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Abstract 

A low-complexity semi-blind scheme is proposed for joint channel estimation and data detection on 
sphere manifold for multiple-input multiple-output (MIMO) systems with high-order quadrature ampli- 
tude modulation signaling. Specifically, the optimal channel estimator is expressed in the least squares 
form in terms of the received signals and unknown transmitted data, and by splitting the channel and 
transmitted data into their real parts and imaginary parts, the data detection becomes a problem defined 
on a scaled sphere manifold in the real domain. Our semi-blind algorithm consists of three stages: (i) a 
few training symbols are employed to provide a rough initial MIMO channel estimate which in turn 
yields the initial zero-forcing (ZF) estimate of data samples; (ii) the Riemannian conjugate gradient 
algorithm is used to estimate the data samples in real domain, and the detected data samples are used 
to estimate the final MIMO channel matrix; and (iii) the final ZF data detection is carried out based 
on the final MIMO channel estimate. In particular, we present the first order Riemannian geometry of 
the sphere manifold which is utilized in the Riemannian conjugate gradient algorithm for solving (ii). 
Simulation results are employed to demonstrate the effectiveness of the proposed approach. 
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. Introduction 

Multiple-input multiple-output (MIMO) technology is capable of dramatically enhancing
ystem’s reliability and capacity [1–4] . In order to fully utilize the MIMO capacity, accurate
hannel estimation is necessary. MIMO channel estimation methods can be classified into
hree categories: training-based methods, blind methods, and semi-blind methods. For pure
raining-based schemes, a large training overhead is necessary in order to obtain a reliable

IMO channel estimate, which reduces the system’s effective throughput considerably. Blind
ethods do not require any training symbols and are capable of maintaining high system

hroughput at the expense of high computational complexity [5–7] . In addition, pure blind
ethods suffer from an intractable ambiguity problem in MIMO estimation and detection.
emi-blind schemes are attractive for practical implementation, since they are capable of
esolving the ambiguity problem otherwise unsolvable by blind methods as well as require
ess computational complexity than blind methods and fewer training symbols than training-
ased methods. 

Joint blind channel estimation and data detection has been proposed based on the iterative
east squares (LS) with projection [8–10] . In this approach, the channel and data are estimated
teratively but the convergence of the iterative process depends on the initialization of the
hannel model. A pure blind approach is often computationally prohibitive, particularly for
igh-dimensional MIMO. Moreover, unlike the usual phase ambiguity in blindly detected
ata symbols, which may be resolved by differential encoding, in blind joint MIMO channel
stimation and data detection, permutation ambiguity corresponding to reordering the detected
ransmitted data and estimated channel matrix columns cannot be easily resolved. One way
f solving this permutation ambiguity is to employ a few pilot training symbols, leading
o semi-blind schemes. In the context of MIMO, semi-blind schemes have been developed
11–19] , which use a few training symbols to provide the initial MIMO channel estimation
nd then exchange the information between the data detector and the decision-directed (DD)
hannel estimator iteratively. Typically, 5 to 10 iterations are required for the iterative MIMO
ata detector and DD channel estimator to converge. 

Given the MIMO channel matrix, the optimal data detector is the maximum likelihood
ML) detector. Therefore, given the initial rough training-based channel estimate, the optimal
emi-blind scheme, in terms of achievable performance, is based on the iterative procedure
etween the ML data detector and DD channel estimator [15–17] . However, such an optimal
rocedure is impractical to implement, owing to the prohibitively high complexity of the ML
etector, particularly for high-dimensional MIMO with spectral efficient high-order signaling
chemes. For example, for 6 by 6 MIMO with 64-quadrature amplitude modulation (QAM),
he ML detector needs to search the candidate data set of the size 64 

6 ≈7 ×10 

10 , which is
ifficult if not impossible to realize. Therefore, low-complexity suboptimal detection schemes
ust be adopted in practice [19] . A low-complexity semi-blind scheme suitable for MIMO

ystems with high-order QAM signaling is the semi-blind iterative zero-forcing (ZF) data
etection and DD LS channel estimation, which achieves good performance. In this paper,
e advocate a low-complexity semi-blind alternative for high-dimensional MIMO with high-
rder QAM signaling based on sphere manifold. 

Recent years have witnessed great development in Riemannian optimization algorithms
n many types of matrix manifolds, such as Stiefel manifold, Grassmann manifold and the
anifold of positive definite matrices, see for example [20] . Since Riemannian optimization

s directly based on the curved manifolds, one can eliminate those constraints such as orthog-
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onality to obtain an unconstrained optimization problem that, by construction, will only use 
feasible points. This allows one to incorporate Riemannian geometry in the resulting opti- 
mization problems, thus producing far more accurate numerical results. The recent successful 
applications of Riemannian optimization in machine learning, computer vision and data min- 
ing, citing a few, include fixed low rank optimization [21] , Riemannian dictionary learning 

[22–25] , and computer vision tasks [26] . 
Against this background, in this paper we propose a low-complexity semi-blind scheme 

for joint channel estimation and data detection for MIMO systems with spectral efficient 
high-order QAM signaling. By representing the LS channel estimator in terms of the received 

signals and unknown transmitted data, the variables of the optimization cost function for blind
data detection become the transmitted symbols alone which must satisfy the constraint of the
known modulation scheme whose symbol constellation is symmetric in real and imaginary 

parts. Furthermore, we formulate our blind data detection problem into an equivalent one 
by splitting the channel and data into their real parts and imaginary parts, so that under the
reasonable assumption of a sufficient long data block, the constraint on the data samples
becomes a scaled sphere manifold in the real domain. This allows us to apply Riemannian
optimization technique to solve the resulting data detection problem. More specifically, our 
proposed algorithm consists of three parts: i) a few training symbols are employed to yield
an initial LS MIMO channel estimate in order to provide a rough ZF detected data samples
for initializing the data detection; ii) the Riemannian conjugate gradient algorithm is used for
solving the corresponding blind data detection problem to estimate the date samples, and the
detected data symbols are then used to provide the final DD LS MIMO channel estimate;
and iii) the data samples are re-estimated using the ZF detector based on the final MIMO
channel estimate. In particular, in terms of stage ii), the first order Riemannian geometry of
the sphere manifold is presented and then utilized in the Riemannian trust-region algorithm 

on the sphere manifold. 
The remaining paper is organized as follows. Section 2 introduces the concept of sphere

manifold and necessary notations for Riemannian optimization. Section 3 details the proposed 

semi-blind scheme for joint MIMO channel estimation and data detection on sphere manifold, 
including novel signal detection using Riemannian conjugate gradient algorithm. Simulation 

results are provided in Section 4 to demonstrate the effectiveness of the proposed approach. 
Our conclusions are drawn in Section 5 . 

Throughout our discussions, a complex-valued (CV) number x ∈ C is represented by x =
x (R) + j · x (I) , where j = 

√ −1 , while x (R) and x (I) are the real and imaginary parts of x ,
respectively. The transpose and conjugate transpose operators are denoted by ( ) T and ( ) H ,
respectively, and ( ) ∗ denotes the conjugate operation, while ( ) −1 stands for the inverse
operation and the expectation operator is given by E{ }. Matrix trace operator is denoted by
trace( ), and I denotes the identity matrix with an appropriate dimension, while B [ a : b ; : ] is
the matrix consists of the a th to b th rows of B . 

2. Sphere manifold 

This section briefly introduces the concept of sphere manifold and the necessary ingredients 
used in the retraction based framework of Riemannian optimization. As a reference, the 
main notations on Riemannian geometry on sphere manifold in this section is summarized in
Table 1 . We refer the readers to [20] for the general concepts of manifolds. 
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Table 1 
Notations for sphere manifold. {
S 

M 

′ ·N−1 , g 
}

Sphere manifold for parameter matrix X and the inner product of the manifold 
T X S M 

′ ·N−1 Tangent space of the sphere manifold 
U X , V X Tangent matrices at X 

Proj X ( Z ) Orthogonal projector from matrix Z in ambient space onto the tangent space at X 

grad F ( X ) Riemannian gradient of F ( X ) on the manifold S M 

′ ·N−1 

Grad F ( X ) Classical gradient of F ( X ) as seen in Euclidean space 
Exp X Retraction mapping 
T X k+1 ← X k ( U X k ) Matrix transport 
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The sphere manifold is the set of unit Frobenius norm matrices of size M 

′ ×N , denoted as

 

M 

′ ·N−1 = 

{
X ∈ R 

M 

′ ·N : ‖ X ‖ F = 1 

}
. (1)

t is endowed with a Riemannian manifold structure by considering it as a Riemannian sub-
anifold of the embedding Euclidean space R 

M 

′ ·N endowed with the usual inner product 

( U X , V X ) = trace 
(
U 

T 
X V X 

)
, (2)

here U X , V X ∈ T X S 

M 

′ ·N−1 ⊂ R 

M 

′ ·N are tangent ‘vectors’ or matrices 1 to S 

M 

′ ·N−1 at X . The in-
er product on S 

M 

′ ·N−1 determines the geometry such as distance, angle, curvature on S 

M 

′ ·N−1 .
ote that the tangent space T X S 

M 

′ ·N−1 at element X can be described by 

 X S 

M 

′ ·N−1 = 

{
U X : trace 

(
U 

T 
X X 

) = 0 

}
. (3)

Riemannian gradient : Let the Riemannian gradient of a scalar function F ( X ) on S 

M 

′ ·N−1

e denoted by grad F ( X ), and its classical gradient as seen in the Euclidean space as Grad F ( X ).
hen we have 

rad F ( X ) = Proj X 
(
Grad F ( X ) 

)
, (4)

here Proj X 

( Z ) is the orthogonal projection onto the tangent space, which can be computed
s 

roj X ( Z ) = Z − trace 
(
X 

T Z 

)
X (5)

n which Z represents a matrix in the ambient space. 
Retraction mapping : An important concept in the recent retraction-based framework of

iemannian optimization is the retraction mapping, see Section 4.1 of [20] . The exponential
ap Exp X 

, defined by 

xp X 

(
αU X 

) = cos 
(‖ αU X ‖ F 

)
X + 

sin (‖ αU X ‖ F ) 
‖ U X ‖ F U X , (6)

s the canonical choice for the retraction mapping, where the scalar α is a chosen step size.
he retraction mapping is used to locate the next iterate on the manifold along a specified

angent matrix, such as a search direction in the line search of Newton’s algorithm or the
1 Here we change the notion tangent ‘vector’ in Riemannian geometry to tangent ‘matrix’, as it is in the same matrix 
orm as seen in classical Euclidean geometry. Similarly, the notion ‘vector’ in Riemannian geometry is changed to 
matrix’. 
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suboptimal tangent direction in the trust-region algorithm, see Chapter 7 of [20] . For example,
the line search algorithm is simply given by 

X k+1 = Exp X k 

(
αk U X K 

)
(7) 

in which the search direction U X K ∈ T X k S 

M 

′ ·N−1 and αk is a chosen step size at iteration step
k . 

Matrix Transport : In Riemannian optimization algorithms, the second derivatives can be 
approximated by comparing the first-order information (tangent matrices) at distinct points on 

the manifold. The notion of matrix transport T X k+1 ← X k 

(
U X k 

)
on a manifold, roughly speaking, 

specifies how to transport a tangent matrix U X k from a point X k to another point X k+1 on
the manifold. The matrix transport for the sphere manifold is calculated as 

T X k+1 ← X k 

(
U X k 

) = Proj X k+1 

(
U X k 

)
. (8) 

3. The proposed semi-blind scheme for MIMO on sphere manifold 

In this section, we begin by introducing the MIMO system model and the existing low-
complexity semi-blind iterative ZF data detection and DD LS channel estimation scheme for 
high-dimensional MIMO with high-order QAM signaling [11–17,19] . Then our alternative 
low-complexity semi-blind scheme for MIMO on sphere manifold is detailed. 

3.1. System model and existing low-complexity semi-blind scheme 

Consider a MIMO system with n T transmit antennas and n R receive antennas. It is assumed
that the channel coherence bandwidth is larger than the transmitted signal bandwidth so that
the channel can be considered as narrowband or flat fading. The sampled received signal
vector y (k) = 

[
y 1 (k ) y 2 (k ) · · · y n R (k ) 

]T 
at symbol index k is given by the well-known MIMO 

model 

y (k) = H s (k) + ε (k) , (9) 

where s (k) = 

[
s 1 (k ) s 2 (k ) · · · s n T (k ) 

]T 
and s m 

( k ) is the k th transmitted symbol from transmit
antenna m with E 

{| s m 

(k) | 2 } = E 

{
s m 

(k) s ∗m 

(k) 
} = σ 2 

s for 1 ≤m ≤n T , and the additive white

Gaussian noise (AWGN) vector ε (k) = 

[
ε 1 (k ) ε 2 (k ) · · · ε n R (k ) 

]T 
with E 

{| ε l (k) | 2 } = 2σ 2 
ε for

1 ≤ l ≤n R , while H ∈ C 

n R ·n T denotes the MIMO channel matrix whose l th row and m th column
element h l , m 

is the channel coefficient connecting transmit antenna m to receive antenna l .
Furthermore, the channel is assumed to be quasi-static. Specifically, over the transmission 

period of a data frame, which contains N f symbols, all the entries of H remain unchanged.
From frame to frame, h l , m 

obeys the CV zero-mean Gaussian distribution CN (0, 1) with a
variance of 1/2 per dimension. The modulation scheme adopted is L -ary QAM ( L -QAM),
which is defined by the symbol constellation set 

S = 

{
s ( i) , 1 ≤ i ≤ L 

}
. (10) 

Thus, the transmitted data s m 

(k) ∈ S, ∀ m , k . 
By collecting the received data, the transmitted data and the channel noise over a frame

of 1 ≤k ≤N f respectively as 

 = 

[
y (1) y (2) · · · y (N f )] ∈ C 

n R ·N f , (11) 
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[
s (1) s (2) · · · s (N f )] ∈ C 

n T ·N f , (12)

 = 

[
ε (1) ε (2) · · · ε (N f )] ∈ C 

n R ·N f , (13)

he overall MIMO system can be represented by 

 = H S + E . (14)

f the channel H is known, the low-complexity ZF data detection solution is given by 

 

 ZF = W ZF Y , (15)

ith the detector weight matrix given by 

 ZF = 

(
H 

H H 

)−1 
H 

H . (16)

very element of ˜ S ZF is then quantized to the nearest symbol point in S to yield the hard-
ecision detected symbol matrix 

̂ S ZF . On the other hand, if the data S is known, the LS
hannel estimate is readily given by ̂ 

 LS = Y S 

H 

(
S S 

H 

)−1 
. (17)

Blind joint channel estimation and data detection is to find H and S purely based on the
eceived Y , and this task suffers from the well-known scaling and permutation ambiguity. For
xample, Eq. (14) can also be represented as 

 = H 

∗S 

∗ + E , (18)

here H 

∗ = H T and S 

∗ = T 

H S , and T is the unitary n T ×n T permutation and scaling matrix
ith only one nonzero element in each row and in each column. In order to resolve this

mbiguity problem, a semi-blind approach is desirable in which a few training symbols of
 t �N f are used to provide an initial estimate of the channel H . For convenience, collecting

he N t training data together as 

 t = 

[
s (1) s (2) · · · s (N t ) 

] ∈ C 

n T ·N t , (19)

 t = 

[
y (1) y (2) · · · y (N t ) 

] ∈ C 

n R ·N t . (20)

he LS channel estimate based on the initial training data { S t , Y t } is readily given by ̂ 

 

(t) 
LS = Y t S 

H 

t 

(
S t S 

H 

t 

)−1 
. (21)

n order to maintain the system throughput, N t should be as small as possible. On the other
and, to guarantee S t S 

H 

t having a full rank, it is necessary that N t ≥n T . 
Existing Practical Semi-Blind Scheme : In the existing semi-blind scheme of iterative

F data detection and DD LS channel estimation (LSCE), e.g., [19] , a minimum number of
raining data with N t = n T or very close to it, are employed to provide the initial training based
S channel estimate of Eq. (21) . With this rough LS channel estimate, the ZF data detection

s carried out, and the detected data matrix is employed in the DD LSCE. The improved
hannel estimate is then used for the next ZF data detection. A few iterations, typically 5
o 10, between the ZF data detector and the DD LS channel estimator are sufficient for
his semi-blind scheme to converge to the ZF detection solution associated with the perfect
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channel state information (CSI) H , provided that the MIMO system’s signal to noise ratio
(SNR) is over certain threshold. This low-complexity semi-blind scheme offers a practical 
means suitable for implementation in MIMO systems with high-order QAM signaling, and it 
will be used as a benchmark for comparison with our proposed semi-blind scheme based on
sphere manifold. 

3.2. Proposed semi-blind scheme 

Our alternative semi-blind scheme also offers a low-complexity solution suitable for MIMO 

systems with high-order QAM signaling by exploiting Riemannian optimization on sphere 
manifold. We begin by noting that the probability density function of the received signal
matrix Y conditioned on the MIMO channel matrix H and the transmitted data matrix S is
given by 

p( Y | H , S ) = 

1 (
2πσ 2 

e 

)n R ·N f exp 

(
− 1 

(2πσ 2 
e ) 

‖ Y − H S ‖ 2 F 

)
. (22) 

The joint ML estimation of S and H is obtained in theory by maximizing p ( Y | H , S ) jointly
over the continuous space for H and the discrete space for S , which is computationally
impossible to achieve. Hence, suboptimal solution has to be sought. 

Note that maximizing p ( Y | H , S ) is equivalent to minimizing the cost function 

J ( H , S ) = ‖ Y − H S ‖ 2 F = ‖ ̄Y − H̄ ̄S ‖ 2 F , (23) 

where 

H̄ = 

[
H 

(R) −H 

(I) 

H 

(I) H 

(R) 

]
∈ R ̄

n R ·n̄ T (24) 

in which n̄ T = 2n T , n̄ R = 2n R and H = H 

(R) + j · H 

(I) , while Ȳ ∈ R ̄

n R ·N f with 

¯
 = 

[
Y 

(R) 

Y 

(I) 

]
= 

[
y (R) (1) y (R) (2) · · · y (R) (N f ) 

y (I) (1) y (I) (2) · · · y (I) (N f ) 

]
(25) 

in which y (k) = y (R) (k) + j · y (I) (k) , and S̄ ∈ R ̄

n T ·N f with 

S̄ = 

[
S 

(R) 

S 

(I) 

]
= 

[
s (R) (1) s (R) (2) · · · s (R) (N f ) 

s (I) (1) s (I) (2) · · · s (I) (N f ) 

]
(26) 

in which s (k) = s (R) (k) + j · s (I) (k) . The minimizer of J ( H , S ) given S̄ is readily expressed
by the closed-form LS solution 

H̄ = Ȳ S̄ 

T (
S̄ ̄S 

T )−1 
, (27) 

which is plugged back to Eq. (23) to yield 

J ( ̄S ) = 

∥∥Ȳ − Ȳ S̄ 

T (
S̄ ̄S 

T )−1 
S̄ 

∥∥2 
F 
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= trace 
((

Ȳ −Ȳ S̄ 

T (
S̄ ̄S 

T )−1 
S̄ 

)(
Ȳ −Ȳ S̄ 

T (
S̄ ̄S 

T )−1 
S̄ 

)T )
= trace 

(
Ȳ Ȳ 

T ) − trace 
(
Ȳ S̄ 

T (
S̄ ̄S 

T )−1 
S̄ ̄Y 

T )
. (28)

ince the first term in the righthand side of Eq. (28) does not depend on S̄ , minimizing J ( ̄S )

s equivalent to minimizing the following cost function 

 ( ̄S ) = − 1 

2 

trace 
(
Ȳ S̄ 

T (
S̄ ̄S 

T )−1 
S̄ ̄Y 

T )
= − 1 

2 

trace 
(
Ȳ 

T 
Ȳ S̄ 

T (
S̄ ̄S 

T )−1 
S̄ 

)
. (29)

ote that the CV constellation set S = S 

(R) + j · S 

(I) of Eq. (10) is symmetric in both real
nd imaginary dimensions, which means that S 

(R) and S 

(I) are identical, both containing the
ame 

√ 

L real-valued (RV) constellation symbol points. Let us define the RV constellation set
that contains these 

√ 

L RV symbol points, namely, 

 = S 

(R) = S 

(I) . (30)

ince s ( R) 
m 

(k) ∈ D and s ( I) m 

(k) ∈ D ∀ m , k , we have S̄ ∈ D ̄

n T ·N f . The above optimization problem
an then be expressed as 

in 

S̄ 

{
F 

(
S̄ 

) = − 1 
2 trace 

(
Ȳ 

T 
Ȳ S̄ 

T (
S̄ ̄S 

T )−1 
S̄ 

)}
, 

.t. S̄ ∈ D ̄

n T ·N f , 
(31)

hich is of course computationally prohibitive to solve directly. 
We now seek approximation or suboptimal solution. Note that although ‖ ̄S ‖ F is frame

ependent, it can be approximated by a constant, specifically, 

 ̄S ‖ F ≈
√ 

n̄ T N f 
σ 2 

s 

2 

= 

√ 

n T N f σ 2 
s , (32)

here we have E 

{(
s ( R) 

m 

(k) 
)2 } = E 

{(
s ( I) m 

(k) 
)2 } = 

σ 2 
s 
2 . The above approximation is very ac-

urate for a sufficiently large N f , since 
{
s m 

(k) = s ( R) 
m 

(k) + j · s ( I) m 

(k) } N f k=1 for 1 ≤m ≤n T are
ndependent sequences. Therefore, the solution of the following optimization problem 

in 

S̄ 

{
F ( ̄S ) = − 1 

2 trace 
(
Ȳ 

T 
Ȳ S̄ 

T (
S̄ ̄S 

T )−1 
S̄ 

)}
, 

.t. ‖ ̄S ‖ F = 

√ 

n T N f σ 2 
s , 

(33)

rovides an approximate solution to Eq. (31) . More specifically, let the solution of Eq. (33) be
 ¯
 . By mapping every element of ˜ S̄ to the nearest point in D, the resulting hard-decision

olution ̂

 S̄ is a suboptimal solution of Eq. (31) . Noting that the constraint ‖ ̄S ‖ F = 

√ 

n T N f σ 2
s 

s equivalent to the scaled version of the sphere manifold Eq. (1) by a factor of 
√ 

n T N f σ 2 
s , we

ropose a new algorithm utilizing a sphere manifold based optimization algorithm, specifically,
iemannian conjugate gradient algorithm, to efficiently solve the optimization Eq. (33) , which

s detailed in Section 3.3 . 
Using Riemannian conjugate gradient algorithm to solve the optimization Eq. (33) requires

n initial point S̄ ini . In order to resolve the permutation and scaling ambiguity as mentioned in
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Section 3.1 , we adopt the training based scheme with a minimum number of training samples
N t ≈n T to obtain the initial LS channel estimate of Eq. (21) . Based on this initial channel

estimate ̂ H 

(t) 
LS , the ZF data detection can be carried out according to Eq. (17) , yielding the

initial hard-decision solution 

̂ S ini which can be turned into S̄ ini according to Eq. (26) . Given 

the initial point S̄ ini , the proposed semi-blind scheme uses Riemannian conjugate gradient 

algorithm of Section 3.3 to obtain a solution of (33) , denoted as ˜ S̄ smo . By quantizing every

element of ˜ S̄ smo , the resulting hard-decision solution 

̂ S̄ smo is an approximate solution of the 
optimization problem (31) . Then the data detection solution is constructed as 

 S smo = ̂

 S̄ smo [1 : n T ; : ] + j ·̂ S̄ smo [ n T + 1 : n̄ T ; : ] , (34)

which is a suboptimal data detection solution. The final channel estimate is then given by the
DD LS estimate based on 

̂ S smo as 

̂ H fin = Y ̂

 S 

H 

smo 

(̂
 S smo ̂  S 

H 

smo 

)−1 
. (35) 

To take the advantage of improved accuracy of the final channel estimate ̂ H fin over the initial

rough channel estimate ̂ H 

(t) 
LS , we may utilize ̂ H fin to carry out the final ZF detection to yield

the final data detection solution ̂

 S 

(f) 
ZF . This semi-blind scheme is summarized in Algorithm 1 .

3.3. Riemannian conjugate gradient algorithm for data detection 

Recall that the constraint ‖ ̄S ‖ F = 

√ 

n T N f σ 2 
s of the optimization problem (33) is the scaled

version of the sphere manifold (1) by a factor of 
√ 

n T N f σ 2 
s . Thus, the solution of (33) can

be found via an equivalent Riemannian optimization problem. Specifically, let the solution of 
this equivalent Riemannian optimization problem be X smo , i.e., 

X smo = arg min 

X ∈ S ̄n T ·N f −1 

{
F ( X ) = −1 

2 

trace 
(
Ȳ 

T 
Ȳ X 

T 
(
X X 

T 
)−1 

X 

)}
. (36) 

We have ˜ S̄ smo = 

√ 

n T N f σ 2 
s X smo . 

Riemannian conjugate gradient algorithm generalizes the classical conjugate gradient al- 
gorithm [27] to optimization problems over Riemannian manifolds [28] . For our objective 
function F ( X ), it is easy to check that Euclidean gradient, Grad F ( X ), can be calculated ac-
cording to 

Grad F ( X ) = −(
X X 

T 
)−1 

X Ȳ 

T 
Ȳ + 

(
X X 

T 
)−1 

X Ȳ 

T 
Ȳ X 

T 
(
X X 

T 
)−1 

X . (37) 

Based on Grad F ( X ), Riemannian gradient of the objective function F ( X ) and the matrix
transport on the sphere manifold can be calculated according to Eqs. (4) and (5) . 

With all the ingredients available, we form the algorithm for solving (33) in Algorithm 2 ,
which can easily be implemented using the Manifold Optimization Toolbox, Manopt, available 
at: http://www.manopt.org , see [28] . We use the default parameter settings in Manopt, so that
in Step 4 of Algorithm 2 , αk is based on the line search backtracking procedure as described
in p.63 of Section 4 in Chapter 4 of [20] . In Step 5 of Algorithm 2 , βk is based on the default

http://www.manopt.org
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Algorithm 1 Proposed semi-blind scheme for MIMO 

Initialize: Training data { S t , Y t } , observation data Y ; 

Output: ̂ S 

(f) 
ZF and 

̂ H smo are suboptimal joint data detection and channel estimation solution. 
1: Stage i)-Initialization . Given { S t , Y t } , 
2: Calculate initial training-based LS channel estimate ̂ H 

(t) 
LS according to (21); 

3: Calculate initial ZF soft data detection solution ̃

 S ini = 

((̂ H 

(t) 
LS 

)H ̂ H 

(t) 
LS 

)−1 (̂ H 

(t) 
LS 

)H 

Y ; 

4: Quantize every element of ̃  S ini to produce hard-decisiondata detection solution, denoted as ̂ S ini = ̂

 S 

(R) 

ini + j ·̂ S 

(I) 
ini ; 

5: Obtain 

S̄ ini = 

[ ̂ S 

(R) 

ini ̂ S 

(I) 
ini 

] 

. 

6: Stage ii)-Riemannian optimization for data detection . Given S̄ ini , 

7: Use Algorithm 2 of Section III to find the solution ̃

 S̄ smo of the optimization problem (33); 

8: Quantize every element of ˜ S̄ smo to producehard-decision solution 

̂ S̄ smo as an suboptimal- 
solution to the optimization problem (31); 

9: Obtain the data detection solution ̂

 S smo according to (34); 
10: Obtain the final DD-LS channel estimate ̂ H fin according to (35). 
11: Stage iii)-Final data detection . Given 

̂ H fin , 

12: Obtain the final ZF data detection solution ̂

 S 

(f) 
ZF according to (̂ H 

H 

fin ̂
 H fin 

)−1 ̂ H 

H 

fin Y = ̃

 S 

(f) 
ZF 

quantize −−−−→ ̂

 S 

(f) 
ZF . 

13: Return . Joint channel estimation and data detection solution 

{̂ H fin , ̂  S 

(f) 
ZF 

}
. 

Algorithm 2 Riemannian conjugate gradient algorithm for solving (33) 

Initialize: Observation data Ȳ , initial point X 0 = S̄ ini 
/∥∥S̄ ini 

∥∥
F which is onthe sphere manifold 

S ̄

n T ·N f −1 , and default threshold � , e.g., � = 10 

−6 ; 

Output: ˜ S̄ that yields the minimum F 

(̃
 S̄ 

)
. 

1: Set η0 = −grad F ( X 0 ) and k = 0; 
2: while ‖ grad F ( X k ) ‖ F < � do 

3: k = k + 1 ; 
4: Compute a step size αk and set 

X k = Exp X k−1 

(
αk ηk−1 

); (38) 

5: Compute βk and set 

ηk = −grad F ( X k ) + βk T X k ← X k−1 ( ηk−1 ) ; (39) 

6: end while
7: Return 

˜ S̄ = 

√ 

n T N f σ 2 
s X k . 
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option ‘Hestenes-Stiefel’s modified rule’ in Manopt. Specifically, we have 

βk = max 

{ 

0, 
g 

(
grad F ( X k ) , �k 

)
g 

(
T X k ← X k−1 ( ηk−1 ) , �k 

)} 

, (40) 

with 

�k = grad F ( X k ) − T X k ← X k−1 ( grad F ( X k−1 )) . (41) 

Remark 1. The solution (36) is an approximate or suboptimal solution to the intractable 
optimization problem (31) . It would be desirable to examine how ‘close’ the solution (36) is
to the optimal solution of the problem (31) . This is however very challenging if not impossible
to do analytically. It is even difficult to compare the two solutions by simulation, as it is
intractable to realize the optimal solution for the problem (31) . As mentioned previously, 
for MIMO systems with high-order QAM signaling, it is only practical to implement low-
complexity suboptimal solutions, such as the semi-blind scheme of iterative ZF data detection 

and DD LSCE, described in Section 3.1 . Our proposed semi-blind scheme based on sphere
manifold offers an alternative to this existing low-complexity practical semi-blind scheme. 
Thus, it is more reasonable to compare our proposed semi-blind scheme based on sphere
manifold with this existing semi-blind scheme. This is what we will do in the following
simulation study. 

Remark 2. Algorithm 2 is a local optimization algorithm that aims to find a local minimum
near the initial solution X 0 . Whereas the convergence theory of linear conjugate gradient algo-
rithm is well understood, nonlinear conjugate gradient methods have convergence properties 
that depend on the choice of αk and βk . Theoretically analyzing the convergence properties 
of this conjugate gradient algorithm is challenging. However, the conjugate gradient algo- 
rithm of Manopt is known to converge very fast [28] . In our application, we observe that
Algorithm 2 always converges in 2 to 4 iterations. The convergence property of the existing
semi-blind scheme of iterative ZF data detection and DD LSCE is well known [19] . As men-
tioned in Section 3.1 , typically 5 to 10 iterations between the ZF data detector and the DD
LS channel estimator are sufficient for this semi-blind scheme to converge. 

3.4. Complexity analysis 

The main computational cost of the proposed scheme lies in evaluating (36) and (37) .
Note that it is important to apply matrix multiplication association rule to realize efficient 
implementation. For example, the term 

(
X X 

T 
)−1 

X ∈ R ̄

n T ·N f is evaluated only once and can 

be used in both F ( X ) and Grad F ( X ). Also it is well-known that the number of operations
(real-valued multiplications and/or additions) required to compute matrix multiplication XX 

T 

is on the order of n̄ T N 

2 
f , denoted as O 

(
n̄ T N 

2 
f 

)
, and the cost of matrix inversion 

(
X X 

T 
)−1 

is
on the order of O 

(
n̄ 

3 
T 

)
. 

Evaluation of F ( X ) 
The total computational cost of evaluating F ( X ) is detailed in Table 2 . From Table 2 , we

conclude that the complexity of evaluating F ( X ) is on the order of O 

(
n̄ T N 

2 
f + 

(
n̄ 

2 
T + n̄ 

2 
R 

)
N f +

n̄ 

3 
T 

)
. 
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Table 2 
Complexity analysis of evaluating F ( X ). 

multiplication XX 

T O 

(
n̄ T N 

2 
f 

)
inversion 

(
X X 

T 
)−1 

O 

(
n̄ 3 T 

)
multiplication 

(
X X 

T 
)−1 

X O 

(
n̄ 2 T N f 

)
multiplication Ȳ 

T 
Ȳ O 

(
n̄ 2 R N f 

)
multiplication Ȳ 

T 
Ȳ X 

T O 

(
N 

2 
f ̄n T 

)
multiplication Ȳ 

T 
Ȳ X 

T 
(
X X 

T 
)−1 

X O 

(
n̄ 2 T N f 

)

E

 

e

C
 

n  

 

a  

n  

i
 

c  

b  

R  

O  

i  

i  

O  

t  

t  

s  

T

4

 

l  

p  

s  

b  

s  

c  

a  
valuation of grad F ( X ) 

Note that 
(
X X 

T 
)−1 

X , Ȳ 

T 
Ȳ and Ȳ 

T 
Ȳ X 

T 
(
X X 

T 
)−1 

X have already been computed. Hence,
valuating Grad F ( X ) imposes an addition number of operations on the order of O 

(
n̄ T N 

2 
f 

)
. 

omplexity of proposed algorithm 

The complexity of Stage i)-Initialization is small by comparison. Also this initialization is
eeded in the existing scheme and, therefore, its complexity can be omitted in the comparison.

According to the above analysis, the number of operations (real-valued multiplications
nd/or additions) required by each iteration of Algorithm 2 is on the order of O 

(
n̄ T N 

2 
f + 

(
n̄ 

2 
T +

¯ 2 R 

)
N f + n̄ 

3 
T 

)
. Hence the complexity of Stage ii)-Riemannian optimization for data detection

s O 

(
n̄ T N 

2 
f + 

(
n̄ 

2 
T + n̄ 

2 
R 

)
N f + n̄ 

3 
T 

)
, scaled by the number of iterations for Algorithm 2 . 

Stage iii)-Final data detection is optional and is performed at most once. By converting the
omplex-valued matrix multiplication and inversion into the equivalent real-valued ones, it can
e seen that the computational cost of this stage is smaller than O 

(
n̄ T N 

2 
f + 

(
n̄ 

2 
T + n̄ 

2 
R 

)
N f + n̄ 

3 
T 

)
.

emark 3. The computational complexity of the proposed algorithm is on the order of
 

(
n̄ T N 

2 
f + 

(
n̄ 

2 
T + n̄ 

2 
R 

)
N f + n̄ 

3 
T 

)
, scaled by the number of iterations for Algorithm 2 , which

s 2 to 4. By contrast, it is well known that the computational complexity of the ex-
sting scheme of iterative ZF data detection and DD LSCE is also on the order of
 

(
n̄ T N 

2 
f + 

(
n̄ 

2 
T + n̄ 

2 
R 

)
N f + n̄ 

3 
T 

)
, scaled by the number of iterations between the ZF data de-

ector and the DD LS channel estimator, which is typically more than 4. It can be seen that
he complexity per iteration are roughly the same for the both schemes. Hence, the proposed
cheme offers some computational advantage as it requires a smaller number of iterations.
his will be confirmed by the simulation study. 

. Simulation study 

Three MIMO systems employing high-order modulation schemes were simulated with the
ength of data frame set to N f = 200 and the number of initial training samples N t . The
roposed semi-blind scheme based on sphere manifold was compared with the following
chemes: (a) ‘initial LSCE’, which is the ZF detection solution based on the initial training

ased LS channel estimate ̂ H 

(t) 
LS , (b) ‘existing semi-blind scheme’, which is the semi-blind

cheme of iterative ZF data detection and DD LSCE discussed in Section 3.1 , and (c) ‘perfect
hannel knowledge’, which is the ZF detection solution associated with the perfect CSI H . In
ddition to the bit error rate (BER) performance, the mean absolute deviation (MAD), defined
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Fig. 1. Bit error rate performance comparison for the MIMO system with N T = N R = 6 employing 16-QAM mod- 
ulation scheme. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

as 

MAD = E 

{ 

n R ∑ 

l=1 

n T ∑ 

m=1 

∣∣̂  h l,m 

− h l,m 

∣∣} 

, (42) 

was also used as a performance measure, where ̂  h l,m 

denotes the estimate of the true channel
coefficient h l , m 

, and the expectation is approximated using the time average over 100 random
realizations of the MIMO channel. The average symbol power was set to σ 2 

s = 1 and the
system’s SNR was defined as SNR = E b /N o , where E b = σ 2 

s / log 2 L is the average energy
per bit and N o = 2σ 2 

ε . The number of iterations for Algorithm 2 was set to 2, as this was
observed to be sufficient for the conjugate gradient algorithm to converge. 

Example 1 

The system employed n T = 6 transmit antennas and n R = 6 receive antennas with 16-
QAM signaling, i.e., L = 16 . The number of initial training data was N t = n T + 2 = 8 . Fig. 1
compares the BER achieved by the proposed semi-blind scheme on sphere manifold with 

those of the initial LSCE based detection, the existing semi-blind scheme with 2 iterations
and 10 iterations, as well as the detection based on perfect CSI. The achievable MAD of
the proposed semi-blind scheme on sphere manifold is depicted in Fig. 2 in comparison with
the MAD performance of the initial LSCE based scheme as well as the existing semi-blind
scheme with 2 iterations and 10 iterations, respectively. From the results of Figs. 1 and 2 ,
it can be seen that the performance of the proposed semi-blind scheme on sphere manifold
is better than that of the existing semi-blind scheme with 2 iterations, while the performance
of the existing semi-blind scheme with 10 iterations is better than the proposed semi-blind
scheme. This is significant, as the complexity of the proposed semi-blind scheme on sphere



X. Hong, J. Gao and S. Chen / Journal of the Franklin Institute 357 (2020) 5680–5697 5693 

Fig. 2. Mean absolute deviation performance comparison for the MIMO system with N T = N R = 6 employing 16- 
QAM modulation scheme. 
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c  

t  

1  

t  
anifold is roughly comparable to that of the existing semi-blind scheme with 2 iterations
ut lower than that of the existing semi-blind scheme with 10 iterations. 

xample 2 

The system employed n T = 8 transmit antennas and n R = 8 receive antennas with 16-QAM
ignaling, i.e., L = 16 . The number of initial training data was N t = n T + 2 = 10. Fig. 3
ompares the BER achieved by the proposed semi-blind scheme on sphere manifold with
hose of the initial LSCE based detection, the existing semi-blind scheme with 2 iterations
nd 10 iterations, as well as the detection based on perfect CSI. The achievable MAD of
he proposed semi-blind scheme on sphere manifold is depicted in Fig. 4 in comparison with
he MAD performance of the initial LSCE based scheme as well as the existing semi-blind
cheme with 2 iterations and 10 iterations, respectively. Again the results obtained show that
he performance of the proposed semi-blind scheme on sphere manifold is better than that of
he existing semi-blind scheme with 2 iterations, while the performance of the existing semi-
lind scheme with 10 iterations is better than the proposed semi-blind scheme. Furthermore,
he achievable BER performance is better than Example 4 , since there are more antennas in
his example. 

xample 3 

The system employed 64-QAM signaling and had n T = 6 transmit antennas and n R = 6
eceive antennas. The number of initial training data was set to N t = n T + 2 = 8 . Fig. 5
ompares the BER performance of the proposed semi-blind scheme on sphere manifold with
hose of the initial LSCE based scheme, the existing semi-blind scheme with 2 iterations and
0 iterations, as well as the scheme based on perfect CSI, while the MAD performance of
he proposed semi-blind scheme on sphere manifold, the initial LSCE based scheme as well
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Fig. 3. Bit error rate performance comparison for the MIMO system with N T = N R = 8 employing 16-QAM mod- 
ulation scheme. 

Fig. 4. Mean absolute deviation performance comparison for the MIMO system with N T = N R = 8 employing 16- 
QAM modulation scheme. 

 

as the existing semi-blind scheme with 2 iterations and 10 iterations, respectively, are shown 

in Fig. 6 . Based on the results of Figs. 5 and 6 , we can draw the same conclusions as those
observed in Example 1 and Example 2 . 
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Fig. 5. Bit error rate performance comparison for the MIMO system with N T = N R = 6 employing 64-QAM mod- 
ulation scheme. 

Fig. 6. Mean absolute deviation performance comparison for the MIMO system with N T = N R = 6 employing 64- 
QAM modulation scheme. 

5

 

d  
. Conclusions 

In this paper we have introduced a new approach of semi-blind joint channel estimation and
ata detection on sphere manifold for MIMO systems employing high-order QAM signaling
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schemes, which consists of three stages. Specifically, in stage (i), a few training symbols
are employed to provide a rough initial MIMO channel estimate which yields the initial
ZF estimate of data samples; in stage (ii), the Riemannian conjugate gradient algorithm is
used to estimate the data samples in real domain, and the detected data samples are used
to estimate the final MIMO channel matrix; and in stage (iii), the final ZF data detection
is carried out based on the final MIMO channel estimate. Our novel contributions include 
the derivation of the first order Riemannian geometry of sphere manifold that is necessary 

for solving stage (ii) of blind data detection. Our proposed semi-blind scheme on sphere
manifold offers a viable and practical alternative to existing low-complexity semi-blind joint 
channel estimation and data detection schemes for high-dimensional MIMO with high-order 
QAM signaling. Simulation results have been provided to demonstrate the effectiveness of 
the proposed semi-blind scheme on sphere manifold. 
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