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The reconfigurable intelligent surface (RIS) is a promising technology for terahertz (THz) massive multiple-
input multiple-output (MIMO) communication systems. However, acquiring high-dimensional channel state 
information (CSI) and realizing efficient active/passive beamforming for RIS are challenging owing to its 
cascaded channel structure and lack of signal processing units. To overcome these challenges, this study 
proposes a deep learning (DL)-based physical signal processing scheme for RIS-aided THz massive MIMO 
systems over hybrid far-near field channels wherein channel estimation with low pilot overhead and robust 
beamforming are implemented. Specifically, first, an end-to-end DL-based channel estimation framework 
that consists of pilot design, CSI feedback, subchannel estimation, and channel extrapolation is introduced. 
In this framework, only some RIS elements are first activated, a subsampling RIS channel is then estimated, 
and a DL-based extrapolation network is finally used to reconstruct the full-dimensional CSI. Next, to 
maximize the sum rate under imperfect CSI, a DL-based scheme is developed to simultaneously design 
hybrid active beamforming at the base station and passive beamforming at the RIS. Simulation results 
show that the proposed channel extrapolation scheme achieves better CSI reconstruction performance 
than conventional schemes while greatly reducing pilot overhead. Moreover, the proposed beamforming 
scheme outperforms conventional schemes in terms of robustness to imperfect CSI.

Introduction

The surge in demand for wireless data traffic in recent years owing 
to the exponential growth of Internet-of-Things devices and broad-
band multimedia applications has spurred the exploration of tera-
hertz (THz) communications as a viable solution [1]. However, 
extremely high free-space losses and strong atmospheric attenua-
tion in the THz band pose a challenge to the long-range coverage 
of THz communication systems. To overcome this problem, the 
massive or ultramassive multiple-input multiple-output (MIMO) 
technique has been considered to achieve high array gain and miti-
gate the high propagation loss [2]. Conventional massive MIMO 
systems require a dedicated radio frequency (RF) chain for each 
antenna (i.e., a fully digital architecture) and thus suffer from 
extremely high power consumption and hardware costs. To cir-
cumvent this technical issue, hybrid analog–digital massive MIMO 
architectures have been widely adopted to reduce the number of 
RF chains while ensuring high array gains [3].

In addition, the reconfigurable intelligent surface (RIS) has 
garnered attention as a potentially transformative technology for 

improving communication performance [4–9]. By manipulating 
the phase and amplitude of RIS phase shifters, a RIS passively 
reflects incident electromagnetic (EM) signals toward desired 
directions and provides considerable beamforming gain. More 
importantly, a RIS does not require power-intensive RF chains, 
which contributes to a more environmentally friendly and cost-
effective communication solution. Therefore, the integration of 
RIS and massive MIMO techniques holds promise for overcom-
ing the limitations of THz communications and realizing its full 
potential.

Generally, a simplified planar-wave channel model is appropri-
ate if the user equipment (UE) operates in the far field of the base 
station (BS). However, given that severe path losses reduce the 
effective coverage and that enlarging the array in the THz band 
increases the Rayleigh distance [10], both the far and the near field 
need to be considered for THz massive MIMO systems. Therefore, 
the distance from each antenna of the BS to the UE needs to be 
considered by the spherical-wave channel model under near-field 
conditions [11]. However, the number of spherical- wave channel 
parameters is proportional to the number of massive antennas, 
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which makes the direct adoption of the spherical-wave channel 
model in THz massive MIMO systems unrealistic. To this end, a 
hybrid-field (hybrid spherical- and planar-wave) channel model 
characterized by a smaller number of parameters and high accu-
racy has been proposed for THz massive MIMO systems [12]. In 
this approach, the EM signal is modeled as a spherical wave for 
the inter-subarray and as a planar wave for the intra-subarray, 
based on different subarray architectures. Although the applica-
tion of RISs has been widely investigated recently [13–17], their 
use for THz massive MIMO communications over hybrid-field 
channels is still at an early research stage.

Related work
Acquiring accurate channel state information (CSI) is critical for 
RIS-aided communication systems [18–21]. However, the accu-
rate estimation of high-dimensional CSI with limited pilot signals 
remains a formidable challenge [13]. To address this challenge, 
compressive sensing-based solutions have been proposed to 
reduce the pilot overhead by leveraging channel sparsity [14,15]. 
However, these solutions present challenges in terms of compu-
tational complexity and storage requirements owing to the need 
for matrix inversion and iterative operations. Recently, the inte-
gration of deep learning (DL) in communication systems has 
garnered extensive attention. For instance, in [22], the authors 
proposed an effective pilot reduction technique by gradually 
pruning less important neurons from dense layers during train-
ing. In [16], the authors designed a DL-based channel estimation 
network to acquire RIS-aided and non-RIS-aided channels. In 
[17], a semipassive RIS architecture was proposed in which the 
orthogonal match pursuit (OMP) algorithm and a denoising 
convolutional neural network (CNN) are applied to reconstruct 
the CSI. However, the deployment of RF chains negates the key 
benefits of the RIS, i.e., reduction of hardware cost and power 
consumption.

In fact, owing to the highly dense arrangement of RIS ele-
ments [23], there is a strong correlation between the different 
elements of the CSI matrix, which makes it possible to extrapolate 
the complete channel from a partial one, i.e., to perform channel 
extrapolation [24]. Recently, some initial attempts to utilize chan-
nel extrapolation for further reducing the pilot overhead were 
reported. In [25], the authors proposed a DL-based extrapolation 
network to extrapolate the complete CSI by exploiting the cor-
relation of the antenna domain; some antennas are activated by 
a selection network. In [26], the authors utilized a neural network 
structure modified by ordinary differential equations to improve 
the performance of extrapolation. In addition, in [27] the authors 
adopted a grouping strategy to reduce the dimension of the esti-
mated channel and designed a CNN-based network to extrapo-
late the fully dimensional cascaded channel as well as eliminate 
the grouping interference. However, the aforementioned extrapo-
lation schemes only consider the extrapolation process from the 
known subchannels; the estimation of the subchannel is ignored. 
Moreover, hybrid-field channel modeling of RISs exhibits more 
complex EM wave propagation characteristics, which hinder 
subchannel acquisition and the subsequent extrapolation of com-
plete channels.

The proper and effective design of the hybrid beamforming and 
RIS phase according to the CSI is one of the major engineering 
challenges in the design of RIS-aided communication systems. 
Recently, some studies have investigated hybrid beamforming and 
RIS design problems [28–30]. In [28], simultaneous orthogonal 

matching pursuit (SOMP)-based hybrid beamforming was pro-
posed for RIS-aided mmWave MIMO systems. In [29], an iteration- 
based jointly active/passive beamforming algorithm was designed 
to maximize the sum rate of systems. Furthermore, DL-based 
beamforming methods have also been studied in RIS-aided wire-
less communication systems. In [30], a deep neural network-based 
beamforming approach was developed to jointly optimize the 
transmit/reflect beamforming vectors for achieving data rate maxi-
mization. However, further analysis of the aforementioned schemes 
in terms of adaptability is necessary, given that the current approach 
only considers the idealized CSI assumption.

Motivations
Current research on RISs has primarily centered on the devel-
opment of 2 modes of operation, namely reflective [28,29,31] 
and transmissive [32–34]. A number of studies have been con-
ducted on RIS-aided communication in reflective mode, which 
is primarily utilized to address the blind coverage problem. By 
contrast, the main purpose of transmissive RISs is to improve 
the spectral efficiency of networks, given that the transmissive 
mode does not alter the direction of EM waves. Therefore, the 
deployment of transmissive RIS is suitable when a line-of-sight 
(LoS) path exists but the propagation attenuation is high, e.g., 
when an outdoor BS serves indoor UEs, to improve the energy 
of the received signals. In view of this, transmissive RISs have 
the potential to enhance indoor signal service.

Considering the hybrid-field channel model, in [35] the 
authors presented a 2-stage channel estimation mechanism for 
which a CNN-based network was designed to estimate the chan-
nel parameters and the complete channel was reconstructed by 
channel extrapolation based on the geometric relationships of 
the channel parameters. However, this parametric-based extrapo-
lation method requires a large number of training labels contain-
ing accurate channel parameters. In [36], the authors proposed 
a sensor-assisted channel estimation and beamforming technique 
in which a LoS MIMO architecture is considered in the hybrid 
field. However, the channel estimation in [36] relies heavily on 
the awareness of sensors, which becomes challenging when it 
comes to obtaining accurate CSI. Therefore, similar to [25–27], 
we propose a DL-based channel extrapolation method to address 
the performance limitations of conventional channel estimation 
methods for indoor hybrid-field propagation environments. In 
addition, in this study, we adopted the LoS MIMO architecture 
under the assumption of the hybrid-field channel model, where 
the LoS MIMO architecture can support multistream transmis-
sion in the pure LoS BS-RIS channel.

Most existing studies in the field of RIS-aided communica-
tion systems were based on the assumption that BS-RIS and 
RIS-UE CSIs are perfect [28–31]. However, this assumption is 
impractical. Channel estimation error should be considered 
when designing these systems. Recently, imperfect CSI condi-
tions have been considered in some studies [37,38]. For instance, 
in [37] the authors utilized a penalty-based alternating algorithm 
to jointly design the active beamforming and RIS phase under 
the presence of imperfect CSI. Similarly, in [38] the authors 
exploited a gradient projection-based alternating optimization 
algorithm to jointly design the active beamforming, RIS place-
ment, and RIS phase under imperfect CSI. While there are 
numerous DL-based methods available for RIS-aided commu-
nication systems with perfect CSI, there are only a few DL-based 
methods that consider imperfect CSI [39]. In this context, the 
present study provides a DL-based hybrid beamforming and 
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RIS phase design (HBFRPD) solution that incorporates imper-
fect CSI in RIS-aided communication systems.

Contributions
This paper presents a DL-based spatial-frequency domain chan-
nel extrapolation (SFDCExtra) network and DL-based HBFRPD 
scheme for RIS-aided downlink multiuser THz massive MIMO 
systems over hybrid-field channels. The main contributions of 
this study are summarized next.

•We propose the deployment of a transmissive RIS on a win-
dow to reduce the penetration loss and thus achieve enhanced 
indoor communication. In addition, owing to the negligible non-
LoS (NLoS) component energy in the THz band, the BS-RIS 
channel is dominated by the LoS path. To achieve multistream 
transmission in the LoS case, we consider a LoS MIMO archi-
tecture under hybrid-field channel modeling in which the BS 
and RIS adopt the same subarray structures, and the subarray 
spacing is optimized to satisfy the LoS MIMO condition.

•Given that the BS and RIS are fixed, and only one LoS path 
exists, the BS-RIS channel can be considered to be quasi-static 
and known. In contrast, owing to the mobility of the UE, the 
RIS-UE channel is time-varying. Therefore, the focus is set on 
estimating the RIS-UE channel, which considerably reduces 
the pilot overhead.

•To further reduce the pilot overhead when estimating the 
RIS-UE channel, we propose a DL-based channel extrapolation 
scheme in which the RIS only activates some of its elements at 
the channel estimation stage. Unlike existing extrapolation 
schemes [25–27], which only focus on the CSI extrapolation 
process, the complete channel extrapolation framework that we 
designed includes a pilot design network (PDN), a CSI feedback 
network, a subchannel estimation network, and a channel 
extrapolation network. By adopting an end-to-end (E2E) train-
ing strategy, the proposed channel estimation scheme can main-
tain high reconstruction performance with a reduced pilot 
overhead. Specifically, by using the CSI feedback network, the 
UE side feeds the quantized pilot information back to the BS, 
which estimates the subsampled RIS-UE channel and then 
extrapolates the complete RIS-UE channel using the channel 
extrapolation network. In addition, for RIS element selection, 
we analyze the impact of 3 different strategies, namely uniform, 
random, and learning-based selection, on the final channel 
estimation performance.

•To solve the multiuser interference problem under imper-
fect CSI, we propose a DL-based HBFRPD scheme that consists 
of an analog beamformer design, an DL-based RIS phase design 
network (RPDN), and an knowledge-data dual-driven digital 
beamforming network. By maximizing the sum rate with E2E 
training, the proposed scheme achieves better performance and 
robustness than the existing state-of-the-art methods.

Notations: In this paper, scalars are denoted as lowercase 
letters, vectors are denoted as lowercase boldface letters, and 
matrices are denoted as uppercase boldface letters. The conju-
gate, transpose, conjugate transpose, inversion, and Moore–
Penrose inversion operators are denoted as superscripts (·)∗, 
(·)T, (·)H, (·)−1, and (·)†, respectively. The diagonalization, block 
diagonalization, Kronecker product, and Hadamard product 
are represented by operators diag(·), blkdiag(·), ⊗, and ⊙, 
respectively. The Frobenius norm of A is denoted as |A|F. The 
identity matrix with size n × n is represented by In, while the 
column vector of size n with all elements equal to 1 (0) is rep-
resented by 1n (0n). The real and imaginary parts of the 

corresponding argument are denoted as ℜ{ ⋅} and ℑ{ ⋅}, respec-
tively. The m-th row and n-th column element of A is repre-
sented by {A}m, n, and the m-th entry of a is represented by {a}m. 
The submatrix containing the m-th to n-th columns of A is 
represented by A[:, m : n]. The expectation operator is represented 
by �( ⋅ ), and the real (complex) Gaussian distribution with 
mean μ and variance σ2 is denoted as 

(
�, �2

)
 (

(
�, �2

)
), 

where the matrix trace operator is represented by Tr{·}.

Materials and Methods

System model
System description
As shown in Fig. 1, we consider a downlink RIS-aided MIMO 
orthogonal frequency division multiplexing (OFDM) transmis-
sion system in an indoor environment, where a transparent RIS 
is attached to a window surface to refract outdoor THz signals 
from the BS into the room to serve U single-antenna UEs. Thus, 
the transparent transmissive RIS helps enhance indoor coverage. 
Let the BS (RIS) have MB =MB

y ×MB
z  (MR =MR

y ×MR
z ) uni-

formly spaced subarrays, where MB
y  (MR

y ) and MB
z  (MR

z ) are the 
numbers of BS (RIS)-side subarrays along the horizontal and 
vertical directions, respectively. Each subarray of the BS 
(RIS) is a uniform planar array (UPA) with NB

sub
= NB

y ×NB
z  

(NR
sub

= NR
y ×NR

z ) isotropically radiating elements, where NB
y  

(NR
y ) and NB

z  (NR
z ) are the numbers of BS (RIS)-side subarray 

antennas along the horizontal and vertical directions, respec-
tively. Therefore, the complete antenna dimension of the BS 
is NB =MBNB

sub
, and the element dimension of the RIS is 

NR =MRNR
sub

. To simplify the analysis, we assume that the nor-
mals of the central elements of both the BS and RIS are coaxial, 
i.e., the BS array and RIS array are parallel to each other with a 
distance of D, as illustrated in Fig. 1B.

In this study, we considered a BS-side subconnected hybrid 
analog–digital array architecture. This architecture consists of 
MB RF chains capable of supporting U ≤MB data streams. Each 
of these RF chains is connected to a subarray through NB

sub
 

phase shifters. Furthermore, we set the number of subcarriers 
to K and the sampling frequency (i.e., bandwidth) to fs. The 
carrier frequency is denoted as fc, which corresponds to central 
wavelength λ.

Channel model
BS-RIS channel model
Owing to the negligible NLoS component energy in the THz 
band, we only consider the LoS path in the analysis of the 
BS-RIS channel. Assuming spherical wave propagation, we 
construct the LoS MIMO link between the BS and RIS with 
only one single LoS path, although it can support intrapath 
multiplexing for multistream transmission [40]. The interan-
tenna spacing in each subarray is d = λ/2. To satisfy the LoS 
MIMO characteristic, the BS subarray spacing given by dBsy and 
dBsz is set to the following optimal LoS MIMO spacing:

(1)
dBsy =

√
�D

MB
y

−
�
2

(
NB
y − 1

)
, dBsz =

√
�D

MB
z

−
�
2

(
NB
z − 1

)
,
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i.e., dBsy and dBsz should satisfy the condition 𝜆 ≪ dBsy, d
B
sz ≪ D. A 

detailed explanation of Eq. 1 can be found in [40,41]. The RIS 
subarray spacing expressed by dRsy and dRsz can be obtained using 
a similar definition. Note that self-orthogonal LoS MIMO not 
only is obtained from parallel symmetric antenna arrangements 
but also can be obtained with symmetrical/unsymmetrical 
arrangements on tilted nonparallel lines/planes [41]. The fol-
lowing proposition was extracted from [42].

Proposition 1. Let the transceiver arrays be placed with a sepa-
ration distance of D and be working at a carrier wavelength λ 
(λ ≪ D). If the interantenna spacing and carrier wavelength λ are 
set in the same order of magnitude, the planar wave model can be 
applied. Otherwise, the spherical wave model should be employed.

According to Proposition 1, the subarray response vectors 
a
(
�,�, fk

)
∈ ℂ

NHNV×1 can be approximated by a planar wave 
model:

where fk = fc −
fs
2
+

kfs
K

,  1 ≤ k ≤ K, is the k-th subcarrier frequency, 
c is the speed of light, 0 ≤ nh ≤

(
NH − 1

)
, 0 ≤ nv ≤

(
NV − 1

)
, 

NH, and NV are the numbers of horizontal and vertical anten-
nas, respectively, while θ and ϕ are the horizontal and vertical angles 
of the departure or arrival (AoD or AoA) of the path, respectively.

(2)

A

B

Fig. 1. Schematic diagram of a RIS-aided THz massive MIMO system. (A) Multiple indoor UEs are served by the BS with the help of a transmissive RIS deployed on a window, 
and (B) hardware architectures at the BS, RIS, and UEs.
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Given that dBsy, d
B
sz, d

R
sy, d

R
sz ≪ D, the direction difference of 

the same path in different subarrays is negligible. Therefore, 
all subarrays on either the BS or RIS side can be assumed to 
share identical array response vectors. However, as subarrays 
are widely spaced, the relative phase differences among subar-
rays are non-negligible [42]. Motivated by the above analysis, 
the downlink spatial-frequency BS-RIS channel G

[
k
]
∈ ℂ

NR×NB
 

on the k-th subcarrier can be modeled as

where α[k] is the channel attenuation coefficient on the k-th 
subcarrier, and 

(
�B,�B

)
 and 

(
�R,A,�R,A

)
 are AoD and AoA of 

the LoS path, respectively. Without loss of generality, we assume 
that the LoS angles are fixed and known in advance given that 
the BS and RIS are fixed. In Eq. 3, the entries of  G̃

[
k
]
∈ ℂ

MR×MB
 

are defined according to the spherical wave model as

where D(mr ,mb) represents the distance between the mr-th RIS-side 
subarray and mb-th BS-side subarray. Furthermore, the subarray 
response vectors aR

(
�R,A,�R,A, fk

)
∈ ℂ

NR
sub

×1 and aB
(
�B,�B, fk

)
 

∈ ℂ
NB
sub

×1 are defined in Eq. 2. The constant coefficient GT repre-
sents the antenna gain at the BS, which is different from the array 
gain generated by beamforming [43]. The only unknown param-
eter in Eq. 3 is the channel coefficient α[k], which can be obtained 
by placing a power detector at the RIS side. Therefore, it is reason-
able to assume that the quasi-static BS-RIS channel is known.

RIS-UE channel model
As illustrated in Fig. 1B, we consider a multipath THz channel 
model for indoor environments [44]. The indoor RIS-UE chan-
nel model consists of one LoS path and Lp NLoS paths whose 
3-dimensional (3D) distances are represented as d0 and dl, for 
1 ≤ l ≤ Lp, respectively [45]. The total EM wave propagation loss 
mainly consists of 2 parts: free-space path loss �spr

(
fk, dl

)
=

c

4�fkdl
 

and molecular absorption loss �abs
(
fk, dl

)
= e−

1
2
�(fk)dl, where 

�
(
fk
)
 denotes the frequency-dependent absorption coefficient 

[46]. Hence, the spatial-frequency channel h
[
k
]
∈ ℂ

1×NR
 for the 

RIS-UE link is

where �
[
k
]
= �spr

(
fk, d0

)
�abs

(
fk, d0

)
 and � l

[
k
]
= �spr

(
fk, dl

)

�abs
(
fk, dl

)
�RC  are the channel attenuation coefficients of the 

LoS and l-th NLoS paths, respectively, and 
(
�LoS
R,D

,�LoS
R,D

)
 and (

�l
R,D

,�l
R,D

)
 are the LoS AoD and NLoS AoD of the l-th 

NLoS path, respectively. Additionally, the reflection coefficient 
�RC is a Gaussian random variable, i.e., 10log�RC

[
dB

]
∼ min 

{


(
�R�

2
R

)
, 0
}

. The entries of h̃LoS
[
k
]
∈ ℂ

1×MR
 are given as 

{
h̃LoS

[
k
]}

mr
= e−j2�fk⋅

d(mr )

c , where d(mr) denotes the 3D distance 

(3)G
[

k
]

=𝛼
[

k
]

GT G̃
[

k
]

⊗
[

aR

(

𝜃R,A,𝜙R,A, fk
)

a
H
B

(

𝜃B,𝜙B, fk
)]

,

(4)
{
G̃
[
k
]}

mr ,mb
= e−j2�fk⋅

D(mr ,mb)

c ,

(5)

h
[

k
]

=𝛽
[

k
]

h̃LoS

[

k
]

⊗a
H
R

(

𝜃LoS
R,D

,𝜙LoS
R,D

, fk

)

+

1
√

Lp

∑Lp

l=1
𝛽 l
[

k
]

h̃
l[
k
]

⊗a
H
R

(

𝜃lR,D,𝜙
l
R,D, fk

)

,

Su
bc

ar
rie

r

Element-RIS Subarray-1

RIS element selection pattern RIS-UE subsampling channel

Data transmission stage
Pilot training stage

Su
bc

ar
rie

r
Time slot

Pilot subcarrier

Subarray-1

21

3 4

3

3

1

1

2

2

4

4

Fig. 2. Block diagram of the frame structure, RIS element selection pattern, and RIS-UE subsampling channel. The selected parts are marked as yellow blocks, and the number 
in the yellow block is the index of the selected element.
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between the UE and mr-th RIS-side subarray; h̃l
[
k
]
 has a 

similar notation and assumptions.

Problem formulation and proposed channel 
estimation solution
Problem formulation of channel estimation
In this subsection, the downlink channel estimation problem 
is formulated on the basis of the considered RIS-aided THz 
massive MIMO communication system over hybrid-field chan-
nels. As shown in Fig. 2, we consider a 2-stage frame structure 
consisting of the pilot training and data transmission stages. 
At the pilot training stage, the BS transmits M pilot OFDM 
symbols (i.e., M time slots) dedicated to channel estimation. 
The m-th received signal at the UE side on the k-th subcarrier 
is represented by

where 1 ≤ k ≤ K, 1 ≤ m ≤M, PT is the transmit power of the 
BS, sm

[
k
]
∈ ℂ

U×1 denotes the transmitted symbol vector with 
�
{
sm

[
k
]
sHm

[
k
]}

= IU, and nm
[
k
]
∼ 

(
0, �2n

)
 is the effective 

complex additive white Gaussian noise at the UE, while 
h
[
k
]
∈ ℂ

1×NR
 and G

[
k
]
∈ ℂ

NR×NB
 are the downlink RIS-UE 

and BS-RIS channels on the k-th subcarrier, respectively. Note 
that because each UE can perform channel estimation inde-
pendently, UE subscripts are omitted. Let us denote the control 
vector vmr ,m

∈ ℂ
1×NR

sub for the mr-th subarray elements of the 
RIS in the m-th time slot as

where omr ,m
∈ ℂ

1×NR
sub represents the amplitude control vector, 

ṽmr ,m
∈ ℂ

1×NR
sub represents the phase control vector, and 

1 ≤ nr
sub

≤ NR
sub

, while �nr
sub

,mr ,m
∈ [0, 1] and �nr

sub
,mr ,m

∈ [0, 2�] 
are the amplitude and phase control coefficients, respectively. Note that 
�nr

sub
,mr ,m can control the switch of the refraction function for each 

RIS element. The complete set of RIS elements can be expressed as 
vm=om⊙ ṽm=

[
v1,m, ⋯ , vmr ,m

, ⋯ , vMR,m

]T
∈ℂ

NR×1, where 

om=
[
o1,m, ⋯ , oMR,m

]T
∈ ℂ

NR×1 and ṽm=
[
ṽ1,m, ⋯ , ṽMR,m

]T

∈ ℂ
NR×1. Therefore, the refraction phase matrix of RIS is defined 

as �m=diag
(

vm

)

= Om⊙ Ṽm∈ ℂ
NR×NR

, where Om = diag 
(
om

)
∈ ℂ

NR×NR
is the RIS selection matrix and Ṽm = diag 

(
ṽm

)
∈ ℂ

NR×NR
is the RIS phase matrix.

FRF ∈ ℂ
NB×MB

 and FBB
[
k
]
∈ ℂ

MB×U are respectively analog 
and digital beamforming matrices used at the BS to provide 
array gain and eliminate multistream interference. According 
to the subconnected architecture, the analog beamformer 
implemented by phase shifters is expressed as

where fmb
=
[
fmb ,1

, ⋯ , fmb ,n
b
sub
, ⋯ , fmb ,N

B
sub

]T
∈ℂ

NB
sub

×1 with 

||||
fmb ,n

b
sub

||||

2

= 1∕NB
sub

. Given that the BS-RIS channel having only 

a LoS path is quasi-static and known, each analog beamforming 
vector can be designed as

where k can be set to K/2 for alleviating the beam squint prob-
lem induced by the large bandwidth [47]. The digital beam-
former FBB

[
k
]
 is designed according to the zero-forcing (ZF) 

precoding in order to eliminate the multistream interference 
between the BS and RIS subarrays, i.e.,

where G̃eq

[
k
]
=
[
𝛼
[
k
]
GTG̃

[
k
]
⊗aH

B

(
𝜃B,𝜙B, fk

)]
FRF∈ℂ

MR×MB 
is the equivalent BS-RIS channel obtained from the perspective 
of the first element of different subarrays at the RIS, and 

� =

√

MB∕Tr

{

G̃
†
eq

[
k
](
G̃
†
eq

[
k
])H

}

 is a constant to meet the 

total transmit power constraint after beamforming. Thus, the 
multistream interference between the BS and RIS subarrays 
can be eliminated, i.e., Geq

[
k
]
= G

[
k
]
FRFFBB

[
k
]
∈ ℂ

NR×U, ∀k, 
is a block diagonal constant matrix.

Therefore, the equivalent pilot signal pm ∈ ℂ
NR×1 can be 

expressed as

where pm is identical for different subcarriers because we set 
the transmit symbol sm

[
k
]
 to be 1U , ∀m, k, and the ZF digital 

beamformer in Eq. 10 for G[k]. Under the assumption that the 
normals of the central elements of both the BS and RIS are 

coaxial, Geq

[
k
]
 is defined by 

√
NB�

�
k
�
GTblkdiag

�

11
NR
sub

, ⋯, 

1u
NR
sub

, ⋯ , 1U
NR
sub

)

 . Thus, the effective pilot signals can be fur-

ther expressed as the RIS element vector given by pm=√
NB�

�
k
�
GTvm≈

√
NB�GTvm=ATvm

, where the approxima-

tion α[k] ≈ α, ∀k, is further applied and AT =
√
NB�GT repre-

sents the total attenuation from the BS to the RIS.
After collecting continuous measurements of M time slots, 

the aggregate received signal vector y
[
k
]
=
[
y1
[
k
]
, ⋯ ,

yM
[
k
]]

∈ ℂ
1×M is expressed as

where P=
[
p1, ⋯ , pM

]
=ATV=AT

[
v1, ⋯ , vM

]
∈ℂ

NR×M , and 
n
[
k
]
=
[
n1
[
k
]
, ⋯ , nM

[
k
]]

∈ ℂ
1×M. Thus, the received signal 

matrix Y =
[
yT [1], ⋯ , yT [K]

]T
∈ ℂ

K×M can be expressed as

(6)ym
�
k
�
=
√
PTh

�
k
�
�mG

�
k
�
FRFFBB

�
k
�
sm

�
k
�
+ nm

�
k
�
,

(7)
vmr ,m

=omr ,m
⊙ ṽmr ,m

=
[
⋯ , 𝜂nr

sub
,mr ,m

, ⋯
]
⊙
[
⋯ , e

j𝜙nr
sub

,mr ,m , ⋯
]
,

(8)FRF=blkdiag
(
f1, ⋯ , fmb

, ⋯ , fMB

)
,

(9)fmb
= aB

(
�B,�B, fk

)
, 1 ≤ mb ≤MB,

(10)FBB
[
k
]
= �G̃†

eq

[
k
]
= �G̃H

eq

[
k
](
G̃eq

[
k
]
G̃
H
eq

[
k
])−1

,

(11)
pm =

[
Om ⊙ Ṽm

]

���������
Φm

[
G
[
k
]
FRFFBB

[
k
]]

�������������������
Geq[k]

sm
[
k
]
,

(12)y
�
k
�
=
√
PTh

�
k
�
P + n

�
k
�
,

(13)Y =
√
PTHP +N,
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where H =
[
hT [1], ⋯ , hT [K]

]T
∈ ℂ

K×NR
  represents the down-

link spatial-frequency domain RIS-UE channel matrix, and 
N =

[
nT [1], ⋯ ,nT [K]

]T
∈ ℂ

K×M.

DL-based SFDCExtra
As shown in Fig. 2, we activate only NR

s ≤ NR RIS elements at 
the pilot training stage and define �Δ = NR ∕NR

s ≥ 1 as the ele-
ment compression ratio. Furthermore, only Ks =

K

�
 uniformly 

selected subcarriers are used for pilot training, where � is the 
frequency compression ratio, and the remaining subcarriers 
can be used for transmitting control signals. Then, we estimate 
the subchannels associated with the activated RIS elements and 
selected subcarriers. We also provide an example of the RIS 
element pattern selected uniformly and the corresponding 
RIS-UE side subsampling spatial-frequency channel in Fig. 2, 
where the yellow blocks indicate the selected elements and 
selected subcarriers. Thus, the practical received pilot signal 
Ys ∈ ℂ

Ks×M is defined as

where Hs ∈ ℂ
Ks×N

R
s  is the subsampling of the spatial-frequency 

channel, Ps ∈ ℂ
NR
s ×M is the corresponding equivalent pilot sig-

nal, and Ns is the noise. Our goal is to recover the complete chan-
nel Ĥ ∈ ℂ

K×NR
 using limited received pilot signals Ys, i.e., 

extrapolating the remaining unknown channels from the 
acquired partial channels. Based on the nonlinear function fitting 
capability of DL, a mapping can be learned to represent proximity 
correlations between different spatial/frequency locations of 
channels. Thus, we propose a DL-based SFDCExtra network that 
consists of the element selection strategy (ESS), pilot design, CSI 
feedback, subchannel estimation, and SFDCExtra modules, as 
illustrated in Fig. 3. The complete process of the proposed scheme 
can be expressed as

where the mapping fESS( ⋅ ) represents the element selection 
strategy for deciding the subsampling channel Hs, the equiva-
lent pilot signal Ps can be learned as trainable parameters, and 
fCsiFd( ⋅ ), fSCE( ⋅ ), and fSFDE( ⋅ ) represent the CSI feedback net-
work, subchannel estimation network, and spatial-frequency 
domain extrapolation network, respectively. We next detail 
each component.

Element selection strategy
With only NR

s  activated RIS elements, from Eq. 7, the  

RIS element selection vector o = om =
[
o1,m, ⋯ , omr ,m

, ⋯, 

oMR,m

]T
∈ {0, 1}N

R×1 is an NR
s -hot vector with NR

s  elements 
being “1” and the other elements being “0”, where the 
subscript “m” can be dropped given that o is fixed at the 
pilot training stage. Moreover, given that only Ks subcar-
riers are uniformly selected for pilot training, the fre-
quency selection vector � ∈ {0, 1}K×1 is defined by 
{�}�k+1 = 1, 0 ≤ k ≤ Ks − 1, and the other elements are set 

to “0”. Thus, the selection operation of the subsampling 
function fESS( ⋅ ) can be expressed as

where S = � ⊗ oT ∈ {0, 1}K×N
R
 is the spatial-frequency selec-

tion matrix, and the zero rows/columns in S ⊙ H are deleted 
directly to yield Hs. Note that different RIS element selection 
vectors can affect the extrapolation performance. Thus, we con-
sider the 3 element selection strategies described next.

1. Uniform selection strategy: Given that each subarray in 
the RIS is a UPA, its element compression ratio is expressed as 
� = �y × �z, where �y and �z are the compression ratios along 
the azimuth and elevation directions, respectively. To ensure 
balanced estimation performance along 2 directions, �y and �z 
are expected to be as close as possible. However, �y = �z cannot 
always be guaranteed under all system parameter configura-
tions. In cases where �y ≠ �z, it is desirable to allocate more 
activated elements along the azimuth (y-axis) direction rather 
than the z-axis direction (i.e., �y ≤ �z). This strategic choice 
aligns with the consideration of indoor UEs, which are more 
likely to be distributed across a wide azimuth range, as opposed 
to the elevation range, given that indoor UEs are typically sta-
tionary in the vertical dimension. Accordingly, the y-z com-
pression ratio allocation can be solved from the following 
optimization problem:

Some allocation examples are �(2, 4, 8, 16)=�y(1, 2, 2, 4)×
�z(2, 2, 4, 4). Given �y and �z, the active element index vector 

�mr
∈ ℂ

1×NR
sub

∕� of the mr-th subarray can be expressed as

where 1 ≤ mr ≤MR, 0 ≤ n
y

i
≤

NR
y

�y
− 1, and 0 ≤ nz

i
≤

NR
z

�z
− 1. 

The entire active element index vector or set of the RIS is 

defined as �=
[
�1, ⋯ , �mr

, ⋯ , �MR

]T
∈ℂ

NR
s ×1. Thus, we set 

the entries of the RIS element selection vector o corresponding 
to the index set ξ to “1”, i.e., {o}� = 1 for ξ ∈ ξ, and the other 
elements of o to “0”.

2. Random selection strategy: It randomly selects NR
s  ele-

ments from the RIS as the random pattern and generates the 
active element index vector ξ. If the element compression ratio 
ρ is not large, then the aperture of a random pattern is usually 
comparable to that of the RIS.

3. Learning-based selection strategy: In addition to the 
above 2 fixed selection strategies, the learning-based ESS has 
also been widely studied. In [25], a differentiable selection 
network was proposed to learn the element selection vector 
o. The input of this network is a random initialization vector. 
By utilizing several fully connected layers and the softmax 
function, a probability vector g =

[
g1, g2, ⋯ , gNR

]T
∈ ℂ

NR×1 

(14)Ys =
√
PTHsPs +Ns,

(15)Ĥ = fSFDE

�
fSCE

�
fCsiFd

�√
PTfESS(H)Ps +Ns

���
,

(16)Hs = fESS(H) = S⊙H,

(17)

min{
�y ,�z

}
|
||
�z−�y

|
||
,

s. t. �y×�z =�,

1≤�y ≤�z .

(18)

{
�mr

}

n
y

i
NR
z ∕�z+n

z
i
+1

= NR
sub

(
mr − 1

)
+NR

z �yn
y

i
+ �zn

z
i + 1,
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is generated, where gi denotes the probability that the i-th 
element is selected. Thus, the active element index vector ξ 
can be defined as

where arg topNR
s
{ ⋅} is a function that finds the element index 

set of the first NR
s  largest selection probabilities. The details of 

the selection network can be found in [25].

Pilot design
According to Eq. 11, under the assumption that the BS and RIS 
are arranged in a parallel symmetric array, the equivalent 
downlink pilots can be defined as Ps = ATVs , where Vs ∈ ℂ

NR
s ×M 

denotes the RIS phase matrix of selected elements at the pilot 
training stage. Thus, the pilot matrix Ps can be obtained by 
adjusting the RIS phase at different time slots as follows:

where Ξ ∈ ℝ
NR
s ×M is the phase control matrix of selected RIS ele-

ments. Given that most DL frameworks, such as Tensorflow and 
Pytorch, have limited support for complex-valued operations, it is 
challenging to train the complex-valued pilot matrix Ps directly. To 
circumvent this issue, we adopt the real-valued RIS phase control 
matrix Ξ, whose entries take values in [0, 2π) as trainable param-
eters of the PDN, and the pilot matrix Ps can be obtained from 
Eq. 20. The structure of the PDN is shown in Fig. 3, where trainable 
parameters of the PDN, i.e., Ξ, are learned at the DL training stage.

CSI feedback
Recently, DL-based solutions, such as CsiNet [48], have 
achieved good performance for CSI feedback. Furthermore, an 
emerging CSI feedback architecture based on a transformer 
[49] has been demonstrated to further reduce the feedback 
overhead and obtain more efficient compression performance 

than the CsiNet framework [50]. Therefore, we utilize a trans-
former as the backbone of the CSI feedback network fCsiFd( ⋅ ). 
The original transformer is divided into an encoder and a 
decoder. However, given that we are dealing with CSI without 
time-sequential information, there is no causality constraint. 
Thus, we only exploit the encoder module of the transformer, 
which produces outputs in parallel. Because real-valued opera-
tions are more effective and the transformer can only extract 
the correlation between sequences, we convert the received 
pilot signal into a real-valued 2-dimensional (2D) sequence 
Ys ∈ ℝ

Ks×2M, which can be expressed as

where the number of subcarriers Ks represents the length of the 
input sequence.

A schematic diagram of the transformer encoder is shown 
in Fig. 4. Through the fully connected linear embedding layer, 
the input sequence Ys can be converted into Xs ∈ ℝ

Ks×dT, which 
merges the relative position information of the subcarriers 
using the positional embedding layer. Then, multiple encoder 
layers are utilized to extract correlations between sequences. 
Each encoder layer has the same structure and is composed of 
a multihead self-attention sublayer followed by a position-wise 
multilayer perceptron (MLP) sublayer. Layer norm is applied 
before every block and the residual connection is applied after 
every block. Note that the multihead attention mechanism 
plays a key role in the performance improvement of the trans-
former. As shown in Fig. 4, the input sequence Xs is first pro-
jected onto 3 different sequential vectors: queries, keys, and 
values with different learned linear projections, namely {
Qi,Ki,Vi

}
∈ ℝ

Ks×dm, 1 ≤ i ≤ h, where dm = dT∕h and h is the 
number of heads. Then, each value headi ∈ ℝ

Ks×dm, 1 ≤ i ≤ h, 
is outputted by performing the scaled dot-product attention 
simultaneously, where the weights on values can be obtained 
from a softmax function, which is expressed as

(19)� = arg topNR
s
{g},

(20)Ps=ATexp
(jΞ) =AT

(
cos(Ξ)+ jsin(Ξ)

)
,

(21)Ys =
[
ℜ
{
Ys

}
,ℑ

{
Ys

}]
,
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Fig. 3. Overall block diagram of the proposed DL-based SFDCExtra scheme.
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These output values are concatenated and projected back to a 
dT-dimensional representation using the linear projection 
matrix dT as WO ∈ ℝ

Ks×dT

After the transformer encoder, a linear layer followed by a sig-
moid function is used to generate a compressed codeword, 
which is then transformed into B bits as the feedback informa-
tion through a uniform scalar quantization layer. This feedback 
process generates the binary vector q ∈ {0, 1}B as 

where F denotes the trained parameter set of the CSI feedback 
network.

Subchannel estimation
When the BS receives the feedback bits, the subchannel estima-
tion network is used to reconstruct the subsampling of the 
complete spatial-frequency channel. As in the CSI feedback 
subsection, we also consider the transformer encoder as the 
backbone of this part. As shown in Fig. 3, received CSI feedback 
bits are initially processed by a dequantization layer, which 
conducts the inverse operation of the quantizer and outputs a 
real-valued vector. Then, the initial coarse channel estimate is 
obtained by a linear layer. Finally, the transformer encoder 
extracts the spatial-frequency correlation of the channel and 
further improves the channel estimation performance. The 
subchannel estimation process can be expressed as

where Ĥs ∈ ℂ
Ks×N

R
s  is the estimated subsampling channel, 

Hs ∈ ℝ
Ks×N

R
s ×2  is a real-valued 3D matrix, and S is the trained 

parameter set of the subchannel estimation network.

Spatial-frequency domain channel extrapolation

First, the initial input H̃ ∈ ℝ
K×NR×2 to the channel extrapola-

tion network is constructed from the estimated subsampling 
channel Hs ∈ ℝ

Ks×N
R
s ×2 with the known RIS spatial-frequency 

selection pattern S. Specifically, we copy the entries of Hs to the 
corresponding positions in H̃ and fill the other elements of H̃ 
with zeros according to the known RIS spatial-frequency selec-
tion pattern S. This initial operation is represented by

The nonzero rows/columns in H̃ are consistent with Hs, and 
their locations are the same as those of the “1” elements in S. 
The neighborhood information in the receptive field is then 
extracted using a convolutional layer for initial interpolation. 
To guarantee that the output dimensions from the convolution 
layer remain unchanged, we employ zero padding, i.e., adding 
zeros around the input feature map.

Subsequently, we consider a competitive yet conceptually 
and technically simple architecture, called the MLP-Mixer [51], 
as the backbone of the channel extrapolation network. The 
architecture of this MLP-Mixer is based entirely on MLPs, 
which can extract and reconstruct 2D features by repeatedly 
applying them to either spatial locations or feature channels. 
Specifically, the input H̃ ∈ ℝ

K×NR×2 is rearranged as a series of 
flattened 2D patches Xp ∈ ℝ

Np×(2L2), where 
(
K ,NR

)
 represents 

the size of the original input, (L, L) represents the length and 
width of each path, and Np = KNR∕L2 represents the number 
of patches. Then, all the patches are linearly projected with the 
same projection matrix. This results in a 2D real-valued matrix 
X̃ ∈ ℝ

Np×dM. Next, the input matrix X̃ is fed into several mixer 
layers to extrapolate the complete channel. As illustrated in 
Fig. 5, each mixer layer consists of 2 MLP blocks. The first acts 
on the columns of X̃, maps ℝNp

↦ ℝ
2Np

↦ ℝ
Np, and is shared 

across all the columns. The second acts on the rows of X̃, i.e., 
on the transposed input matrix X̃T, maps ℝdM ↦ ℝ

2dM ↦ ℝ
dM, 

and is shared across all the rows. Each MLP block contains 2 
fully connected layers and a nonlinear activation function. The 
mapping of the t-th mixer layer can be expressed as

(22)headi = softmax

�
QiK

T
i

√
dm

�

Vi, 1 ≤ i ≤ h.

(23)MultiHead
(
Xs

)
=Concat

(
headi, ⋯ , headh

)
WO.

(24)q = fCsiFd
(
Ys;F

)
,

(25)Hs=
[
ℜ

{
Ĥs

}
,ℑ

{
Ĥs

}]
= fSCE

(
q;S

)
,

(26)H̃ = fzfi
(
Hs; S

)
.

(27)

U= X̃t +Wt,2f�
(
Wt,1LayerNorm

(
X̃t

))
,

X̃t+1=U+
(
Wt,4f�

(
Wt,3LayerNorm(U)T

))T
,
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where X̃t denotes the input matrix to the t-th mixer layer, Wt,i, 
1 ≤ i ≤ 4, are the parameter matrices of the fully connected 
layers in the t-th mixer layer for 1 ≤ t ≤ LM, LM is the number 
of mixer layers, and f� denotes an activation function.

Finally, the output of the last mixer layer is linearly projected 
back to the original dimension ℝNp×dM

↦ ℝ
Np×(2L2), and the 

2D patches are rearranged back to ℝNp×(2L2)
↦ ℝ

K×NR×2 for 
obtaining the final extrapolation result H ∈ ℝ

K×NR×2, which is 
a real-valued 3D matrix. Thus, the extrapolation process is 
expressed as

where Ĥ ∈ ℂ
K×NR

 is the estimated complete complex-valued 
channel, and E is the trained parameter set of the spatial-
frequency domain extrapolation network.

Training strategy
The offline training dataset, denoted as , comprises ∣ ∣ = Nset 
samples. Each sample in  is an input–label pair denoted as (H, 
H), where H serves as both the extrapolation target and the input 
for the SFDCExtra network. The input will go through the RIS 
array element and subcarrier subsampling strategy, because the 
original complete channel must be extrapolated from only the 
received pilot signal of the subsampling channel.

With the uniform or random ESS fESS( ⋅ ), at the offline train-
ing stage, E2E training is conducted for the PDN, CSI feedback 
network, subchannel estimation network, and channel extrapo-
lation network. Thus, the loss function involves minimizing 
the normalized mean square error (NMSE) between the output 
Ĥ and target H, i.e.,

where Be is the batch size for offline training.
When the learning-based ESS is adopted, the parameters 

for the ESS and the above networks are optimized jointly, i.e., 
the loss function can be expressed as

where 0 < 𝛾 ≤ 1 represents the weight used to balance channel 
extrapolation and ESS, with γ = 1 denoting that the nonlearn-
ing-based fESS( ⋅ ) is selected, and ESS is the loss function of 
the learning-based ESS. The details of ESS are available in [25].

Proposed beamforming solution
Problem formulation of RIS-aided multiuser beamforming
The BS can simultaneously support U UEs with the aid of RIS 
at the data transmission stage, given that the LoS MIMO archi-
tecture can support multistream transmission via intrapath 
multiplexing. Similar to Eq. 6, the received signal at the u-th 
UE on the k-th subcarrier can be expressed as

where h
[
u, k

]
∈ ℂ

1×NR
, 1 ≤ u ≤ U , 1 ≤ k ≤ K denotes the 

downlink RIS-UE channel of the u-th UE on the k-th subcar-
rier, and fBB

[
u, k

]
∈ ℂ

MB×1 denotes the digital baseband beam-
forming vector associated with the u-th UE on the k-th 
subcarrier. Thus, the signal-to-interference-plus-noise ratio 
(SINR) of the u-th UE on the k-th subcarrier can be expressed 
as

(28)Ĥ=H[:,:,1] + jH[:,:,2] = fSFDE
(
Hs;E

)
,

(29)c =
1

Be

Be
∑

i=1

H−Ĥ
2

F

H
2
F

,

(30) = �c + (1 − �)ESS,

(31)

y[u, k]=
√
PTh[u, k]�G[k]FRFfBB[u, k]s[u, k]

+

U�

i=1,i≠u

√
PTh[u, k]�G[k]FRFfBB[i, k]s[i, k]+n[u, k]
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Fig. 6. Overall structure of the proposed DL-based hybrid beamforming and RIS refraction phase design scheme.
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Therefore, the sum rate R for the whole set of UEs is expressed 
as

By utilizing the estimated RIS-UE channel at the pilot 
training stage, the BS can design the hybrid beamformer {
FRF,FBB

[
k
]
, ∀k

}
 and RIS refraction phase matrix Φ to maxi-

mize the sum rate R, where FBB
[
k
]
=
[
fBB

[
1, k

]
, ⋯ , fBB

[
U , k

]]
. 

This design process is illustrated as

where Ĥ[u] is the estimated spatial-frequency RIS-UE channel 
of the u-th UE, and  ( ⋅ ) represents a function that maps the 
estimated RIS-UE channels onto the hybrid beamformer {
FRF,FBB

[
k
]
, ∀k

}
 and RIS refraction phase matrix Φ.

Proposed DL-based HBFRPD scheme
To solve the optimization in Eq. 34, some alternating iterative 
algorithms [28,29,31] have been proposed to obtain the ana-
log beamformer, digital beamformer, and RIS phase, respec-
tively. Unfortunately, all the aforementioned approaches are 
based on the idealized case that the CSI is known accurately. 
However, perfect CSI is usually unavailable, especially for 
indoor channel cases where the channel characteristics are 
complex owing to rich scattering. By using the nonlinear 
function fitting capability of DL, we can learn the complicated 
and unknown mapping from the estimated channels to the 
hybrid beamformers and RIS refraction phase. Thus, we pro-
pose a DL-based HBFRPD scheme that consists of the analog 
beamformer design, DL- based RIS refraction phase design, 

and knowledge-data dual-driven digital beamformer design. 
A diagram depicting the design of the proposed scheme is 
presented in Fig. 6.

Analog beamformer design
The integration of active and passive beamforming at the BS 
and RIS is a nonconvex optimization problem that poses con-
siderable difficulties in finding a global optimum solution. 
Hence, we separately design the analog and passive beamform-
ing. Specifically, both BS analog and RIS passive beamforming 
are designed to focus energy for improving the received SINR 
of UEs. However, given the subconnected structure in the LoS 
MIMO architecture, the interference among beams from the 
BS and RIS subarrays cannot be eliminated. Fortunately, this 
part of interference can be removed by appropriately designing 
the digital beamforming. Therefore, when designing the analog 
beamforming on the BS side, it is sufficient to assume that the 
transmit energy is focused on the RIS.

Given that the BS-RIS channel with only the LoS path is quasi-
static and known, we can utilize the angle information of the 
BS-RIS link to design the analog beamformer. Specifically, the 
transmit beam of the mb-th subarray designed for the u-th UE 
should be aligned with the mr-th subarray of the RIS, where the 
u-th UE is assisted by the mr-th subarray of the RIS. Therefore, 
the analog beamformer FRF = blkdiag

(
f1, ⋯ , fmb

, ⋯ , fMB

)
 

can be simply designed for alignment between the BS and RIS 
subarrays according to Eq. 9.

DL-based RIS refraction phase design
Optimizing a common RIS phase shared by all the subcarriers 
is a crucial challenge in a RIS-aided OFDM system. In the THz 
broadband case, there exists a non-negligible beam squint effect 

(33)R =
1

K

U∑

u=1

K∑

k=1

log2
(
1 + SINR

[
u, k

])
.

(34)

max
 (⋅)

R,

s. t.
{
FRF,FBB

[
k
]
,∀k,�

}
=

(
Ĥ[u],∀u

)
,

FRF∈(8),

‖‖‖
FRFFBB

[
k
]‖‖‖

2

F
=MB,∀k,

{�}i,i={v}i= ej�i ,�i∈[0, 2�),∀i,

Fig. 7. Schematic diagram of RIS-UE channel model for the indoor environment.
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Fig.  8.  NMSE performance comparison of different channel estimation schemes 
versus transmit power PT. The labels “Transformer-CEN” and “CNN-CEtraN” are short 
for transformer-based channel estimation network [50] and CNN-based channel 
extrapolation network [27], respectively.
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for different subcarriers [47]. Therefore, when designing the 
common RIS phase, it is necessary to consider this effect on all 
subcarriers, which makes the RIS phase design for the broad-
band case much more difficult than the design for the narrow-
band case. To solve this challenging problem, a transformer-based 
RPDN is proposed in Fig. 6 to design the RIS refraction phase 
matrix.

We first convert all the estimated RIS-UE channels 
Ĥ[u] ∈ ℂ

K×NR
 for 1 ≤ u ≤ U into a real-valued 3D matrix 

 ∈ ℝ
U×K×2NR

, i.e.,

where H[u]=
[
ℜ

{
Ĥ[u]

}
,ℑ

{
Ĥ[u]

}]
∈ℝ

K×2NR and Ĥ[u] is 

the estimated RIS-UE channel of the u-th UE obtained from 
the DL-based SFDCExtra network. Note that  is inputted into 
the transformer encoder, which globally extracts the inter-
subcarrier correlation. To consider the beam squint effect for 
different subcarriers, the 2D matrix Xr ∈ ℝ

U×NR∕U is obtained 
by averaging over the subcarrier dimension of the output of the 
transformer encoder. Then, Xr is flattened as xr ∈ ℝ

NR×1 and 
passes through the activation function to generate the RIS 
phase vector v ∈ ℂ

NR×1 that satisfies the constant modulus 
constraint, i.e.,

Finally, the RIS phase matrix � ∈ ℂ
NR×NR

 is obtained through 
diagonalization. The overall process of the RIS refraction phase 
design, namely the transformer-based RPDN, can be expressed 
as

where fRIS(·) denotes the mapping of the RPDN, whose trainable 
parameter set is R.

Knowledge-data dual-driven digital beamformer design
Using the known BS-RIS channel G[k], designed RIS refraction 
phase matrix Φ, analog beamforming matrix FRF, and estimated 
RIS-UE channel ĥ

[
u, k

]
, the estimated equivalent baseband 

channel ĥeq
[
u, k

]
∈ ℂ

1×MB
 can be expressed as

The true equivalent baseband channel heq
[
u, k

]
 has a form 

similar to that of Eq. 38, given the designed Φ and FRF. Therefore, 
Eq. 34 can be simplified as(35) =

[
H[1], ⋯ ,H[u], ⋯ ,H[U]

]
,

(36)v = ej2�⋅Sigmoid(xr).

(37)� = fRIS
(
;R

)
,

(38)ĥeq
[
u, k

]
= PTĥ

[
u, k

]
�G

[
k
]
FRF.
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Fig. 9. NMSE performance comparison of the proposed scheme versus the number of 
multipath Lp, given ρ = 4, ̄ ρ = 16 and M = 16. Offline training is based on the channel 
samples with Lp = 5 multipath components.
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Fig. 10. NMSE performance comparison of the proposed scheme with different pilot 
numbers versus transmit power PT, given ρ = 4, ¯ρ = 16, Lp = 5.
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Note that the design of the analog beamformer and RIS refrac-
tion phase have been specifically designed in the preceding 
subsections. Equation 39 is a classic baseband beamforming 
problem and can be solved with standard linear beamforming 
schemes, such as the regularized ZF (RZF) or iterative weighted 
minimum mean-square error (WMMSE) algorithm. Taking 
the latter as an example, the iterative WMMSE algorithm is 
designed to solve the optimization problem in Eq. 39 by 
addressing the equivalent MMSE problem specified in Eq. 40 
below, which has an identical optimal solution FBB[k], ∀ k to 
the problem in Eq. 39.

where wu,k =
{
W
}
u,k

 is the weight of the u-th user on the k-th 

subcarrier, eu,k = �

{
||̂s[u, k]− s[u, k]||

2
}

 is the MSE between the 
transceiver symbols under the independence assumption of s[u, k] 
and n[u, k], ŝ

[
u, k

]
= uu,ky

[
u, k

]
 is the estimated data symbol at 

the UE side, and uu,k =
{
U
}
u,k

 is the receiver gain of the u-th UE 
on the k-th subcarrier. According to [52], the above problem is 
convex in each individual optimization variable. This property 
enables each subproblem to have a closed-form solution, given 
the other optimization variables. Then, the optimization problem 

in Eq. 40 can be solved by a block coordinate descent iterative 
algorithm. The iterative WMMSE beamforming design algorithm 
is described in Algorithm 1.

However, the iterative WMMSE algorithm typically requires 
a large number of iterations with a long execution time. 
Furthermore, the BS can only acquire imperfect estimated 
CSI ĥeq

[
u, k

]
, and it is difficult for traditional digital beam-

forming algorithms, such as Algorithm 1, to overcome the 
interference induced by imperfect CSI. Thus, we propose a 
knowledge-data dual-driven digital beamforming network, 
as shown in Fig. 6, which utilizes the transformer encoder to 
directly learn the parameters of the iterative WMMSE algo-
rithm from imperfect CSI for better interference elimination 
and shorter execution time.

Specifically, the real-valued 3D matrix  ∈ ℝ
U×K×2NR

 is 
reshaped into a 2D matrix Hd ∈ ℝ

K×2UNR
, which is inputted into 

the transformer encoder. This encoder outputs X ∈ ℝ
K×4U, 

which is converted into the weight matrix W and receiver gain 
matrix U, i.e.,

Then, we can obtain FBB
[
k
]
, ∀k, based on the learned W and U 

by the update function of fBB
[
u, k

]
, i.e., line 5 of Algorithm 1. 

Compared with the iterative WMMSE beamforming design, 
the proposed scheme does not involve an iterative process so 
the execution time can be reduced considerably. To satisfy the 
transmission power constraint, the normalization operation 
can be expressed as

(39)

max
FBB[k],∀k

1

K

U�

u=1

K�

k=1

log2
�
1+SINR

�
u, k

��
,

s. t.
SINR

�
u, k

�
=

���
heq

�
u, k

�
fBB[u, k]

���
2

∑U
i=1,i≠u

���
heq

�
u, k

�
fBB

�
i, k

����
2
+�2n

FRFFBB
�
k
�2
F
=MB, ∀k.

(40)
max

U,W,FBB[k],∀k

U∑

u=1

K∑

k=1

(
wu,keu,k− log2wu,k

)
,

s. t. FRFFBB
[
k
]2
F
≤MB, ∀k,

(41)W = XT
[:,:U]

+ jXT
[:,U :2U]

,

(42)U = XT
[:,2U :3U]

+ jXT
[:,3U :].

(43)FBB
�
k
�
=

√
MBFBB

�
k
�

���
FRFFBB

�
k
����F

, ∀k.
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Fig. 12. Effectiveness of the channel extrapolation module with different subchannel estimation schemes. (A) NMSE performance comparison of different subchannel estimation 
schemes versus transmit power PT. (B) NMSE performance of channel extrapolation versus transmit power PT for different subchannel estimation schemes.
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The proposed knowledge-data dual-driven digital beamformer 
design can be expressed as

where fDBF( ⋅ ) is the map of the digital beamforming network 
with a trainable parameter set D.

Training strategy
We take every U channel sample (i.e., the channels of U UEs) in 
the training set of the channel estimation stage as a group to 
form a training set at the beamforming design stage, denoted as 
U. The number of offline training samples is ∣U ∣ = Nset∕U. 
A sample in U is a UE set {H[u], 1 ≤ u ≤ U}, where H[u] is the 
spatial-frequency RIS-UE channel of the u-th UE.

{H[u], 1 ≤ u ≤ U} are inputted to the trained SFDCExtra 
network to obtain the estimated channels 

{
Ĥ[u], 1 ≤ u ≤ U

}
, 

which form the input to the proposed network. Given that 
imperfect CSI reduces the sum rate upper bound, to ensure a 
faster learning process, we apply a teacher forcing technique 
[53] at an early stage of training by feeding perfect CSI 
{H[u], ∀u} to the proposed network. At the offline training 
stage, we consider E2E training to jointly optimize the hybrid 
beamforming and RIS phase, i.e., the parameters of the entire 
network are trained by minimizing the negative sum rate. Thus, 
the loss function is expressed as

where R is the sum rate defined in Eq. 33 and Bb is the batch 
size for offline training.

Results and Discussion
In this section, we describe how the effectiveness of the 
proposed SFDCExtra scheme as well as HBFRPD for a RIS-
aided THz massive MIMO system was evaluated through 
numerical simulations.

Simulation settings
Communication scenario setup
In the conducted simulations, the BS was deployed on top of 
a building of height 30 m, and the RIS was installed on a 
window surface on one floor of another building. As shown 
in Fig. 1B, the BS (RIS) was equipped with MB =MB

y M
B
z = 4 

(
MR =MR

y M
R
z = 4

)
 subarrays on the yz-plane, where MB

y = 2 
(
MR

y = 2
)

 and MB
z = 2 

(
MR

z = 2
)
. Each subarray was a UPA 

with NB
sub

= NB
y N

B
z = 64 

(
NR
sub

= NR
y N

R
z = 64

)
 isotropically radi-

ating elements, where NB
y = 8 

(
NR
y = 8

)
 and NB

z = 8 
(
NR
z = 8

)
. 

Therefore, the number of elements of the complete array at 
the BS (RIS) was NB =MBNB

sub
= 256 

(
NR =MRNR

sub
= 256

)
, 

and the distance between the BS and RIS was D = 20 m. The 
central frequency was fc = 0.3 THz with a bandwidth fs = 
1 GHz. The number of OFDM subcarriers was K = 128, and 
the gain of the BS antenna was GT = 10 dBi. According to these 
parameter settings, the subarray intervals of both the BS and 
RIS were calculated from Eq. 1 as dBsy, d

B
sz, d

R
sy, d

R
sz = 96.5� for 

obtaining the multistream multiplexing gain over the LoS path.
Figure 7 depicts a schematic diagram of the RIS-UE chan-

nel model for the indoor environment, where the positions 
of the RIS, UEs, and scatterers are indicated by blue, red, and 
green circles, respectively. The RIS-UE LoS path is depicted 
by a red solid line, and the NLoS link via a scatterer is repre-
sented by a black dotted line. We assumed that U = 4 UEs 
were randomly distributed over the xy-plane of the rectangu-
lar room (Wx = 5 m, Wy = 10 m), and the height of UEs was 
1 m lower than the RIS. The number of available NLoS paths 
(scatterers) was set to Lp = 5, implying that only a single-bounce 
scattering mode was considered. The reflection coefficient 
parameters βRC were set to �R = − 5, �R = 2. The noise power 
spectrum density at the UEs was �2

NSD
= − 174 dBm/Hz. 

Thus, the power of the additive white Gaussian noise was 
�2n = �2

NSD
fs ∕K = − 105 dBm. The RIS-UE channel samples 

were generated using Eq. 5, and the UEs and scatterers were 
distributed randomly each time.

SFDCExtra network parameter configuration
In the CSI feedback network, the linear embedding layer of the 
transformer encoder has dT = 256 neurons. In the transformer 
encoder, the number of encoder layers is LT = 3, the number of 

(44)
{
FBB

[
k
]
, ∀k

}
= fDBF

(
Hd ,D

)
,

(45)b = −
1

Bb

Bb∑

i=1

R,
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Fig. 13. Sum rates achieved by different schemes versus transmit power PT for perfect 
CSI. The actual transmit power of the “w/o LoS MIMO” case is UPT = 4PT.
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heads is h = 8, and the position-wise MLP sublayer has 2 fully 
connected layers with 4dT and dT neurons, respectively, while the 
dimension of the output linear layer is 2M. In the subchannel 
estimation network, the linear layer is a 2NR

s -dimensional fully 
connected layer and the hyperparameters of the transformer 
encoder are the same as those of the CSI feedback network. 
Regarding the channel extrapolation network, the convolutional 
layer features a 7 × 7 kernel and 2 filters. The parameters of the 
rearranged operation are L = 16 and Np = 128, and the number 
of neurons in the linear layer is dM = 512. The number of mixer 
layers is LM = 6, where each mixer layer consists of 2 MLP blocks, 
and the numbers of neurons in the MLP blocks are set to 2Np, Np, 
2dM, and dM, respectively. The above structural parameters of the 
SFDCExtra network were empirically found to be appropriate.

The dataset was divided into 3 distinct subsets, namely the 
training, validation, and testing subsets, containing 102,400, 
10,240, and 10,240 samples, respectively. Unless otherwise speci-
fied, simulations adopted the uniform ESS. When considering 
the learning-based ESS, the weight factor γ was 0.9. At the network 
training stage, the Adam optimizer was adopted to update the 
network weight parameters and the learning rate was varied 
depending on the warmup mechanism [49]. The batch size was 
set to 512 with 200 epochs.

HBFRPD network parameter configuration
We again determined the appropriate structural parameters of 
the HBFRPD network empirically. Specifically, in the RPDN, the 
linear embedding layer of the transformer encoder has dB = 128 
neurons. In the transformer encoder, the number of encoder lay-
ers is LB = 3, the number of heads is h = 8, and the position-wise 
MLP sublayer has 2 fully connected layers with 4dB and dB neu-
rons, respectively, while the output linear layer of the transformer 
encoder has NR∕U = 64 neurons. In the digital beamforming 
network, the hyperparameters of the transformer encoder are the 
same as those of the RPDN, and the output linear layer of the 
transformer encoder has 4U neurons.

We took each U channel samples as a group to form a dataset 
composed of 3 parts with sample sizes of 25,600, 2,560, and 
2,560 respectively. The batch size was set to 32 with 180 epochs.

DL-based SFDCExtra
Given that the RIS element can only passively receive EM waves, 
selecting some elements of the RIS array would reduce the signal 
energy radiated into the room. For a fair comparison between 
different schemes, we adopted the same transmit power instead 
of the same SNR as the comparison criterion to avoid ignoring 
the performance differences induced by the number of activated 
RIS elements. Specifically, as illustrated in Fig. 8, we assessed the 
NMSE performance of the different schemes with different trans-
mit power PT. The number of NLoS paths was Lp = 5. We con-
sidered 3 model-based channel estimation benchmark algorithms, 
namely the SOMP algorithm [54], multiple-measurement-vector 
approximate message passing (MMV-AMP) algorithm [55], and 
model-driven MMV learned AMP (MMV-LAMP) network [56], 
and utilized M = 64 OFDM symbols on all subcarriers and then 
directly estimated the complete channel. For the SOMP and 
MMV-LAMP schemes, a redundant dictionary with an overs-
ampling ratio of 4 was utilized to further improve the perfor-
mance, i.e., the number of codewords was Gd = 1,024. However, 
for the MMV-AMP approach, the requirement of independent 
and identically distributed elements in the measurement matrix 
precludes the use of a redundant dictionary (i.e., Gd = NR = 256). 
Given that data-driven DL algorithms have the potential to 
achieve better performance, we also compared the proposed 
DL-based SFDCExtra network with a transformer-based channel 
estimation network [50] and CNN-based channel extrapolation 
network [27]. For these methods, we set M = 16 OFDM symbols 
and � = 16 as the subcarrier compression ratio. The transformer-
based scheme turns on all RIS elements, i.e., ρ = 1, and directly 
estimates the complete channel. Both the CNN-based and pro-
posed channel extrapolation schemes consider the element com-
pression ratio of ρ = 4 to perform partial channel extrapolation. 
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Fig. 14. Effectiveness verification of the proposed HBFRPD network under imperfect CSI. (A) Sum rates achieved by different schemes versus transmit power PT under imperfect 
CSI. (B) CDFs of the sum rates achieved by different schemes under imperfect CSI, given PT = 44 dBm. We set ρ = 4, ¯ρ = 16, Lp = 5, and M = 16.
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Note that for the sake of fairness, the quantization of CSI feedback 
information was not considered for the above model- and data-
driven algorithms. Therefore, we additionally considered the 
proposed scheme with B = 256 feedback bits generated via a 2-bit 
quantizer, denoted as “Proposed-Q”.

It can be observed from Fig. 8 that the proposed channel extrap-
olation scheme notably outperforms the other schemes in terms 
of NMSE performance while imposing a smaller pilot overhead. 
This is because exploiting spatial-frequency correlations allows the 
proposed DL-based channel extrapolation scheme to recover the 
unobserved channel part from the estimated low-dimensional 
subchannel, thus reducing the training overhead while improving 
the NMSE performance. In particular, the proposed extrapolation 
scheme considerably improves the NMSE performance com-
pared with the state-of-the-art CNN-based channel extrapolation 
scheme. Unlike local perception in CNNs, the MLP-Mixer is uti-
lized as the backbone of the proposed channel extrapolation mod-
ule to extract the global features of the channel for enhanced 
extrapolation accuracy. Considering the actual situation of finite 
quantized feedback, we can see that the proposed scheme with a 
2-bit quantizer, “Proposed-Q”, can still achieve very good perfor-
mance. These results demonstrate that the proposed channel 
extrapolation scheme can accomplish high reconstruction perfor-
mance while ensuring low pilot and feedback overheads.

We further investigated the robustness of the proposed 
DL-based channel extrapolation scheme with respect to the 
number of multipath components Lp in Fig. 9. The proposed 
DL-based channel extrapolation scheme was trained offline using 
channel samples that contained Lp = 5 multipath components. 
As depicted in Fig. 9, at the online estimation stage, the proposed 
scheme demonstrates its ability to estimate channels with differ-
ent Lp without the need for retraining the entire network. Thus, 
the proposed scheme exhibits superior robustness and general-
ization capabilities in various channel conditions.

In Fig. 10, we evaluate the channel extrapolation NMSE per-
formance of the proposed scheme with different numbers of pilot 
OFDM symbols, M = 4, 8, 16, 32, and 64. As expected, the chan-
nel extrapolation performance improves with the increase in the 

number of pilot OFDM symbols. This is because more pilot 
OFDM symbols can improve the accuracy of subchannel estima-
tion, thus reducing the error propagation and improving the 
reconstruction of the extrapolation module. Furthermore, we 
can see that the proposed scheme can provide more considerable 
performance gain by increasing the number of pilot OFDM sym-
bols in the case of low transmit power. This is because the increase 
in the number of observations can improve the received SNR.

Figure 11 depicts the NMSE performance of the proposed 
DL-based channel extrapolation scheme versus the element com-
pression ratio ρ, with 3 ESEs. Specifically, the curve labeled as 
“Uniform” corresponds to the uniform selection strategy, the 
curve labeled as “Random” represents the random selection strat-
egy, while the other 3 curves labeled as “DL-based with 200 
epochs”, “DL-based with 300 epochs”, and “DL-based with 400 
epochs” use the DL-based ESS. As expected, the NMSE improves 
as the element compression ratio ρ decreases. This is largely due 
to 2 reasons: (a) As the number of selected RIS elements increases, 
or the element compression ratio ρ decreases, the received signal 
power increases, thus improving the estimation accuracy of the 
channel extrapolation input (i.e., subchannel estimate); and (b) 
the received pilot signal can provide more channel information 
when more RIS elements are selected. However, this does not 
imply that we can obtain the best performance by choosing the 
lowest element compression ratio (or performing complete 
observations directly without extrapolation). Indeed, the channel 
extrapolation performance heavily depends on the amount of 
wireless communication transmission resources, the accuracy 
of the subchannel estimation, and the number of selected RIS 
elements (i.e., the dimension of the subchannel). Only when the 
transmission resources are sufficient can the gain provided by 
more selected RIS elements stand out. Moreover, we can observe 
that the performance gap between different element selection 
strategies is not evident at low compression ratios. However, at 
a high compression ratio (e.g., ρ > 8), the performance rank can 
be clearly seen to be “Uniform” < “Random” < “DL-based”, 
which demonstrates the effectiveness of the proposed approach. 
Given that the aperture of the random pattern is statistically 

Table. Computational complexity of different schemes

Channel estimation scheme Complexity FLOPs Execution time (s)

SOMP 
(

GdKMI + G2
d
KI
)

4.707 G 0.1130

MMV-AMP 
(

MKNRI
)

5.337 G 0.7482

MMV-LAMP 
(

MGdKI
)

0.341 G 0.0689

Transformer-based channel 
estimation network


(

LT
(

Kd2
T
+ K2dT

))

0.362 G 0.0103

CNN-based channel extrapolation 
network


(

Z2
5
NRKC2

32

)

10.16 G 0.6039

Proposed


(

LM

(

N2
p
dM + Npd

2

M

))

1.066 G 0.0248

Beamforming scheme Complexity FLOPs Execution time (s)

RZF


((

2U
(

MB
)2

+

(

MB
)3
)

K
)

24.58 k 0.1389

WMMSE


(

IK
(

U2
(

MB
)2

+ U
(

MB
)3
))

8.192 M 0.9184

Proposed 
(

LBU
(

Kd2
B
+ K2dB

))

0.512 G 0.0616
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larger than that of the fixed uniform pattern, the random selec-
tion strategy is better than the uniform selection strategy, espe-
cially at a high compression ratio. The performance of the 
DL-based approach is better than that of the first 2 approaches 
after reaching a sufficient number of training epochs—specifi-
cally 300 epochs in this scenario, as the learning of the selection 
network requires more epochs to converge.

To fully illustrate the effectiveness of the proposed scheme, 
its channel extrapolation module was verified separately. To do 
so, we fixed the compression ratio of RIS elements at 4, i.e., 
NR
s = 64. First, least squares (LS), SOMP, and the proposed 

transformer-based algorithm were utilized for subchannel esti-
mation; the results are shown in Fig. 12A. Note that the NMSE 
of the SOMP-based subchannel estimation with M = 64 pilot 
symbols is considerably better than that of the LS-based sub-
channel estimation with M = 64 pilot symbols, particularly at 
low transmit power PT. Furthermore, the NMSE of the pro-
posed transformer-based subchannel estimation algorithm 
with only M = 16 pilot symbols is considerably better than that 
of the SOMP-based subchannel estimation with M = 64 pilot 
symbols. Then, we inputted the subchannels estimated by dif-
ferent algorithms into the trained channel extrapolation net-
work fSFDE( ⋅ ), which outputs the estimation of the complete 
channel. The corresponding results are shown in Fig. 12B. Note 
that the NMSE performance of the complete channel extrapo-
lated from the proposed channel extrapolation network is even 
better than the NMSE of the estimated low-dimensional sub-
channel, without any additional pilot overhead. This demon-
strates that the proposed channel extrapolation network can 
not only be used for DL-based communication architectures 
but also be combined with traditional algorithms to consider-
ably reduce resource overhead. Therefore, we conclude that the 
proposed DL-based SFDCExtra scheme can learn a latent map-
ping among channel elements to considerably reduce the pilot 
overhead while achieving the same or better channel estimation 
performance.

DL-based HBFRPD
Figure 13 shows the sum rates of total UEs achieved by different 
schemes assuming perfect CSI. We considered 2 comparison 
schemes, both of which adopt the analog beamforming design 
discussed above and the proposed beam alignment-based RIS 
phase design. In the latter design, the beam of each subarray is 
aligned to the corresponding associated UE. For digital beam-
forming design, these 2 comparison schemes adopt the RZF 
and iterative WMMSE algorithms, respectively; thus, they are 
abbreviated as “RZF” and “WMMSE”, respectively. Note that 
the proposed HBFRPD scheme performs better than other 
schemes and its superiority is more evident as the transmit 
power increases. In addition, another advantage of the pro-
posed HBFRPD scheme is that it does not require FBB

[
k
]
, ∀k, 

in an iterative manner. Thus, it runs much faster than the itera-
tive WMMSE algorithm. We also analyzed the performance 
gain provided by the LoS MIMO architecture. Considering the 
case without LoS MIMO array structure (i.e., both the BS and 
RIS use conventional UPA arrays), the BS-RIS channel is a 
single LoS path with rank 1, which only provides single stream 
data transmission. To ensure a fair comparison, the transmit 
power in the absence of LoS MIMO was set equal to that with 
LoS MIMO, i.e., the transmit power in the absence of LoS 
MIMO was actually UPT = 4PT. By calculating the sum rate, 

we obtained the green curve presented in Fig. 13. Note that the 
sum rate with LoS MIMO is much higher than that without 
LoS MIMO. This is because the LoS MIMO architecture can 
increase the sum rate linearly leveraging the extra spatial mul-
tiplexing gain, while the conventional array architecture can 
only provide log-level growth as the SINR increases.

Although most schemes can achieve good sum rate perform-
ance under perfect CSI, the sum rate of multiusers is degraded 
due to interuser interference induced by CSI error. Figure 14A 
shows the sum rate performance of the different schemes with 
imperfect CSIs estimated at 2 different transmit powers PT(CE). 
Compared with the case of perfect CSI, the sum rate degrades 
considerably with the decrease in CSI estimation accuracy, i.e., 
with the decrease in transmit power at the channel estimation 
stage. It can be clearly seen that due to the interuser interference 
induced by CSI errors, the sum rates of the RZF and iterative 
WMMSE schemes barely increase with transmit power. Moreover, 
the proposed HBFRPD scheme exhibits a considerable perfor-
mance gain over the RZF and iterative WMMSE algorithms in 
the presence of CSI estimation errors. This result indicates that 
the proposed scheme can mitigate the interference caused by CSI 
errors and hence is more robust to inaccurate CSI than the other 
schemes.

The cumulative distribution functions (CDFs) characterizing 
the sum rate performance achieved by the different schemes are 
shown in Fig. 14B. Here, we consider a transmit power of PT = 
44 dBm at the data transmission stage. Figure 14B shows that when 
the transmit power is PT(CE) = 34 dBm at the channel estimation 
stage, the proposed HBFRPD network has a probability of approx-
imately 64.6% to achieve a sum rate exceeding 30 bps/Hz, while 
the other 2 schemes have a probability of only 16.3% to achieve 
such a rate. When the transmit power is PT(CE) = 44 dBm at the 
channel estimation stage, the proposed HBFRPD network has a 
probability of approximately 68.8% to achieve a sum rate exceed-
ing 40 bps/Hz, which is considerably higher than the other 2 
schemes. This result confirms the superior performance of the 
proposed HBFRPD network over existing conventional schemes.

Computational complexity analysis
A computational complexity analysis of different schemes at the 
inference stage is presented in the Table. The numerical results 
were obtained on a PC with Intel Core i9-10980XE CPU @ 
3.00GHz and an Nvidia GeForce RTX 3090 GPU. The DL-based 
methods and existing solutions were implemented on the PyCharm 
framework. The details are further elaborated next.

1. Channel estimation schemes: In the SOMP algorithm [54], 
the correlation operation creates considerable computational 
complexity, where I is the number of iterations. The MMV-AMP 
algorithm [55] mainly requires matrix multiplication operations, 
but a large number of iterations I increases its computational com-
plexity. The MMV-LAMP algorithm [56] has a low computational 
complexity because DL reduces the required number of iterations. 
The transformer-based channel estimation network [50] also has 
a low computational complexity, and its main sources of compu-
tational complexity come from self-attention and MLP sublayers. 
In the CNN-based channel extrapolation network [27], convolu-
tional layers introduce considerable computational complexity. 
By contrast, the MLP-Mixer layers provide the majority of the 
computational complexity in the proposed SFDCExtra network, 
and the level of complexity is much lower than that of the CNN-
based channel extrapolation network. We further meticulously 
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counted the number of floating-point operations per second 
(FLOPs) and measured the execution time per sample on a CPU 
for different schemes. The results are presented in the Table. 
Observe that at the inference stage, the FLOPs and execution time 
per sample of the proposed scheme are lower than those of most 
benchmarks. Specifically, the SFDCExtra network requires the 
second-lowest execution time per sample, and only MMV-LAMP 
and transformer-based channel estimation network have lower 
FLOPs than the proposed scheme.

2. Beamforming schemes: The matrix inversion required in the 
RZF algorithm is its main source of computational complexity. In 
the iterative WMMSE algorithm [52], a large number of iterations 
increases the computational complexity and execution time per 
sample. In the proposed DL-based HBFRPD network, self-
attention and MLP sublayers create higher computational complex-
ity and FLOPs than the other 2 algorithms. However, the execution 
time per sample of the proposed scheme is considerably lower than 
that of the 2 model-based schemes. This is because the DL-based 
HBFRPD network only needs matrix multiplication operations and 
does not require an iterative procedure. This is a superior advantage 
of the proposed DL-based HBFRPD network.

Conclusion
This study proposed a DL-based transmission architecture for RIS-
aided THz massive MIMO systems over hybrid-field channels. The 
contributions of this study are a channel estimation scheme with 
low pilot overhead and a robust beamforming scheme. More spe-
cifically, an E2E DL-based channel estimation framework that 
consists of a pilot design, a CSI feedback, subchannel estimation, 
a and channel extrapolation was developed, and to maximize the 
sum rate of all UEs under imperfect CSI, a DL-based scheme to 
simultaneously design the hybrid beamforming and RIS phase was 
formulated. Simulation results show that the proposed channel 
extrapolation scheme considerably outperformed the existing state-
of-the-art schemes in terms of reconstruction performance while 
imposing a notably reduced pilot overhead. Moreover, the results 
demonstrate that the proposed beamforming scheme is superior 
to the existing designs in terms of achievable sum rate performance 
and robustness to imperfect CSI. Based on these results, potential 
future research directions include the development of a practical 
discrete phase shifter, the analysis of complex near-field channels, 
and the enhancement of sensing-aided communications.
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