ)Ŝυ⃗s

ib

(
φ+∆ϕ0 +ψ

)
. (56)

From equation (54) which is the correct angular velocity
matching function, it becomes clear where the alignment
error source comes from in the traditional TA procedure.

Basically, it only takes into account ∆Ω⃗1 [see equation (4)]
and ignores the component ∆Ω⃗2 or equivalently assumes
∆Ω⃗2 = 0. However, in doing so it introduces a coupling
error ∆ϕ0. This alignment error source may be derived
approximately as follows.

Setting ∆Ω⃗2 = 0 in equation (56) results in(
Ω̂

b

ib −
1

2
M

( ˙⃗
θ
)
Ŝυ⃗s

ib

)
∆ϕ0 =

1

2
M

( ˙⃗
θ
)
Ŝυ⃗s

ib

(
φ+ψ

)
. (57)

Differentiating equation (45) with respect to time t results
in

Ω⃗b
ib = TC(ψ)

˙⃗
θ (58)

from which ˙⃗
θ can be derived as

˙⃗
θ = CT(ψ)T−1Ω⃗b

ib. (59)

Assuming Tx = Ty = Tz = T , the magnitude of ˙⃗
θ is then

given by

| ˙⃗θ| = 1

T

∣∣∣(I3 − Ŝψ)Ω⃗b
ib

∣∣∣ . (60)

By substituting the results of equations (58) to (60) into
equation (57), the coupling error can be approximated as

∆ϕ0 ≈ 1

2T

(
φ+ψ

)
. (61)

In high-accuracy TA, the course alignment in the TA
procedure can accurately estimate the static component ϕ0

in φ and compensates it. Therefore, φ is very small and
equation (61) can further be approximated as

∆ϕ0 ≈ ψ

2T
. (62)

Equation (62) reveals that the coupling error is proportional
to the phase delay angle ψ and is inversely proportional
to the amplitude ratio T . Figure 8 plots the approximate
coupling error curves of equation (62) as the function of
the amplitude ratio Tx = Ty = Tz = T for different values
of the phase delay angle ψx = ψy = ψz = ψ, labelled
as theoretical results, in comparison with the simulated
alignment errors obtained by the TA procedure shown in
Figure 6, labelled as Kalman filtering results. It can be
seen that the theoretical alignment error approximation of
equation (62) agrees with the simulated alignment error
obtained by the TA procedure.

The above analysis as well as the simulated results of
Subsection 4.1 demonstrate that the coupling error is an
inherent error source for angular velocity or attitude-based
alignment, which depends on the phase delay angle and
amplitude ratio of the dynamic flexure and ship angular
motion. Ship vibration model analysis shows that the phase
delay angle and amplitude transfer ratio are dominated by
the ship normal mode, damping ratio and frequency ratio,
which may be calculated from ship structure analysis and
hydrodynamic analysis. After the phase delay angle and
amplitude ratio are determined, the coupling error may be
deduced using equation (49).
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Figure 8 Comparison of the theoretical alignment error as the
function of the amplitude ratio Tx = Ty = Tz = T
for different phase delay angle values
ψx = ψy = ψz = ψ (see online version for colours)
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5 Conclusions

The coupling influence of dynamic flexure with ship
angular motion for high accuracy TA has been investigated
in this paper. Our motivation to this study has been the
observation that the standard transfer alignment procedure
may exhibit a large static estimation error even with
the high-quality gyro-based MINS and SINS in real
shipboard measurements and laboratory experiments. A
simplified Bernoulli-Euler beam has been used to obtain
the mathematical relationship between the dynamic flexure
and the ship angular motion, based on which the gyro
data are simulated. Simulation results obtained using the
standard TA procedure have shown that the alignment error
depends on the phase delay angle as well as the amplitude
ratio of the ship dynamic flexure and angular velocity. The
theoretical coupling error function has been deduced based
on a geometric modelling and mathematical analysis, which
shows good agreement with the simulated results obtained
by the TA procedure.

The current study points out a potential way of
enhancing TA accuracy. If the phase delay angle and
amplitude ratio between ship dynamic flexure and angular
velocity can be estimated, for example, based on ship
structural and hydrodynamic analysis, the coupling error
can be estimated. Our future research will investigate a
complete solution for compensating this coupling error
in order to improve the TA accuracy, for example, by
exploiting adaptive control techniques for ship course
(Wang et al., 2011).

References
Abu-Hilal, M. and Mohsen, M. (2000) ‘Vibration of beams with

general boundary conditions due to a moving random load’,
J. Sound and Vibration, Vol. 232, No. 4, pp.703–717.

Browne, B.H. and Lackowski, D.H. (1976) ‘Estimation of
dynamic alignment errors in shipboard firecontrol systems’,
in Proc. IEEE Conf. Decision and Control, Clearwater, USA,
December 1–3, pp.48–57.

Day, D.L. and Arrud, J. (1999) ‘Impact of structural flexure
on precision tracking’, Naval Engineers Journal, Vol. 111,
No. 3, pp.133–138.

Groves, P.D. (2003) ‘Optimising the transfer alignment of
weapon INS’, The Journay of Navigation, Vol. 56, No. 2,
pp.323–335.

Gu, P., Gundersen, R., Kalvik, A.O., Salvesen, R., Karimi, H.R.
and Ottestad, M. (2011) ‘Data gathering and mathematical
modelling for pitch stabilisation of a high speed catamaran’,
Int. J. Modelling, Identification and Control, Vol. 14, No. 3,
pp.149–158.

Jensen, J.J. and Dogliani, M. (1996) ‘Wave-induced ship hull
vibrations in stochastic seaways’, Marine Structures, Vol. 9,
Nos. 3–4, pp.353–387.

Joon, L. and Lim, Y.C. (2009) ‘Transfer alignment considering
measurement time delay and ship body flexure’,
J. Mechanical Science and Technology, Vol. 23, No. 1,
pp.195–203.

Kain, J.E. and Cloutier, J.R. (1989) ‘Rapid transfer alignment for
tactical weapon applications’, in Proc. AIAA Conf. Guidance,
Navigation and Control, Boston, USA, August 14–16,
pp.1290–1300.

Lawrence, C.B. (1966) ‘Master reference system for rapid at sea
alignment of aircraft inertial navigation systems’, in Proc.
AIAA/JACC Conf. Guidance and Control, Seattle, USA,
August 15–17, pp.593–606.

Lee, J. and Whaley, P.W. (1976) ‘Prediction of the angular
vibration of aircraft structures’, J. Sound and Vibration,
Vol. 49, No. 4, pp.541–549.

Majeed, S. and Fang, J. (2009) ‘Comparison of INS based
angular rate matching methods for measuring dynamic
deformation’, in Proc. 9th Int. Conf. Electronic Measurement
& Instruments, Beijing, China, August 16–19, pp.332–336.

Mochalov, A.V. (1999) ‘A system for measuring deformations of
large-sized objects’, in Loukianov, D., Rodloff, R., Sorg, H.
and Stieler, B. (Eds.): Optical Gyros and Their Application
(RTO AGARDograph 339), Canada Communication Group
Inc., pp.1–9.

Mochalov, A.V. and Kazantasev, A.V. (2002) ‘Use of the
ring laser units for measurement of the moving object
deformation’, in Proc. SPIE 4680, February 5, pp.85–92.

Petovello, M.G., O’Keefe, K., Lachapelle, G. and Cannon, M.E.
(2009) ‘Measuring aircraft carrier flexure in support of
autonomous aircraft landings’, IEEE Trans. Aerospace and
Electronic Systems, Vol. 45, No. 2, pp.523–535.

Schnider, A.M. (1983) ‘Kalman filter formulations for transfer
alignment of strapdown inertial units’, Navigation, Vol. 30,
No. 1, pp.72–89.

Spalding, K. (1992) ‘An efficient rapid transfer alignment filter’,
in Proc. AIAA Conf. Guidance, Navigation and Control,
Head Island, USA, August 10–12, pp.1276–1286.

Sun, F., Guo, C.J., Gao, W. and Li, B. (2007) ‘A new inertial
measurement method of ship dynamic deformation’, in Proc.
Int. Conf. Mechatronics and Automation, Harbin, China,
August 5–8, pp.3407–3412.



234 W. Wu et al.

Wang, Y., Guo, C., Sun, F., Shen, Z. and Guo, D. (2011)
‘Dynamic neural-fuzzified adaptive control of ship course
with parameter modelling uncertainties’, Int. J. Modelling,
Identification and Control, Vol. 13, No. 4, pp.251–258.

Watanabe, I. and Soares, C.G. (1999) ‘Comparative study on the
time-domain analysis of non-linear ship motions and loads’,
Marine Structures, Vol. 12, No. 3, pp.153–170.

Wu, J.S. and Sheu, J.J. (1996) ‘An exact solution for a
simplified model of the heave and pitch motions of a ship
hull due to a moving load and a comparison with some
experimental results’, J. Sound and Vibration, Vol. 192,
No. 2, pp.495–520.

Zhang, H-H., Liu, Z-Z., Meng, X-Y. and Li, Y-W. (2012) ‘The
D-S theory algorithm with application in the strap-down
inertial navigation system’, Int. J. Modelling, Identification
and Control, Vol. 16, No. 3, pp.259–264.

Zheng, J.X., Qin, S.Q., Wang, X.S. and Huang, Z.S.
(2011) ‘Influences of gyro biases on ship angular
flexure measurement’, in Proc. 2011 Symp. Photonics and
Optoelectronics, Wuhan, China, May 16–18, pp.1–4.

Notes

1 The data are classified.

Appendix

Figure 9 shows the spatial relationship between the ship
motion direction r⃗m measured by the MINS frame and the
motion direction r⃗s measured by the SINS frame, where the
Euler angle φ =

[
φx φy φz

]T denotes the rotation angle
from the MINS frame to the SINS frame which consists
of a time-invariant component ϕ0 =

[
ϕ0x ϕ0y ϕ0z

]T and
a time-dependent component θ =

[
θx θy θz

]T. As can be
seen from Figure 9, the ship motion direction measured by
the SINS can be obtained by rotating r⃗m by the angle of
φ, and this rotation procedure can be expressed by

r⃗s = C
(
φ
)
r⃗m = C

(
θ
)
C
(
ϕ0

)
r⃗m, (63)

where C
(
φ
)

is known as the direction cosine matrix
(DCM) of φ, which takes the form

C
(
φ
)
=

cosφy cosφz
sinφx sinφy cosφz

− cosφx sinφz

cosφx sinφy cosφz

+ sinφx sinφz

cosφy sinφz
sinφx sinφy sinφz

+ cosφx cosφz

cosφx sinφy sinφz

− sinφx cosφz

− sinφy sinφx cosφy cosφx cosφy

,(64)

while the DCMs C
(
ϕ0

)
and C

(
θ
)
take the same form of

equation (64) by substituting φ with ϕ0 and θ, respectively.
The relationship (63) is equivalent to

C
(
φ
)
= C

(
θ
)
C
(
ϕ0

)
. (65)

Provided that the misalignment angle can be compensated
to within several milliradians using the course
estimation results, we have cosφi ≈ 1, sinφi ≈ φi and
φ3
i ≪ φ2

i ≪ φi, where the index i indicates x, y or z
coordinate. Therefore, equation (64) can be approximated as

C
(
φ
)
≈

 1 −φz φy

φz 1 −φx

−φy φx 1

 = I3 − φ̂, (66)

in which φ̂ is a skew-symmetric matrix with the form

φ̂ =

 0 −φz φy

φz 0 −φx

−φy φx 0

 . (67)

Similarly, the DCMs C
(
ϕ0

)
and C

(
θ
)

can be
approximated respectively as

C
(
ϕ0

)
≈ I3 − ϕ̂0, (68)

C
(
θ
)
≈ I3 − θ̂, (69)

where the skew-symmetric matrices ϕ̂0 and θ̂ have the
same form with equation (67).

Substituting equations (66), (68) and (69) into
equation (65) as well as neglecting second-order
components yield

φ ≈ ϕ0 + θ. (70)

Figure 9 The spatial relationship between the ship motion
directions measured by the MINS and the SINS
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