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Abstract—The envisioned sixth-generation (6G) of wireless
communications is expected to give rise to the necessity of con-
necting very large quantities of heterogeneous wireless devices,
which requires advanced system capabilities far beyond existing
network architectures. In particular, such massive communica-
tion has been recognized as a prime driver that can empower the
6G vision of future ubiquitous connectivity, supporting Internet
of Human–Machine-Things (IoHMT) for which massive access
is critical. This article surveys the most recent advances toward
massive access in both academic and industrial communities,
focusing primarily on the promising compressive sensing (CS)-
based grant-free massive access (GFMA) paradigm. We first
specify the limitations of existing random access schemes and
reveal that the practical implementation of massive communica-
tion relies on a dramatically different random access paradigm
from the current ones mainly designed for human-centric com-
munications. Then, a CS-based GFMA roadmap is presented,
where the evolutions from single-antenna to large-scale antenna
array-based base stations, from single-station to cooperative
massive multiple-input–multiple-output (MIMO) systems, and
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from unsourced to sourced random access scenarios are detailed.
Finally, we discuss key challenges and open issues to indicate
potential future research directions in GFMA.

Index Terms—compressive sensing (CS), grant-free massive
access (GFMA), Internet of Human–Machine-Things (IoHMT),
Internet of Things (IoT), massive communication, sixth genera-
tion (6G).

I. INTRODUCTION

IN THE future sixth-generation (6G) mobile network vision,
the concept of Internet of Things (IoT) is gradually evolv-

ing into the Internet of Human–Machine-Things (IoHMT)
paradigm, where the interactions across humans, machines,
and things are intricately interconnected to create an intelligent
ecosystem [1], [2], [3], [4]. In the upcoming IoHMT era, the
ubiquitous connectivity of heterogeneous devices is expected
to enable a plethora of promising applications, such as smart
cities and smart factories, promoting the digitalization of
society, and improving the overall efficiency of various vertical
sectors [5]. It is predicted that there will be up to 75 billion
devices connected in IoHMT ecosystems by 2025, which will
lead to significant economic returns of about 11.1 trillion
United States (U.S.) dollars each year [6].

The success of IoHMT ecosystems relies on massive com-
munication, which is one of the novel usage scenarios of
the 6G vision, as shown in Fig. 1(a). Massive communication
is evolved from the massive machine-type communications
(mMTC) of the fifth-generation (F-G) network, allowing ultra-
massive numbers of machine-type devices to exchange their
information either with central/distributed servers or with other
devices. Due to the highly heterogeneous nature of IoHMT
applications, massive communication can be rather different
from the conventional human-centric communications that are
well supported in the fourth-generation (4G) and 5G cellular
networks [8], [9], [10]. Indeed, human-centric communication
has the following characteristics: 1) the downlink is usually
more heavily loaded than the uplink in the support of data-
hungry services provided by the core network; 2) the number
of accommodated devices tends to be small, where the
devices are relatively homogeneous such as intensively data-
oriented smartphones and tablets, and their energy storage
is relatively abundant due to the availability of frequent
charging; 3) the delay requirements of various application
scenarios are less stringent, e.g., the typical real-time trans-
missions require roughly 10-ms user-plane latency; and 4) the
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(a) (b)

Fig. 1. (a) Usage scenarios. (b) Capabilities of 6G vision [7].

signaling overhead incurred by requesting access is not the
main obstacle even for high-mobility scenarios. In contrast,
mMTC exhibits the following features: 1) the uplink typically
generates dominant data traffic and its performance becomes
the main bottleneck due to the exceedingly large amount of
signaling overhead for massive access, while it is necessary
for devices to establish connectivity with the base station
(BS) via the uplink access before initiating their downlink
traffic; 2) heterogeneous devices exhibit periodic, continuous,
or event-triggered uplink traffic, and the number of simulta-
neously served devices can be massive; and 3) the associated
diverse delay requirements ranging from time-critical use cases
(less than 1 ms) to delay-tolerant applications (up to 100 ms)
are common. On the other hand, more stringent requirements
on the capabilities have been put forward for the 6G vision,
including connection density of 106–108 device/km2, latency
of 0.1–1-ms, reliability of 1–10–5 – 1–10–7, and so on,
as illustrated by Fig. 1(b). Clearly, there still exists a huge
performance gap to bridge even with the state-of-the-art
technologies. As a result, it is urgently desired to design a new
random access paradigm to embrace the IoHMT era, since
the existing ones designed for human-centric communications
do not facilitate the long-term evolution of machine-type
communications [9].

To elaborate a little further, anticipated future IoHMT appli-
cations can be classified into the families of massive IoT1 and
critical IoT according to their different service requirements, as
illustrated in Fig. 2. The massive IoT family generally involves
a massive number of low-cost and energy-constrained devices,
supporting uplink-dominated low-data rate transmissions. Its

1In accordance with existing standards and academic research, the term
“IoT” will be consistently used in the text that follows. This terminology
encompasses both the existing IoT and the potential IoHMT in the future.

typical applications include smart wireless sensors for mon-
itoring, alerts, and tracking in the fields of agriculture,
city management, building automation, logistics, etc. [11].
In contrast, the critical IoT family requires ultrahigh reli-
ability and ultralow latency for both fixed and mobile
IoT scenarios. The typical applications encompass remote
manufacturing/training/surgery, intelligent transport systems,
smart grid, industrial automation, wearable devices, etc. [12].
Therefore, the two families have significantly diverse service
requirements, which can be summarized from various key
application cases as follows.

1) Smart sensing, metering, and monitoring require ultra-
high density device deployments with fixed locations
in a large coverage, where the devices have ultralow
power consumption, cost, and complexity. Moreover,
the devices generate periodic or event-triggered low-rate
traffic with small payload sizes and high delay tolerance.
The data traffic is uplink dominated with few downlink
control signalings being required.

2) Building automation, logistics, and wearable IoT require
high-density device deployments supporting low mobil-
ity, where the devices have relatively low power
consumption, cost, and complexity. Moreover, the
devices exhibit medium-rate bidirectional traffic while
having certain delay requirements for the uplink trans-
mission. Also, mobile devices can report geo-locations
to the servers for positioning.

3) Intelligent transport systems require medium-density
device deployments with high mobility, where the
devices generate periodic or event-triggered medium-
rate traffic, and also have stringent requirements on the
latency and reliability for the uplink transmission and
downlink control.

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on February 23,2024 at 08:34:37 UTC from IEEE Xplore.  Restrictions apply. 



GAO et al.: COMPRESSIVE-SENSING-BASED GRANT-FREE MASSIVE ACCESS FOR 6G MASSIVE COMMUNICATION 7413

Fig. 2. Application cases of future IoT can be divided into the families of massive IoT and critical IoT.

4) Remote manufacturing, training, and surgery require
low-density device deployments with known hot spot
locations, where the devices generate continuous or
event-triggered high-rate traffic and also demand strin-
gent requirements on both the latency and reliability for
bidirectional payload and signaling communications.

Clearly, one of the salient challenges of massive communica-
tion lies in designing a more efficient random access paradigm,
which is expected to accommodate massive numbers of
devices, reduce access latency, improve detection reliability,
and satisfy heterogeneous service requirements. Generally
speaking, there is a nontrivial tradeoff between latency and
reliability in critical IoT applications [9], [10]. Most existing
survey papers on massive access for mMTC only review the
most recent advances from the academic community, while
the overview of IoT standards in the industry community is
limited [13], [14], [15]. Although different grant-based/grant-
free nonorthogonal multiple access (NOMA) schemes have
been reviewed, a comprehensive overview on the more specific
compressive sensing (CS)-based grant-free massive access
(GFMA) is still absent. This article seeks to fullfill this gap.

In this article, we first review the state-of-the-art IoT
standards and mMTC solutions in the industry community and
specify the major limitations of the existing random access
schemes. Then, a comprehensive CS-based GFMA roadmap
is presented, where the evolutions from single-antenna to
large-scale antenna array-based BSs, from single-station to
cooperative massive multiple-input–multiple-output (MIMO)
systems, and from unsourced to sourced random access sce-
narios are detailed. Finally, the key challenges and open issues
are summarized. For the convenience of readers, a list of
major abbreviations used in this article is provided in the
Appendix.

II. OVERVIEW OF STATE-OF-THE-ART IOT STANDARDS

Seamless and stable wireless connectivity is a fundamen-
tal prerequisite for designing IoT ecosystems. Owing to
their heterogeneous service requirements and limited phys-
ical resources, there does not exist a single connectivity

solution that can fit all emerging IoT applications. Currently,
a proportion of IoT devices have been interconnected via
low-cost commercial technologies, such as radio-frequency
identification (RFID) [16], Bluetooth [17], ZigBee [18], wire-
less fidelity (Wi-Fi) [19], etc. However, these technologies
only support short-range wireless communications, i.e., up
to hundreds of meters, which severely hinders their practi-
cal implementations in future IoT applications that require
ubiquitous coverage for widely distributed devices [14], [15].
Indeed, a significant number of IoT devices will have to
be connected by low-power wide-area networks (LPWANs)
for better coverage. To this end, the wireless communication
industry has been standardizing several LPWAN solutions,
which can be divided into unlicensed and licensed LPWANs,
respectively [20]. In particular, the former category, also
known as (a.k.a.) noncellular LPWAN, includes Sigfox and
long-range radio (LoRa), while the latter category, a.k.a.
cellular LPWAN, includes extended coverage global system
for mobile communications (EC-GSM), long-term evolution
for machine (LTE-M), and narrow-band IoT (NB-IoT) [21].
This section reports the whole landscape of existing IoT
standards, in terms of data rate and coverage, and characterizes
their key performance indicators, as illustrated in Fig. 3(a).

In practice, noncellular LPWANs are the emerging pro-
prietary wireless connectivity solutions designed for low-cost
devices in massive IoT [6]. Their advantages and drivers are
low complexity and low cost, but at the expense of much
lower throughput, higher latency, and susceptibility to the
interference in unlicensed bands. In general, these low-cost
options are still attractive to numerous enterprises interested
in cheap IoT deployment. Particularly, Sigfox relies on a
unified network that has been globally deployed and operated
by the owing company for covering more than 60 countries
and regions. Yet, the used chipset is open source since the
company freely provides the protocol specifications to chip
manufacturers as long as certain business terms are agreed
upon [22]. In contrast, LoRa allows the customers to flexibly
establish their private networks, but the involved physical-
layer techniques of the chipset are proprietary to the U.S.
corporation Semtech [23].
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Fig. 3. (a) Whole landscape of existing IoT standards and their key features and (b) massive/critical IoT connectivity can be achieved by cellular LPWANs,
including EC-GSM, LTE-M, and NB-IoT standardized by the 3GPP, where the corresponding features are listed [6], [14], [15].

On the other hand, cellular LPWANs, as listed in Fig. 3(b),
are standardized by the third-generation partnership project
(3GPP) exploiting licensed bands. Different cellular LPWANs
complement each other in terms of technology availability,
service requirements, and practical deployment conditions.
Here, we summarize the standards of cellular LPWANs as
follows.

1) EC-GSM was introduced in 3GPP Release 13 by adding
new control and data channels to the conventional
GSM networks, which can be readily achieved by
applying a simple software update to the existing GSM

systems [24]. Note that EC-GSM still dominates many
mobile markets and has been supporting a majority
of cellular IoT applications via general packet radio
services (GPRS). As a benefit of its backward compati-
bility, deploying EC-GSM based on the global coverage
of traditional GSM networks can result in an extensive
coverage from day one, expediting its market penetra-
tion. In general, EC-GSM has a higher uplink capacity
and wider downlink coverage than legacy GSM systems,
at the expense of its higher power consumption and
higher complexity at the devices.
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2) NB-IoT is a clean-slate solution specifically tailored
for massive low-throughput, low-cost, and energy-
constrained IoT devices [25], [26]. It has engaged a new
power-saving mode (PSM) and the extended discontinu-
ous reception (eDRX) for prolonging the battery life of
IoT devices to ten years or more, and achieves an extra
20 dB of power boost over the legacy GPRS [27]. NB-
IoT has the advantages of reduced cost and improved
energy efficiency over LTE-M. It also outperforms both
Sigfox and LoRa in terms of throughput, response speed,
and Quality of Services (QoS). It can be deployed
either exploiting the guard-band, or within the existing
4G LTE spectrum, or as a standalone carrier relying
on the second-generation (2G) spectrum. However, the
handovers among different cells would be a problem
for NB-IoT, due to the high control signaling overhead,
which makes it the best suited for static setting rather
than mobile devices.

3) LTE-M is the most flexible LPWAN solution supporting
a full breadth of IoT application cases, varying from low-
end static sensors to high-end mobile devices requiring
high throughput [28]. It also has PSM and eDRX
strategies that can be multiplexed onto the full LTE
carriers. Hence, it is eminently suitable for co-existence
with existing cellular networks [27]. The advantages
of LTE-M over EC-GSM and NB-IoT include higher
data rate, higher mobility, and the support of voice
communications, albeit at the expense of requiring more
bandwidth and a higher implementation cost.

Note that both NB-IoT and LTE-M were introduced in
Release 13 and have evolved to Release 17 at the time of
writing. Fig. 3(b) compares EC-GSM, NB-IoT (Releases 13
& 14), and LTE-M (Releases 13 & 14), and the readers can
refer to [24], [25], [26], [27], and [28] for their detailed
technical parameters, including bandwidth, peak rate, mod-
ulation type, latency, cost, battery life, etc. Compared to
Releases 13 & 14, Releases 15 & 16 for NB-IoT and LTE-
M have further improved the spectral and energy efficiencies.
Moreover, Release 17 has carried out a study on the possibility
and required specification updates to support NB-IoT and
LTE-M in nonterrestrial networks. Considering the random
access of NB-IoT and LTE-M, Release 15 introduced an
early data transmission (EDT) mode, while Release 16 further
enhanced the uplink data payload of EDT and introduced
a preconfigured uplink resources (PUR) mode [27]. These
emerging strategies can reduce the overhead for signaling
exchanges, thus improving the system energy efficiency and
reducing the random access latency, which will be detailed in
the next section.

III. EXISTING RANDOM ACCESS SOLUTIONS AND

LIMITATIONS

Efficient random access protocols and multiple access
techniques are the fundamental premises for connecting a
massive number of devices. Compared to the classical grant-
based four-step random access (FSRA) developed in 4G
LTE [29], the industry community has gradually simplified the

random access procedure in recent 3GPP releases. Due to the
need for the contention or the preconfiguration of orthogo-
nal physical resources for avoiding interdevice interferences,
these solutions belong to the grant-based/grant-free orthogonal
multiple access (OMA) paradigms. However, the maximum
number of accommodated devices is limited by the number
of orthogonal resources. To overcome this limitation, various
NOMA solutions have also been intensively investigated in the
academic community. Nevertheless, most of them have inher-
ent limitations in supporting future massive IoT connectivity.

A. Random Access in Industry Standardization

In unlicensed bands, both Sigfox and LoRa adopt ALOHA-
based random access schemes, where the devices exploit a
random frequency and time division multiple access technique
to transmit their signals [30]. Without the need for direct
signaling interactions between the devices and the BS to
establish connection, these schemes can be classified into
the grant-free OMA category. Although the related access
procedure is simple enough, the severe collision is a limiting
factor for the realization of low-latency and high-efficiency
random access when the number of devices becomes large.
In licensed bands, similar to 4G LTE, the early NB-IoT and
LTE-M in Release 13 adopt the grant-based FSRA protocol
illustrated in Fig. 4(a), which includes Msg1–Msg4 [15]. More
specifically, the FSRA procedure is summarized as follows.

1) Step 1: According to the system information periodically
broadcasted by the BS, the requesting devices transmit
a contention-based orthogonal preamble, i.e., Msg1, on
the uplink physical random access channel (PRACH).

2) Step 2: After successfully receiving the preamble, the BS
broadcasts a random access response (RAR), i.e., Msg2,
which encompasses the detected preamble identification,
time-alignment instructions for uplink synchronization,
temporary cell radio network temporary identifier (TC-
RNTI), and the uplink grant for Msg3.

3) Step 3: Upon receiving the RAR within a given
time window, the device, whose Msg1 is success-
fully detected by the BS, transmits its connection
request, i.e., Msg3, via a physical uplink shared channel
(PUSCH) indicated in Msg2. If the RAR is not received
within the given time window, this round random access
predicates failure.

4) Step 4: After receiving Msg3, the BS replies to
the devices with a contention resolution message,
i.e., Msg4. If a device finds its contention resolution
identification in Msg4, an acknowledgment is fed back
to the BS, the FSRA procedure is completed and the
granted device moves to the connected mode. Otherwise,
a new access schedule is attempted.

The grant-based FSRA procedure necessitates two round-
trip interactions between the devices and the BS to establish
connection, which results in significant signaling overhead and
long access latency. Moreover, the number of available orthog-
onal preambles is generally limited due to the limited number
of physical resources. Typically, a fraction of the total 64
orthogonal preambles are reserved for contention-free access
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(a) (b) (c)

(d) (e) (f)

Fig. 4. (a) Standard FSRA in 4G LTE, (b) FSRA with EDT mode, (c) PUR-based random access, and (d)–(f) respectively, correspond to three cases of
TSRA in 5G NR.

(e.g., handover) and only the remaining orthogonal preambles
can be adopted for contention-based random access [27].
Therefore, as the number of simultaneously served devices
becomes large, the access efficiency is significantly degraded
due to high collision probability. To improve the access effi-
ciency for NB-IoT and LTE-M, the EDT and PUR modes were
introduced in Release 15 and Release 16, respectively [31].

As depicted in Fig. 4(b), for the EDT mode, a device in
the idle state may directly transmit a maximum of 1000 data
bits embedded in Msg3 of FSRA. After a successful reception
at the BS, the device may remain in the idle state or switch
to the connected state for further data transmission. In other
words, if a device has short data (≤ 1000 bits), the data can
be transmitted in a single successful FSRA without the need
to go to the connected mode. On the other hand, for long data
transmission, a device may rely on the grant-based FSRA to
establish the connection.

In contrast, PUR is tailored for quasistatic devices convey-
ing periodic or pseudo-varying short data traffic. Specifically,
the devices adopting the PUR mode are preconfigured with
uplink transmission resources via dedicated radio resource
control signaling. Thus, Msg1 and Msg2 are omitted, and
data can be directly delivered in Msg3, as illustrated in
Fig. 4(c). In practice, the PUR mode has two categories:
1) dedicated PUR and 2) shared PUR. The former is designed
for devices conveying periodic traffic, where the uplink time–
frequency resources are exclusive for each device, while for
the latter, the same uplink time–frequency resources are shared
by up to two devices, where the superimposed signals can be
distinguished by mutually orthogonal demodulation reference

signals (DMRS). Clearly, the PUR-based random access is a
grant-free OMA solution, which cannot accommodate a large
number of devices due to the limited number of orthogonal
resources and DMRS.

In contrast to FSRA, the recent Release 16 introduces a
grant-based two-step random access (TSRA) protocol for the
5G new radio (NR) [31]. By resorting to a simplified single
round-trip interaction between the devices and the BS, the
access latency and control signaling overhead can be reduced.
In particular, the TSRA combines the PRACH preamble and
PUSCH payload as a single MsgA transmitted by the devices,
and then merges RAR and contention resolution message into
a single MsgB. Fig. 4(d)–(f) portrays three typical cases of the
TSRA. Specifically, they are as follows.

1) Case 1: Upon the device receiving an MsgB with
successful RAR and contention resolution, the grant-
based TSRA is completed and the device moves to the
connected mode, as illustrated in Fig. 4(d).

2) Case 2: If the device fails to receive an MsgB after a
maximum number of MsgA trials, the device switches
to the grant-based FSRA mode by transmitting Msg1 for
a new access attempt, as shown in Fig. 4(e).

3) Case 3: If the MsgA cannot be decoded correctly, the BS
broadcasts an MsgB with fallback RAR, and the device
falls back to the grant-based FSRA mode by transmitting
Msg3 for connection request, see Fig. 4(f).

Note that only 5G NR supports the grant-based TSRA,
while NB-IoT and LTE-M currently do not have this mode.
At the time of writing, all the standardized random access
solutions for cellular LPWANs adopt OMA techniques,
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i.e., exploiting orthogonal radio resources to distinguish differ-
ent devices and, thus, they belong to the grant-based/grant-free
OMA paradigms. Here, almost all these solutions require a
grant-based random access procedure for orthogonal resource
contention. The only exception is the PUR-based random
access, where the orthogonal resources are preconfigured.
Specifically, for Msg1 or MsgA, the PRACH preamble of
each active device is anonymously selected from a predefined
orthogonal sequence pool, while for shared PUR, two devices
are distinguished via orthogonal DMRS.

However, the number of orthogonal radio resources is
limited but the number of requesting devices has been expo-
nentially increasing, since the rise of the IoT. Therefore,
all these OMA solutions suffer from unavoidable preamble
collision with degraded access efficiency, which eventually
leads to the network congestion [15], [27], [31].

B. Review of Nonstandardized NOMA

Compared with OMA, NOMA has the potential to
accommodate a larger number of devices, which can be
simultaneously served over a small amount of time–frequency
resource elements by exploiting the devices’ unique but
nonorthogonal signatures. A NOMA scheme is generally a
grant-free solution, offering advantage of reducing access
signaling overhead and latency. There are potentially many
NOMA techniques, but the most popular ones are classified
into two categories: 1) power-domain NOMA and 2) code-
domain NOMA [13]. More recently, spatial-domain NOMA
has attracted much attention, which relies on MIMO technol-
ogy to support multiple users on the same time–frequency
resources via uplink multiuser detection (MUD) and downlink
multiuser transmit (MUT) precoding/beamforming [32], [33],
[34], [35], [36], [37], [38], [39].

1) Power-Domain NOMA: The signals of multiple devices
are superimposed on the same time–frequency resources with
different power levels, which requires dedicated power alloca-
tion strategies at the transmitter and the successive interference
cancelation (SIC)-based data detection at the receiver for
efficient decoding [40], [41], [42], [43]. However, power-
domain NOMA is usually limited to serving a small number
of human-type devices. Specifically, it is challenging to ensure
distinguishable power levels for massive devices, particularly
in grant-free random access. Furthermore, it is also impractical
to design a reliable SIC-based receiver, since the power levels
are generally not distinctive while the resolutions of analog-
to-digital converters (ADCs) are limited. In practice, the users
have to be divided into groups, each containing only a small
number of users. The users in the same group can adopt
a power-domain NOMA scheme for transmission, while the
users in different groups have to employ OMA schemes for
avoiding intergroup interferences. Therefore, a grant-based
scheduling procedure is required, which will result in extra
signaling overhead and latency.

2) Code-Domain NOMA: On the other hand, code-domain
NOMA realizes multiplexing in the code domain, where
multiple devices share the same time–frequency resources
but adopt nonorthogonal low-cross-correlation spreading

sequences as their unique signatures [44], [45], [46], [47],
[48], [49]. The superimposed signals of different devices
are distinguished by leveraging the uniqueness of spreading
sequences. This category of NOMA schemes is inspired by
the classical code-domain multiple access (CDMA) utiliz-
ing orthogonal spreading sequences to distinguish devices.
The key difference lies in that the spreading sequences of
code-domain NOMA are nonorthogonal low-cross-correlation
sequences and, thus, more devices can be accommodated
given the same amount of physical resources. Compared with
power-domain NOMA, code-domain NOMA is superior in
supporting massive IoT connectivity with grant-free random
access, since the number of available spreading sequences is
much larger than the resolution of the received power levels. In
general, various code-domain NOMA schemes can be further
categorized into low-density spreading (LDS) NOMA class
and dense spreading (DS) NOMA class, depending on whether
the adopted spreading sequences are sparse or not.

In practice, LDS NOMA schemes, such as the inten-
sively investigated LDS-CDMA, LDS-OFDM, and sparse code
multiple access (SCMA), adopt sparse spreading codes, which
can be transmitted either in the time or frequency domain.
Compared with the DS codes of conventional CDMA, the
sparse codes of LDS NOMA can still offer certain spreading
gains to suppress the undesired interdevice interferences, while
facilitating the application of low-complexity message passing
algorithms for data detection [50]. LDS-CDMA and LDS-
OFDM are two initial code-domain NOMA schemes that are
directly extended from the traditional CDMA and OFDM
cellular systems. In particular, for LDS-CDMA, the symbol to
be transmitted is spread over the time domain, while for LDS-
OFDM, the chips are transmitted in the frequency domain.
Developed from basic LDS-CDMA, the state-of-the-art SCMA
scheme directly maps the transmitted bit streams onto a set of
sparse codewords, which results in shaping gains, leading to an
improved detection performance. Specifically, let us consider
the SCMA schematic diagram of Fig. 3 in [51] as an example,
where each device has a unique sparse codebook of LSCMA =
4 sparse codewords such that (log2 LSCMA)-bit information per
channel use can be delivered. In this context, KSCMA = 6
devices share NSCMA = 4 resource elements and this is termed
as a subcarrier block, where the overloading rate is defined
as γ = KSCMA/NSCMA = 150%. Moreover, the K devices’
sparse codebooks can be reused in multiple subcarrier blocks
for joint transmission and decoding. Note that sparse codes
of the same device share the same sparse pattern (i.e., the
positions of nonzero elements in a vector), which is unique
for each device.

On the other hand, multiuser shared access (MUSA) is a
typical DS NOMA scheme, where a set of nonorthogonal DS
sequences constitutes a pool and each device anonymously
chooses a sequence to spread its transmit symbol [49].
Compared with the LDS-CDMA and LDS-OFDM where
multiple resource blocks reuse the same LDS sequence, the
devices in MUSA may pick different sequences for spreading
different symbols, attaining an enhanced performance with
the aid of interference averaging. Another difference between
the two classes lies in their spreading sequence configuration
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mode. Devices in LDS-CDMA and LDS-OFDM are precon-
figured to employ unique spreading sequence, while MUSA
adopts the so-called contention-based random access, where
devices share the same pool of sequences. More details on
SCMA and MUSA can be found in [48], [49], and [50].

Now, let us consider the sporadic traffic generated by
massive communication. Although the number K of devices
to be served can be hundreds even thousands, the number of
simultaneously active devices Ka is relatively small [10]. For
example, K = 480 and Ka = 48 result in an activity ratio
of ρ = 0.1. Unfortunately, most existing NOMA schemes
are incapable to cope with this sparse traffic. Taking SCMA
as an example, designing high-dimensional sparse codebooks
for simultaneously supporting devices for a large K is quite
challenging, since the sparse teletraffic of massive commu-
nication cannot be readily exploited. Considering the sparse
codebooks designed in [50] for KSCMA = 48 and NSCMA =
24, SCMA has to divide K = 480 total devices into ten
SCMA groups having a total of 10NSCMA = 240 resource
elements. The devices in the same group adopt SCMA scheme
for transmission, while the devices in different groups employ
OMA schemes for avoiding intergroup interferences. In this
context, a grant-based scheduling procedure may be required,
which results in extra signaling overhead and latency.

3) Spatial-Domain NOMA: Spatial-domain NOMA, also
known as space-division multiple access in some earlier
literature [52], exploits the extra spatial degrees-of-freedom
(DoF) offered by MIMO techniques to realize multiplexing.
Specifically, the signals of multiple devices conveyed on the
same time–frequency resources are distinguished by exploit-
ing unique user-specific channel impulse responses (CIRs).
Intuitively, the user-specific CIR plays a role similar to the
nonorthogonal spreading sequence in code-domain NOMA.
Given the users’ CIRs, therefore, the signals of multiple
devices conveyed on the same time–frequency resources can
be recovered using MUD at the uplink BS receiver [32],
[33], [34], [35] or distinguished through MUT precoding at
the downlink BS transmitter [36], [37], [38], [39]. Hence,
spatial-domain NOMA requires accurate estimate of users’
CIRs or MIMO channel state information (CSI). Acquisition
of accurate MIMO CSI however imposes considerable pilot
resource overhead, which may be unaffordable in practice.
In order to attain near-optimal performance based on the
limited pilot resources, joint channel estimation and turbo
MUD/decoding solutions have attracted substantial research
interests [33], [34]. However, these joint channel estimation
and data detection solutions are generally computationally
expensive, and they can only support limited number of users.

By deploying large-scale or massive antenna array at BS,
favorable massive MIMO (mMIMO) environment is created
for implementing spatial-domain NOMA. In particular, the
CIRs associated with different users become nearly orthogo-
nal, and the signals of multiple devices can be separated with
low-complexity conjugate beamforming [53]. But acquisition
of the mMIMO CSI becomes even more challenging. In order
to achieve affordable-complexity mMIMO CSI estimation,
orthogonal pilot sequences must be adopted. However, the
number of orthogonal pilot sequences available is limited, and

these pilot resources will have to be reused in neighboring
cells. This causes severe pilot contamination which results
in the BS being unable to reliably differentiate the signals
of different cells. Sophisticated pilot designs [54], [55], [56],
[57] have been developed to mitigate pilot contamination.
In the past decade, the emerging of mMIMO techniques
has accelerated the development of spatial-domain NOMA.
However, the number of devices that can be supported by the
existing spatial-domain NOMA solutions is still limited, and
it is very challenging to apply these existing spatial-domain
NOMA techniques to support a massive number of devices in
future massive communication scenarios.

IV. COMPRESSIVE SENSING-BASED GRANT-FREE

MASSIVE ACCESS PARADIGM

The discussions in the previous sections reveal that neither
the current standardized OMA solutions nor the existing non-
standardized NOMA solutions can well accommodate future
IoT applications with massive communication. To tackle this
issue, a CS-based GFMA paradigm was recently developed,
where the active devices directly transmit their uplink access
signals over the same time–frequency resources without the
need for any scheduling in advance [58], [59]. Meanwhile,
by leveraging the sporadic traffic of devices, the multidevice
detection at the BS can be formulated as a CS problem
that can be effectively resolved by various sparse signal
recovery algorithms [60]. Therefore, the complicated signaling
interactions for access scheduling, including resource granting
and contention resolution, associated with grant-based random
access protocols are circumvented. Furthermore, compared
with conventional NOMA schemes, the designs of distinguish-
able access signatures and the multidevice detection algorithm
are significantly simplified by further taking into account the
sporadic traffic.

To begin with, the essence of the CS theory can be
well captured in the following discussion starting with the
mathematical expression of:

Y = �X + N (1)

where Y ∈ C
M×Q represents the low-dimensional measure-

ments, � ∈ C
M×N is the sensing matrix with M � N, X ∈

C
N×Q is the original high-dimensional sparse signal, and N

is the additive white Gaussian noise (AWGN). The CS theory
indicates that given Y and �, the sparse matrix X can be
exactly recovered as long as M ≥ Nalog2(N) is satisfied [51].
Here, Na � N is the maximum number of nonzero elements in
the columns of X. As such, the classic model in (1) becomes
a standard single-measurement vector (SMV) CS problem for
Q = 1 [61] and a multiple-measurement vector (MMV) CS
problem for Q > 1 [62], [63], [64].

The key challenge in solving the CS recovery problem
is how to design a computationally efficient sparse signal
recovery algorithm. Various CS recovery algorithms have
been proposed, which can be classified into three cate-
gories, namely, convex relaxation algorithms, greedy-based
algorithms, and Bayesian inference algorithms. Specifically,
convex relaxation algorithms, such as basis pursuit [65] and
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Fig. 5. Classification of existing CS-based GFMA schemes. The evolutions
from single-antenna to large-scale antenna array-based BSs, from single-
station to cooperative mMIMO systems, and from unsourced to sourced access
scenarios are illustrated.

least absolute shrinkage and selection operator (LASSO) [66],
relax the nonconvex CS recovery problem as a conventional
convex optimization problem and employ linear programming
methods to acquire the solution. These algorithms generally
enjoy an excellent recovery performance but the related
computational complexity is extremely high, especially for
large problem dimensions. In contrast, greedy-based algo-
rithms, such as orthogonal matching pursuit (OMP) [67],
subspace pursuit (SP) [68], and CoSaMP [69], identify
the nonzero indices of X and estimate their corresponding
coefficients in a greedy iterative manner. In general, they
have low algorithmic complexity but suffer from significant
performance losses when the number of measurements is
relatively small or the signal-to-noise ratio (SNR) is low.
Both convex relaxation and greedy-based algorithms only
consider the sparsity of X but fail to leverage its statistical
information for effectively improving recovery accuracy. To
overcome this limitation, Bayesian inference algorithms, such
as belief propagation [70], expectation propagation (EP) [71],
and sparse Bayesian learning (SBL) [72], were developed
under the Bayesian framework, by establishing various flexible
a priori distributions to capture the sparsity properties and
the statistical information of X, thus reaping a better recov-
ery performance. Moreover, the tradeoff between recovery
performance and computational complexity can be effectively
achieved by a low-complexity approximation to the standard
Bayesian inference framework, known as the approximate
message passing (AMP) framework [73].

This section presents the roadmap of the promising CS-
based GFMA paradigm, as illustrated in Fig. 5, where various
specific GFMA schemes are introduced to fulfill the heteroge-
neous massive communication requirements of practical IoT
applications. In particular, the evolutions from single-antenna
to large-scale antenna array-based BSs, from single-station to
cooperative mMIMO systems, and from unsourced to sourced
access scenarios are detailed in this section. A dominated
common characteristic of these schemes is that the multide-
vice detection at the BS, i.e., activity detection and channel
estimation (or data detection), can be formulated as a CS

Fig. 6. System model of spreading-based GFMA scheme in single-antenna
systems, where the temporal structured sparsity of the signal matrix is
illustrated [75] c©IEEE.

problem of (1). Moreover, the sparse matrix X generally
exhibits different structured sparsity properties in different
access scenarios, which can be exploited to further improve
recovery performance with the aid of the bespoke algorithms.

A. Joint Activity and Data Detection

For the CS-based GFMA paradigm, the wireless transceiver
can be flexibly designed to accommodate the practical het-
erogeneous massive communication requirements, resulting in
various specific GFMA schemes. Assume that the CSI is
available at receiver. Note that this assumption is valid in
the scenarios where the channels can be efficiently estimated
with very low pilot overhead or the CSI remains unchanged
for a long time, such as single-antenna systems and fixed
sensor networks, respectively [74]. With the CSI, BS can
jointly detect the active devices and their payload data from the
overlapped received signal. Focusing on this joint activity and
data detection (JADD) problem, this section first investigates
CS-based GFMA schemes in single-antenna systems. Then the
problem is extended to mMIMO systems, where the additional
spatial DoF is exploited to enhance uplink throughput and
improve detection performance.

1) JADD for GFMA in Single-Antenna Systems: The
GFMA in single-antenna systems generally adopts spreading-
based transmission scheme. Consider a massive IoT
connectivity scenario with one single-antenna BS serving K
single-antenna devices, where K is usually large and OFDM
is adopted to combat the time dispersion effect, as illustrated
in Fig. 6. Due to the sporadic uplink traffic, only Ka (Ka �
K) out of the total K devices are active during each time
slot with T OFDM symbols, in which the activity and
CSI remain unchanged. The BS periodically broadcasts its
beacon signals to facilitate synchronization, power control,
and channel estimation at the devices. Since only one single
antenna is considered at both the devices and the BS, the
beacon signal overhead is very small for downlink channel
estimation. To distinguish the kth device from others at the
BS, its access signal, xk,t ∈ C, in the tth OFDM symbol
duration (1 ≤ t ≤ T) is spread across L subcarriers by a unique
spreading sequence sk ∈ C

L×1. Moreover, benefiting from the
channel reciprocity, the downlink CSI estimates are exploited
for preequalizing in the uplink transmission to precompensate
the impact of uplink channels at the devices. The active devices
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can directly transmit their spread access signals on the exactly
same time–frequency resources, without any scheduling in
advance. This avoids the complicated signaling interactions in
FSRA or TSRA, and hence significantly reduces the access
latency.

Adopting the aforementioned spreading-based GFMA, the
signals of all the active devices are overlapped at the BS,
which results in severe interdevice interferences. Therefore, it
is essential to design a reliable JADD scheme at the BS, which
can be formulated as an MMV CS problem of (1). Specifically,
the sensing matrix is expressed as � = [s1, s2, . . . , sK] ∈
C

M×N with M = L and N = K, and the sparse signal matrix
is expressed as X = [α1x1, α2x2, . . . , αKxK]T ∈ C

N×Q with
Q = T . Here, the binary variable αk ∈ {0, 1} denotes the
activity indicator with 1 being active and 0 otherwise, and
xk ∈ C

T×1 is the spread access signal of the kth device.
Note that the device activity and payload data are embedded

in the access signal matrix X, i.e., the indices of nonzero rows
indicates the identities of active devices and the corresponding
coefficients are the transmitted signals. Hence, the JADD
problem is equivalent to reconstructing X based on the over-
lapped received signal Y and the spreading matrix �. Based
on the estimate of X, the payload data can be further detected.
To this end, Wang et al. [74] developed a CS-message passing
algorithm (MPA) detector, where the CoSaMP algorithm and
MPA are employed for CS-based active device detection and
payload data detection, respectively, but only a single OFDM
symbol (T = 1) is considered in [74]. In practice, the data
packet of active devices usually occupies several consecutive
OFDM symbols [76]. Therefore, the system is synchronized
in a slot structure2 and the device activity remains constant
during each slot, which leads to the temporal common sparsity
pattern, as illustrated in Fig. 6. Furthermore, although the
device activity may change across different time slots, the
variation is gradual, i.e., the active devices generally transmit
their data in consecutive time slots (i.e., burst transmission)
with a high probability. This leads to the temporal correlation
over several consecutive time slots, which is referred to
as temporal dynamic sparsity. Under this context, various
JADD algorithms have been proposed to leverage these two
temporal structured sparsity properties for improved detec-
tion performance. For instance, Wang et al. [78] proposed
a structured iterative support detection (SISD) algorithm to
leverage the temporal common sparsity, which follows the
idea of greedy-based CS recovery algorithms. By resorting
to the Bayesian inference framework, a joint expectation
maximization AMP (EM-AMP) algorithm was developed to
further exploit the a priori statistical information of the trans-
mitted discrete symbols [79]. However, both SISD algorithm
and EM-AMP algorithm reconstruct the access signals of
different symbol durations separately, which fails to take the
full advantages of the temporal common sparsity. Hence,
Du et al. [80] proposed a block sparsity-based detection
algorithm, which vectorizes X into a block-sparse vector for

2In the frame structure of 5G NR, each OFDM frame consists ten subframes
with each subframe having several time slots. The number of time slots within
each subframe depends on the subcarrier spacing and each slot consists of 7
OFDM symbols [77].

Fig. 7. AER performance comparison of the advanced OAMP-ASL-based
JADD scheme [75] and the benchmark [82], where K = 500 and Ka = 50,
and Ka is unknown at the BS.

a better use of the temporal common sparsity based on the
block CS theory [81]. In addition, an orthogonal AMP with
accurate structure learning (OAMP-ASL) algorithm was also
proposed in [75], where the temporal common sparsity is
incorporated in the a priori distribution of X for further
improving performance.

Fig. 7 provides an example to verify the superiority of
leveraging the temporal common sparsity, where the activity
error rate (AER) of the OAMP-ASL algorithm [75], which
incorporates the temporal common sparsity, is compared with
that of the traditional greedy CS recovery algorithm [82]
without considering the temporal common sparsity. As can
be observed, the OAMP-ASL algorithm considerably outper-
forms the baseline scheme without incorporating the temporal
common sparsity. Also as expected, the performance of the
OAMP-ASL algorithm improves as the number of symbols
within a slot T increases, since a larger T indicates an
enhanced temporal common sparsity.

On the other hand, focusing on the temporal dynamic
sparsity, Wang et al. [83] proposed a dynamic CS-based JADD
approach, where the active device set estimated in the current
slot is adopted to initialize the estimate of the active device
set in the next slot. However, the solution of [83] assumes
the availability of the sparsity level, i.e., the number of
active devices, which is unrealistic in practical scenarios.
Moreover, the prior information is exploited blindly where
the reliability of the estimate from the previous slot is not
evaluated. To overcome this limitation, a prior-information
aided adaptive subspace pursuit (PIA-ASP) algorithm [84]
is developed, which reaps a better symbol error rate (SER)
performance, as illustrated in Fig. 8.

For the benefit of the reader, a brief summary of the
aforementioned JADD schemes is provided in Table I.

2) JADD for GFMA in Massive MIMO Systems: mMIMO
has been identified as a pivotal technique for current 5G NR
and future beyond 5G (B5G)/6G cellular systems, providing
game-changing improvements in the spectral and energy effi-
ciencies [85], [86], [87]. Moreover, the transmission reliability
of massive IoT connectivity can be considerably improved
by leveraging the extra spatial DoF [88]. To reap these
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TABLE I
SUMMARY OF JADD ALGORITHMS FOR SPREADING-BASED GFMA SCHEME IN SINGLE-ANTENNA SYSTEMS

Fig. 8. SER performance comparison of the dynamic CS-based JADD scheme
and PIA-ASP-based JADD scheme, where K = 200, L = 100, and Ka varies
from 14 to 20 in seven different time slots [84] c©IEEE.

benefits, one effective way is to intuitively extend the problem
formulation in the previous section to mMIMO systems.
Specifically, for mMIMO systems with Nr BS antennas, the
channel vector between the BS and the kth device, denoted by
hk ∈ C

Nr×1, is unique for the device, which can be regarded
as a device-specific signature spreading in the spatial domain.
Naturally, if the channels associated with all the K devices are
available at the BS, the JADD for GFMA can be formulated
as a MMV CS problem of (1). Here, � = [h1, h2, . . . , hK] ∈
C

Nr×K is the known massive access channel matrix and X =
[α1x1, α2x2, . . . , αKxK]T ∈ C

K×T is the sparse signal matrix
as explained in Section IV-A1. In this context, the CS recovery
algorithms introduced in Section IV-A1 can be directly applied
to leverage the temporal common sparsity or temporal dynamic
sparsity of X.

On the other hand, by equipping multiple antennas at the
devices, the spatial modulation (SM) can be incorporated to
boost the spectral efficiency for GFMA, without increasing
the hardware complexity and energy consumption of the
devices [89], [90]. In the SM scheme, each active device
activates only one transmit antenna, based on which the
additional log2(Nt)-bit information can be conveyed through
the active antenna index [91], [92], where Nt is the number
of transmit antennas. SM is a so-called index modulation
scheme that exploits the transmit antenna index to convey
additional information bits [92]. In this context, only one
radio-frequency (RF) chain is required at the devices, but the
number of transmit antennas scales exponentially with the

Fig. 9. System model and transmitter structure of MBM-based GFMA
scheme in mMIMO systems [96] c©IEEE.

number of additionally conveyed information bits. Following
a similar index modulation idea, the more efficient media-
based modulation (MBM) [93], [94], [95] has been widely
investigated to overcome the aforementioned limitation of SM.
Specifically, each device is equipped with one RF chain,
one transmit antenna, and NRF low-cost RF mirrors, where
each RF mirror has a controllable binary ON/OFF status, as
illustrated in Fig. 9. Therefore, each device has Nt = 2NRF

different mirror activation patterns, i.e., Nt different channel
realizations, which can be exploited to encode NRF extra
information bits.

For both the SM-based and MBM-based GFMA schemes,
the related JADD at the BS can also be formulated as a
MMV CS problem as expressed in (1). Specifically, the
sensing matrix is � = [H1, H2, . . . , HK] ∈ C

Nr×KNt with
Hk ∈ C

Nr×Nt denoting the MIMO channel matrix between
the BS and the kth device for all the channel realizations.
Again assume that the full CSI is available at the BS and
the device activity remains constant within a slot having T
successive symbols. The tth column of the sparse signal matrix
X is expressed as [X]:,t = [(x1,t)

T , (x1,t)
T , . . . , (xK,t)

T ]T ∈
C

KNt×1, where xk,t = αksk,tdk,t ∈ C
Nt×1 is the uplink access

signal of the kth device transmitted in the tth symbol duration.
Here, αk ∈ {0, 1} ∀k ∈ {1, 2, . . . , K}, denotes the activity
indicator, sk,t ∈ C is the conventional modulated symbol, and
dk,t ∈ C

Nt×1 is the MBM vector which has unity on the index
corresponding to the activated RF mirror and zeros elsewhere.
Note that the total information bits are encoded in both the
modulated symbol sk,t and the nonzero index of dk,t. Due to
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Fig. 10. Doubly structured sparsity of the access signal matrix in MBM-based
GFMA scheme [96] c©IEEE.

the sporadic uplink traffic of devices and the characteristics of
MBM, the signal matrix X exhibits doubly structured sparsity,
as illustrated in Fig. 10. Specifically, in each column of X,
only the access signals of Ka active devices are nonzero, and
all columns share the same device level sparsity. Moreover,
the access signal of a specific active device xk,t is also sparse,
where only one entry of the MBM vector dk,t is unity and the
others are zero.

To exploit the doubly structured sparsity for improving
JADD performance, a variety of CS recovery algorithms have
been developed. Inspired by the idea of subspace matching
pursuit, Ma et al. [91] proposed a greedy two-level struc-
tured sparsity (TLSS)-based detector for SM-based GFMA.
Subsequently, a two-stage detection scheme was further
developed, where a structured OMP (StrOMP) algorithm was
proposed for activity detection and an SIC-based structured
SP (SIC-SSP) algorithm was designed for the demodulation
of the detected active devices [97], which will be denoted as
StrOMP+SIC-SSP. The aforementioned works focus on only
a single time slot in which the device activity remains con-
stant over multiple successive symbol durations. Furthermore,
Ma et al. [98] proposed a prior-information aided adaptive
media modulation subspace matching pursuit (PIA-MSMP)
algorithm to accommodate the dynamic device activity across
different time slots within a frame. Different from the greedy
CS recovery algorithms proposed in [91], [97], and [98], a
doubly structured AMP (DS-AMP) algorithm was developed
under the Bayesian framework, which further takes the a priori
information of the finite constellations of X into account [96].
Moreover, the theoretical state evolution (SE) of the DS-AMP
algorithm was derived to analyze its performance in [96].
Compared to single-antenna systems, the channel estimation
in MBM-based mMIMO systems is much more challenging.
Therefore, the GFMA schemes introduced in this section are
mainly tailored for the IoT applications where the devices are
fixed or have very low mobility, thus the CSI can be estimated
accurately and it does not have to be updated frequently. In
particular, the channel estimation issue for media modulation-
based GFMA was also investigated in [96] and [98]. A
brief summary of the aforementioned representative JADD
algorithms for MBM-based GFMA is provided in Table II.

Fig. 11 provides an example to compare the JADD
performance of the discussed algorithms as well as the tradi-
tional AMP algorithm [73], in terms of both AER and bit error

rate (BER), where “SE of DS-AMP” represents the theoretical
SE of the DS-AMP. Obviously, by fully exploiting the doubly
structured sparsity and the a priori statistical information
of X, the DS-AMP algorithm significantly outperforms its
counterparts that do not leverage the structured sparsity or do
not leverage the a priori statistical information. Moreover, both
AER and BER performance becomes better as the number
of BS antennas increases, which verifies the superiority of
mMIMO in MBM-based GFMA. Besides, the derived SE can
accurately predict the performance of the DS-AMP algorithm,
providing insightful guidance for optimizing practical system
designs.

B. Joint Activity Detection and Channel Estimation

It should be noted that the GFMA cannot always be
formulated as a JADD problem. This is because the JADD
is based on the condition that the full CSI is available at
the BS. In many IoT applications, such as smart traffic and
wearable IoT, the channels between the devices and the BS
may change frequently. In this context, it is unrealistic to
assume that the full CSI is available at the BS, especially
for mMIMO systems with a massive number of devices.
Therefore, the frame structure with the format of “pilot
+ data” has recently been proposed, where each device is
assigned with a unique nonorthogonal pilot sequence for joint
activity detection and channel estimation (JADCE) at the BS.
With the estimated active device set and the corresponding
channels, the conventional coherent data detection is then
executed based on the received data signal [10]. Specifically,
the JADCE problem can be formulated as

Y = PH + N (2)

where Y ∈ C
P×Nr is the received pilot signal, P =

[p1, p2, . . . , pK] ∈ C
P×K is the pilot matrix, and pk ∈ C

P×1

is the nonorthogonal pilot sequence of the kth device with
the pilot length P, while H = [α1h1, α2h2, . . . , αKhK]T ∈
C

K×Nr is the massive access channel matrix, αk is again the
activity indicator of the kth device, and N is the AWGN.
Considering the sporadic uplink traffic of devices, the JADCE
problem (2) becomes an SMV CS problem in single-antenna
systems, i.e., Nr = 1, and an MMV CS problem in MIMO
systems, i.e., Nr > 1.

Schepker et al. [99] and Ahn et al. [100] proposed two
CS-based JADCE schemes, respectively, for GFMA in single-
antenna systems, where the OMP-based and EP-based CS
recovery algorithms are developed, respectively. Furthermore,
Liu and Yu [101] revealed that the error probability of
device activity detection can be made arbitrary small by
increasing the number of BS antennas. Based on this attrac-
tive finding, a large number of JADCE schemes have been
proposed in single-station mMIMO systems [101], [102],
[103], [104], [105], [106], [107], [108], [109], [110], and then
naturally extended to more complicated cooperative mMIMO
systems [111], [112], [113], [114], [115]. Following this line,
we will first discuss the JADCE problem in single-station
mMIMO systems and then extend it to cooperative mMIMO
systems.
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TABLE II
SUMMARY OF JADD ALGORITHMS FOR MBM-BASED GFMA SCHEME IN MMIMO SYSTEMS

(a) (b)

Fig. 11. Performance comparison of different JADD algorithms for MBM-based GFMA schemes, where K = 500, Ka = 50, NRF = 2, and T = 12 are
considered: (a) AER performance and (b) BER performance [96] c©IEEE.

Fig. 12. System model of JADCE for GFMA in single-station mMIMO
systems.

1) JADCE in Single-Station Massive MIMO Systems: A BS
equipped with an Nr-elements uniform linear array (ULA)
serves K single-antenna devices distributed in its coverage,
where only Ka devices are activated in each frame duration,
as illustrated in Fig. 12. A two-phase transmission scheme is
adopted, with each frame consisting of a pilot phase and the
subsequent payload data phase. Each device is assigned with a
unique nonorthogonal pilot sequence that will be transmitted
in the pilot phase. When accessing the network, the active
devices directly transmit their uplink access signals with the
format of pilot + data on the same time–frequency resources.
In the pilot phase, given the received pilot signal Y and the
preallocated pilot matrix P, the JADCE problem is equivalent
to estimating the sparse channel matrix H based on the MMV
CS model of (2). Following this formulation, an OMP-based
JADCE scheme was developed for GFMA in single-station
mMIMO systems [102], and the sparsity of the delay-domain

CIR was further leveraged to improve the channel estimation
accuracy [103].

On the other hand, equipping a large number of antennas at
the BS results in additional sparsity properties of the massive
access channel matrix, which can be leveraged to further
enhance JADCE performance. Specifically, the sporadic traffic
of devices leads to the sparsity of the channel vector asso-
ciated with each receive antenna, i.e., every column of H
is sparse. Moreover, all the BS antennas observe a common
sparsity pattern, which leads to the spatial-domain common
sparsity of the channel matrix and facilitates the activity
detection through nonzero row detection [10]. Based on the
spatial-domain signal model (2), several efficient JADCE
schemes were proposed [101], [104], [105], [106], [107],
[108]. Specifically, in [101], a vector AMP algorithm was
developed to exploit the common sparsity across different
BS antennas, and the related probabilities of false alarm and
miss detection were analyzed exploiting the SE. Adopting this
vector AMP algorithm, each active device’s uplink achiev-
able rate was further characterized, based on which the
length of the nonorthogonal pilot sequence was optimized
in [104]. Afterward, Shao et al. [105] designed a three-phase
transmission protocol for GFMA, which also employed the
vector AMP algorithm and further considered the downlink
transmission phase. The works [101], [104], [105] assume that
the large-scale component of the channel fading coefficients
are known to the BS. Considering a more practical scenario,
an updated vector AMP algorithm was derived in [106], which
takes the unknown large-scale fading parameters into account.
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(a) (b)

Fig. 13. Comparison JADCE performance of the SIC-GAMP [109] and the baseline scheme [101] for GFMA in single-station mMIMO systems: (a) AER
performance and (b) NMSE performance.

Due to the large numbers of devices and BS antennas, the
JADCE generally imposes a high computational complexity.
To mitigate this problem, a dimension reduction-based JADCE
scheme was proposed in [107], which projects the original
channel matrix onto a low-dimensional space by jointly
exploiting its sparse and low-rank structures. In addition,
considering the time-varying device activity and CSI, the
work [108] claimed that the inherent temporal correlation
between adjacent time slots can be exploited to enhance the
JADCE performance.

In [101], [104], [105], [106], [107], and [108], the reduction
of the pilot overhead is limited to the number of active devices,
i.e., P ≥ Ka is required, which becomes a severe obstacle for
the implementation of these spatial-domain JADCE schemes.
Further considering the typical one-ring channel model, the
mMIMO channel vectors exhibit clustered sparsity in the
angular domain [51]. Hence, the JADCE problem (2) can be
reformulated as

R = P˜H + ˜N (3)

where R = YAR is the angular-domain received signal, ˜H =
HAR is the angular-domain channel matrix, ˜N = NAR, and
AR is the spatial-to-angular domain transformation matrix
determined by the geometrical structure of the BS array. In
contrast to the spatial-domain channel model (2), the angular-
domain channel model (3) is more favorable to improve the
accuracy of the CSI estimates of the identified active devices.
Motivated by this angular-domain channel model, an SIC-
based generalized AMP (GAMP) algorithm was proposed
to jointly exploit the spatial-domain and angular-domain
structured sparsities, where the pilot overhead can be far
smaller than the number of active devices [109]. Considering
that some devices may experience common local scattering
clusters, a grouping-based JADCE scheme was proposed
in [110].

A brief summary of the aforementioned JADCE schemes
is provided in Table III. Fig. 13 verifies the effectiveness
of the SIC-GAMP algorithm in the case of a single BS

mMIMO. Here, K = 500, Ka = 50, and SNR = 20 dB are
considered, and the numbers of BS antennas is set to Nr =
16, 32, 48, or 64. The state-of-the-art JADCE scheme [101]
that only considers the spatial-domain model (2) is adopted
as the baseline scheme. It is observed that by exploiting
the angular-domain clustered sparsity of mMIMO channels,
the SIC-GAMP scheme attains a significant performance
improvement over the baseline scheme. Furthermore, the
achievable performance of the SIC-GAMP scheme improves
with the increase of the number of BS antennas. This is
because increasing the number of BS antennas can simultane-
ously enhance the spatial-domain common sparsity of H and
the angular-domain clustered sparsity of ˜H, which improves
the CS recovery performance. In particular, the SIC-GAMP
scheme can reliably support GFMA even at an overloading
ratio of 250 % (i.e., P = 20 and Ka = 50). With Nr = 64,
the scheme achieves an AER of 10−4 and a normalized mean
square error (NMSE) of −27 dB.

2) JADCE in Cooperative Massive MIMO Systems: For
typical IoT applications, the power-limited devices are gen-
erally distributed in a vast area and, thus, multiple BSs
should be densely deployed to offer an adequate coverage
and save the transmit power of the devices. Adopting the
traditional small-cell mMIMO networks, the reduced BS
spacing however would inevitably introduce severe uplink
intercell interferences, which is a limiting factor for reliable
GFMA [111]. To overcome this limitation, various cooperative
mMIMO networks have been intensively investigated for
GFMA. Xu et al. [112] extended the JADCE problem of
GFMA to the cloud radio access network (C-RAN), where
the received signals from all the BSs are jointly processed
at a central unit. Utkovski et al. [113] further considered
the limited capacity of the backhaul links between the BSs
and the central unit. Moreover, Chen et al. [114] studied
the JADCE of GFMA in multicell systems, and compared
the conventional noncooperative mMIMO network and the
cooperative mMIMO network in terms of their effectiveness
in overcoming intercell interferences.
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TABLE III
SUMMARY OF JADCE SCHEMES FOR GFMA IN SINGLE-STATION MMIMO SYSTEMS

TABLE IV
SUMMARY OF JADCE SCHEMES FOR GFMA IN COOPERATIVE MMIMO SYSTEMS

Among various cooperative mMIMO networks, cell-free
mMIMO networks are the most popular ones and have
attracted ever increasing attention from both the academic
and industrial communities [111]. In fact, cell-free mMIMO
is an incarnation of the general idea of distributed MIMO,
network MIMO, C-RAN, and distributed antenna systems,
where a large number of access points (APs) cooperate with
each other in the network to serve a large area. The APs
equipped with a large number of antennas are connected
to the related processing units via fronthaul links for joint
signal processing, as illustrated in Fig. 14. In this context, the
intercell interference can be effectively avoided, as cells and
cell boundaries do not exist. Moreover, by performing coher-
ent signal processing across geographically distributed APs’
antennas, cell-free mMIMO can provide a uniformly good
service for all devices. In contrast, for centralized mMIMO
systems with the receive antennas locating at BSs, the devices
in the cell center generally reaps a better service quality than
the devices in the cell edge due to the heterogeneous path-
loss effect [112]. Besides, equipping massive antennas at the
APs further combines the distributed MIMO and mMIMO
concepts, which is expected to reap all the benefits from these
two systems.

Based on the notion of cell-free mMIMO networks, two
different signal processing paradigms, namely, cloud com-
puting of Fig. 14(a) and edge computing of Fig. 14(b), have
been proposed for supporting centralized and distributed AP
cooperation, respectively [115]. For cloud computing, the
signals received at all the APs are centrally processed in a
central processing unit (CPU). Since the APs are only designed
to work as relays with simple signal processing capabilities
only, the required cost for large scale deployment of APs is
significantly reduced. However, cloud computing requires the
information to pass through several subnetworks including the

radio access network, backhaul network, and core network,
where traffic control, routing, and other network-management
operations can contribute to excessive delays. As for edge
computing, the central processing is offloaded to some of
the APs equipped with distributed processing units (DPUs)
such that the corresponding computations can be performed
in a distributed manner. Compared to cloud computing, edge
computing can alleviate the burden on the fronthaul links and
the CPU, facilitate a faster access response as well as support
more efficient AP cooperation, at the expense of the increased
cost in network deployment [115].

For GFMA in cell-free mMIMO systems, the APs transfer
the pilot signals received from all the active devices to the
related processing unit. Based on the MMV CS models in (2)
and (3), the processing unit can perform JADCE by jointly
processing the received signals from multiple APs using for
example the SIC-GAMP algorithm [109]. Table IV summa-
rizes the JADCE schemes in cooperative mMIMO systems.
In Fig. 15, to verify the superiority of cell-free mMIMO-
based IoT networks, a conventional noncooperative multicell
mMIMO architecture is compared as the benchmark, where
each BS only serves its own cell’s devices and treats the
intercell interference as noise. Here, we assume that K =
2800 devices are uniformly distributed in the network having
a radius of Rnet = 2.65 km and B = 7 APs are geographically
distributed to serve these devices. The AP-to-AP distance is
d = √

3 km, the number of active devices is Ka = 140,
the number of AP antennas is Nr = 16, and the number
of cooperating APs at each DPU is Nco. The SIC-GAMP-
base JADCE scheme [109] is employed by the both systems.
As shown in Fig. 15, the cell-free mMIMO network achieves
much better AER and NMSE performance than the traditional
noncooperative multicell mMIMO network architecture. It
can also be seen that by increasing the number of APs
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(a) (b)

Fig. 14. Two processing paradigms in cell-free mMIMO systems: (a) cloud computing and (b) edge computing [115] c©IEEE.

Fig. 15. JADCE performance of GFMA in multicell noncooperative mMIMO
and cell-free mMIMO systems. The both systems adopt the SIC-GAMP-based
JADCE scheme [109].

for cooperation Nco, the performance of edge computing
approaches that of cloud computing. In particular, we observe
that only Nco = 4 APs are required for edge computing
to obtain almost the same performance as cloud computing.
This is because the signals received at the APs far away
from a device are approximately zero due to the severe path
loss, and incorporating them can hardly improve the JADCE
performance further.

C. Noncoherent Data Detection

The aforementioned GFMA schemes adopt a coherent
data detection framework, where the detection performance
is highly dependent on the accuracy of the CSI estimate.
These solutions become inefficient or even impractical in high-
mobility communications scenarios with small data packets,
since the devices have to frequently transmit nonorthogonal
pilot sequences for the CSI update. To address this limitation,
two noncoherent detection frameworks were introduced, where
the payload data of active devices is directly detected from
the overlapped received signal, without any knowledge of the
full CSI.

1) Common Codebook-Based Noncoherent Detection: We
first consider the unsourced random access scenarios, where

the BS is solely interested in the list of transmitted messages
without regard to their individual sources. In practice, the
unsourced random access is motivated by the content-oriented
IoT applications [116]. For example, in the quality inspection
process of smart factories, many sensors are distributed at
different positions on the production line to acquire the quality
of products. The server only concerns about the weighted
average of these sensors’ quality information and does not
have to know the identities of sensors that generate it.
Focusing on unsourced random access, an efficient common
codebook-based noncoherent detection (CCND) framework
was developed in [117], [118], [119], [120], [121], [122],
[123], [124], and [125].

In the CCND framework, all the potential devices share a
common codebook hardwired at the moment of production.
When accessing the network, a specific active device k first
maps its B information bits into an integer b ∈ {1, 2, . . . , 2B},
then the bth codeword cb ∈ C

L×1 of the common codebook
C = [c1, . . . , c2B ] ∈ C

L×2B
is directly transmitted to the

BS, where L is the length of codewords. Define a set of
K2B Bernoulli random variables {δk,b|k = 1, . . . , K; b =
1, . . . , 2B} to model the device activity and codeword selection
behavior. Specifically, δk,b = 1 if the kth device is active
and it selects the bth codeword to transmit; and δk,b = 0
otherwise. Therefore, the overlapped received signal at the BS
is expressed as

̂Y =
K

∑

k=1

2B
∑

b=1

cbδk,bhT
k + ̂N = C�H + ̂N (4)

where � = [δ1, δ2, . . . , δK] ∈ B
2B×K is the codeword

selection matrix with δk = [δk,1, . . . , δk,2B ]T ∈ B
2B×1, and

H = [h1, h2, . . . , hK]T ∈ C
K×Nr is the massive-access channel

matrix. Note that the transmitted information is encoded in
the nonzero indices of the codeword selection matrix �.
Besides, � contains only Ka nonzero rows each of which
having a single nonzero entry. Therefore, the data detection
is equivalent to detecting the nonzero row indices of �

based on ̂Y and the known C, which can be formulated
as a MMV CS problem of (1) by combining the codeword
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(a)

(b)

Fig. 16. CCND for GFMA: (a) coupled CS-based transmission scheme and (b) uncoupled CS-based transmission scheme for mMIMO systems [132] c©IEEE.

selection matrix and the massive-access channel matrix as a
sparse matrix to be estimated, i.e., X = �H ∈ C

2B×Nr with
N = 2B and Q = Nr, while defining the sensing matrix
as � = C with M = L. In particular, each active device
contributes a single nonzero coefficient in a specific column
of X, hereby resulting in a Ka-sparse 2B-dimensional vector.
Moreover, different columns, i.e., different receive antennas,
have a common sparsity pattern. This structured sparsity can
be exploited for enhancing CS recovery performance [116].

However, since the number of codewords scales exponen-
tially with the message length, the computational complexity
of the CS recovery is prohibitive even for the case with
dozens of information bits. This becomes a major obstacle for
practical implementation of CCND. To overcome this obstacle,
Amalladinne et al. [126] introduced a coupled CS transmission
scheme for reduced complexity, as shown in Fig. 16(a). The
scheme consists of outer and inner encoders/decoders. For the
outer encoder, each active device’s message is nonuniformly
divided into multiple submessages and the redundancy check
bits are added in these submessages to form the subblocks
having uniform length. Then, the inner encoder is employed to
map the subblocks to the codewords in a common codebook,
which are transmitted in their corresponding slots. At the BS,
the inner decoder first recovers the lists of submessages for
all the slots and the submessages are then stitched together by
the outer decoder using the redundancy check bits. Afterward,
the detection performance is further enhanced by passing
information between the CS-based inner decoder and the outer
decoder dynamically [127]. Besides, the sparse regression code
was introduced to reduce the size of codebook, where the
submessages are encoded by the structured linear combination
of the columns of the common codebook [128].

The prior works [126], [127], [128] are limited to single-
antenna systems. As a remedy, Fengler et al. [129] investigated
the CCND problem in mMIMO systems and revealed that the
transmit power per bit can be made arbitrary small if the num-
ber of BS antennas is sufficiently large. By equipping massive
antennas at the BS, a low-complexity covariance-based CS
recovery algorithm was developed for the implementation of
an inner decoder [130]. Besides, a tensor-based transmission
scheme was proposed for block fading channels in mMIMO
systems [131]. In addition, the problem was extended to the
cell-free mMIMO systems, where the detection performance
can be further improved by considering the cooperation of
geographically distributed APs [116].

Although the coupled CS-based schemes significantly
reduce the decoding complexity, the spectral efficiency is
scarified due to the employment of redundancy check bits.
To avoid the loss, Shyianov et al. [132] proposed that the
strong correlation between the reconstructed MIMO channels
in different slots provided enough information to stitch the
submessages and devised an uncoupled CS-based scheme
by removing the outer encoder and decoder. Specifically,
the message is uniformly divided into multiple submessages,
which are directly transmitted in slot-wise using the com-
mon codebook-based encoder, as illustrated in Fig. 16(b).
At the BS, with the recovered submessages, an expectation
maximization-based clustering algorithm is designed to obtain
the original message. Since no redundancy is introduced, the
spectral efficiency is dramatically improved. For uncouple
CS-based schemes, however, due to the small number of
information bits of submessages and the absence of check
bits, the collision, i.e., multiple active devices select the same
codeword, becomes a new challenge. To address this issue, the
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TABLE V
SUMMARY OF CCND SCHEMES FOR UNSOURCED GFMA

work [133] exploited the diversity of different devices’ Angles
of Arrival (AoA) to resolve the collision and leveraged the
angular-domain sparsity of mMIMO channels to improve the
detection performance.

A brief summary of the aforementioned CCND schemes are
provided in Table V.

2) Individual Codebook-Based Noncoherent Detection:
Despite of its many advantages, CCND is limited to unsourced
random access scenarios. In practice, most IoT applications
rely on sourced random access, where the server concerns
both the transmitted messages and the identities (IDs) of active
devices that generate them. By making several minor modi-
fications to the packet structure, a straightforward solution is
to embed the device ID in the transmitted information bits,
and then to map the combined device ID and payload data
onto a codeword in the common codebook [134]. To identify
K devices, a device ID sequence with at least 	log2(K)
 bits
is embedded, where the operator 	·
 rounds a real number to
the nearest integer larger or equal to it. Hence, the payload
efficiency is significantly degraded, especially for the scenarios
with massive number of devices and small data packets.

Recently, an individual CCND scheme was proposed
to support sourced GFMA more efficiently [135]. In this
scheme, each device is allocated with an individual codebook,
i.e., ˜Ck = [c̃k,1, c̃k,2, . . . , c̃k,2B] ∈ C

L×2B
, to convey B-bit

information, where L is the length of codewords. Based on
the B information bits to be conveyed, each active device
first select a codeword from its individual codebook, and
then transmit the codeword on one subcarrier of L successive
OFDM symbols. In this context, a total of ˜N2B bits can be
transmitted adopting OFDM with ˜N subcarriers. Defining L
successive OFDM symbols as a subframe, the device activity
during a frame of J subframes and the CSI within a subframe
are assumed to be invariant. At the BS, the signal received at
the ñth subcarrier in the jth subframe is expressed as

˜Y
j
ñ =

K
∑

k=1

˜Ck˜X
j
k,ñ + Nj

ñ = ˜C˜X
j
ñ + Nj

ñ (5)

where ˜X
j
k,ñ = αkej

k,ñ(h
j
k,ñ)

T ∈ C
2B×Nr is the equivalent chan-

nel matrix, αk, ej
k,ñ ∈ B

2B×1, and hj
k,ñ ∈ C

Nr×1 are the activity
indicator, codeword selection vector, and MIMO channel vec-
tor, respectively. Furthermore, ˜C = [˜C1, . . . ,˜CK] ∈ C

L×K2B

and ˜X
j
ñ = [(˜X

j
1,ñ)

T , . . . , (˜X
j
K,ñ)

T ]T ∈ C
K2B×Nr . Combining ˜N

Fig. 17. Space–time–frequency structured sparsity of individual CCND for
GFMA in mMIMO-OFDM systems [135] c©IEEE.

subcarriers and J subframes, the noncoherent data detection
can be formulated as a MMV CS problem of (1), where
the measurement matrix is given as Y = [˜Y

1
1, . . . ,

˜Y
J
˜N] ∈

C
L×J˜NNr with M = L and Q = J˜NNr, the sensing matrix is

expressed as � = ˜C with N = K2B, and the sparse channel
matrix to be estimated is expressed as X = [˜X

j
1, . . . ,

˜X
J
˜N] ∈

C
K2B×J˜NNr . Here, both the device activity and transmitted

information are encoded in the nonzero row indexes of X.
Moreover, X exhibits structured sparsity in the space, time,
and frequency domains, as illustrated in Fig. 17, where the
common sparsity can be observed at different receive antennas
and subcarriers within a subframe, and different subframes
have an approximate common sparsity pattern.

Qiao et al. [135] proposed an AMP-based space–time–
frequency joint activity and blind information detection
(STF-JABID) algorithm to leverage the space–time–frequency
structured sparsity of X for improving AER and BER
performance. Fig. 18 demonstrates the superiority of the
proposed algorithm [135], where the state-of-the-art SOMP
algorithm [82] and generalized MMV-AMP (GMMV-AMP)
algorithm [109] without taking the space–time–frequency
structured sparsity into account are used as the benchmarks
for comparison. Here, it is assumed that the number of devices
is K = 100 with Ka = 10 active devices, ˜N = 512,
B = 1, J = 2, and Nr = 2. It is clear that the proposed
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(a) (b)

Fig. 18. (a) AER and (b) BER performance comparison of individual CCND schemes for GFMA in mMIMO-OFDM systems [135] c©IEEE.

algorithm [135] significantly outperforms the two benchmarks
by fully exploiting the structured sparsity of the equivalent
channel matrix.

V. FUTURE RESEARCH DIRECTIONS

Although extensive research efforts have been made to
accelerate the development of the CS-based GFMA paradigm,
numerous practical challenging issues still remain open to
be resolved. In this section, we discuss some future research
directions to address the key challenges in implement-
ing the CS-based GFMA paradigm for the 6G massive
communication.

A. Practical Hardware Constraints

As reviewed in the previous sections, most GFMA schemes
consider ideal hardware assumptions, such as fully digital
MIMO architecture at the BS, infinite-resolution ADCs, per-
fect synchronization between the devices and the BS, equal
amplitudes and phases between in-phase (I) and quadrature
(Q) branches, i.e., I/Q balance, etc. Due to the resulting high
hardware cost and huge power consumption, the GFMA in
mMIMO systems should be investigated under the more practi-
cal hybrid MIMO architecture [136], [137] and low-resolution
ADCs [138]. Moreover, due to the imperfect hardware, the
carrier frequency offset caused by the asynchronization of the
oscillators between the devices and the BS [139], [140] as well
as the I/Q imbalance [141] should be further incorporated into
the CS-based GFMA paradigm. Considering these practical
hardware constraints, the problem formulations and receive
algorithms presented in the previous sections are not directly
applicable and, thus, the corresponding GFMA schemes have
to be redesigned.

B. GFMA in Space-Air-Ground-Sea Integrated Networks

Most existing works usually implement various IoT appli-
cations in the terrestrial cellular networks. However, the 6G
ubiquitous connectivity is expected to rely on the space-
air-ground-sea integrated networks (SAGEINs). Due to the

inherent limitations of terrestrial infrastructures, it is impracti-
cal or uneconomic for deploying terrestrial BSs to seamlessly
integrate the devices distributed across the ground, ocean, and
air [142]. As supplements to terrestrial networks, nonterrestrial
networks (NTNs), including satellite constellations at different
Earth orbits, high-altitude platform (HAP) networks, and
unmanned aerial vehicle (UAV) networks, can offer effective
coverage to remote areas where terrestrial BSs are unavailable.
To connect the different layers in hierarchical SAGEINs,
an efficient GFMA scheme design is required, though it
involves numerous challenging issues, such as the seamless
integration of heterogeneous networks [142], efficient coop-
eration between different networks [143], channel modeling
for aerial communication links [144], high ground-to-space
path loss [145], etc. Therefore, considerable research efforts
should be directed to address these challenging issues in the
deployment of GFMA in SAGEINs.

C. Deep-Learning-Enhanced Design

Due to the remarkable accomplishments demonstrated by
deep learning in various fields, such as computer vision,
natural language processing, and image recognition, it is
expected to serve as one of the primal driving forces to propel
the advancement of 6G. Recently, deep learning has shown
its huge potentials in resource allocation, signal processing,
channel estimation, and transceiver design for wireless com-
munication systems [146], [147], [148]. In particular, deep
learning can fully leverage the implicit information in the
available data and the benefits of well-developed wireless
communication models, to reap a better performance or
a lower complexity compared with the traditional design
approaches. For GFMA in mMIMO systems, the massive
numbers of devices and BS antennas make the problem
dimension extremely large, where the implementation of the
aforementioned CS-based GFMA schemes would result in
a high complexity. The deep learning-enhanced design is
expected to provide a low-complexity and better-performance
alternative. For example, Zhang et al. [149] proposed a deep
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neural network (DNN)-aided message passing-based block
SBL algorithm to solve the JADCE problem of GFMA,
which could approach the lower NMSE bound. Meanwhile,
Kim et al. [150] proposed a DNN-based activity detection
scheme for GFMA. Considering the imperfect CSI, a DNN-
based on variational autoencoder is further developed for
activity detection in GFMA [151]. Yu et al. [152] proposed a
JADCE neural network, which fully exploits the information
contained in the received preamble and data signals for
improved performance. Moreover, Bai et al. [153] developed a
machine learning framework, where the information distilled
from the initial data recovery phase are utilized to further
enhance channel estimation, which in turn improves data
recovery performance.

However, the analytical framework and the generalization of
the deep learning-based approaches pose the new challenges in
their practical implementation to GFMA in mMIMO systems.
To address these issues, the model-driven deep learning
framework can be adopted, where the well-developed wireless
communication models and signal processing techniques are
exploited to design the training network, leaving only a few
key parameters that need to be trained [146], [154].

D. GFMA for High-Speed IoT Applications

Most existing works assume that the device activity and
CSI remain unchanged during the considered time interval,
e.g., [104], [105], [106], [107], and [108]. In addition, the
devices are assumed to be perfectly synchronized. To support
mobile IoT applications, such as smart traffic and UAV com-
munications in 6G, a more complicated massive connectivity
scenario should be further investigated, where the devices
are moving at a high speed and, thus, result in fast time-
varying channels. Furthermore, the devices can randomly
access or leave the network, which leads to the time-varying
device activity and the asynchronous transmission between
the devices [155], [156]. In this context, the existing CS-
based GFMA schemes will fail to work, and the transceiver
should be redesigned to capture the variation of the channels
and to handle the asynchronous transmission problem. Here,
the temporal correlation of the channels can be exploited for
improving multidevice detection performance [156].

E. Joint Activity Detection,Channel Estimation, and Data
Decoding

Most previous works assumed a two-phase processing,
i.e., JADCE and data decoding. There is another line of
research, i.e., joint activity detection, channel estimation, and
data decoding (JADCEDD), where partially detected data can
be used as soft pilots to enhance the channel estimation accu-
racy in an iterative fashion. In the field, Li et al. [157] proposed
a belief propagation-based-joint device detection, channel
estimation and data decoding algorithm for unsourced massive
access, in which the CE results can be enhanced by regarding
the corrected decoded data in the LDPC phase as extra pilots
to execute the second CE. Similarly, Bian et al. [158] achieved
the JADCEDD by BiG-AMP algorithm in a turbo receiver
that can effectively exploit the common sparsity pattern in

TABLE VI
LIST OF MAJOR ABBREVIATIONS

the received pilot and data signal, and improve the data
detection performance by incorporating with channel decoder.
Furthermore, Di Renna and de Lamare proposed a bilinear
message-scheduling GAMP algorithm for JADCEDD in a
grant-free mMIMO scenario. By applying the activity detec-
tion results or the residual for the message to determine the
update of messages, they introduced two message-scheduling
techniques to reduce the computational cost while maintaining
the detection performance. Besides, Zhou et al. [160] extended
this topic to the NOMA-OTFS system in LEO satellite
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IoT, achieving good detection performance by overcoming
the long round-trip latency and severe Doppler effect. In,
general, the JADCEDD is more practical than the JADD and
usually exhibits better performance than the JADCE. However,
this advantage is obtained at the expense of computational
complexity, such as introducing more iterations. How to strike
a tradeoff is needed to be considered in the future research.

VI. CONCLUSION

The future 6G massive communication is expected to
require instant and seamless wireless connectivity for
extremely large numbers of devices, which is a key enabler of
the digital transformation of many aspects of society. Thanks
to the recently completed infrastructures and well-developed
technologies, the existing cellular networks can serve as a
solid foundation for implementing massive connectivity in
practice. This review has explored various typical IoT use
cases and their service requirements. Moreover, the state-
of-the-art IoT standards and the random access solutions
from the both industry and academic communities have been
reviewed. In particular, we have pointed out the limitations
of the existing random access solutions, which do not take
into account the inherent sparse communication behavior
of massive communication. Against this background, a CS-
based GFMA paradigm has been introduced, where the active
devices directly access the network without any scheduling,
and the activity detection, channel estimation, and/or data
detection at the BS can be formulated as an SMV/MMV
CS problem. Under the CS-based GFMA paradigm, various
network architectures, transmission schemes, data detection
frameworks, and receive algorithms can be flexibly incorpo-
rated to meet different service requirements of heterogeneous
IoT applications. In this respect, we have detailed the roadmap
with evolutions from single-antenna to large-scale antenna
array-based BSs, from single-station to cooperative mMIMO
systems, and from unsourced to sourced random access sce-
narios. Finally, we have discussed the key challenges and open
issues to provide enlightening guidance for future research
directions.

APPENDIX

A list of major abbreviations used in this article is provided
in Table VI.
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