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a b s t r a c t

Since most real-world processes exhibit both nonlinear and time-varying characteristics, there exists
a need for accurate and efficient models that can adapt in nonstationary environments. Also for
adaptive control purpose, it is vital that an adaptive model has a fixed small model size. In this paper,
we propose an adaptive tunable gradient radial basis function (GRBF) network for online modeling
of nonlinear dynamic processes, which meets these practical requirements. Specifically, a compact
GRBF model is constructed by the orthogonal least squares algorithm in training, which is capable of
modeling variations of local mean and trend in the data well. During online operation, the adaptive
GRBF model tacks the time-varying process’s dynamics by replacing a worst performing node with a
new node which encodes the current new data. By exploiting the local predictor property of the GRBF
node, the new node optimization can be done extremely efficiently. The proposed approach combining
the advantages of both the GRBF network structure and fast tunable node mechanism is capable of
tracking the time-varying nonlinear dynamics accurately and effectively. Extensive simulation results
demonstrate that the proposed fast tunable GRBF network significantly outperforms the existing
state-of-the-art methods, in terms of both adaptive modeling accuracy and online computational
complexity.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Nonstationary processes or systems are commonly encoun-
ered in many areas of science and engineering [1–4]. Nonsta-
ionary characteristics of processes can dramatically degrade the
erformance of predictive models, specifically, prevent models
rommaintaining a long-term high-accuracy. This is recognized as
he most critical problem encountered in industrial applications,
uch as soft sensor [5–10]. Hence, online modeling of nonlinear
ynamic processes is an important and challenging problem,
nd it has been drawing significant attentions [11,12]. An online
odel learning method must not only be equipped with effective
daptation mechanism for tracking time-varying process dynam-
cs but also be sufficiently efficient to meet online processing
estrictions [13]. The latter issue is crucial, particularly in most
eal-time control systems, where all adaptation operations much
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be completed within a small sampling period. Existing methods
in the literature for online modeling of nonstationary systems can
be classified into two groups: multiple local model learning and
global kernel learning.

In a multiple local model learning strategy, the model input
space is partitioned into multiple subspaces with the aid of a
shifting window of samples. In each of the subspaces, the sys-
tem is considered to be a stationary process, which is covered
or modeled by a local model [14–18]. Based on this principle,
the recently proposed selective ensemble based multiple local
model (SEMLM) learning enables automatically identifying newly
emerged process states online and combining the most up-to-
date local linear models to make an accurate selective ensemble
regression (SER) based prediction [17]. To further reduce the
online computation burden for computing SER prediction, the
more recent growing and pruning SER (GAP-SER) can not only
learn the newly emerged concept but also forget the past ac-
cumulated old local models that are no longer relevant [18].
Both methods achieve excellent online prediction performance
for nonstationary data modeling, with the GAP-SER imposing

much less averaged computation time per sample (ACTpS) than
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the SEMLM. Obviously, the performance of these algorithms de-
pends critically on the window size, and there is no general
criterion for selecting a proper window size. Also the SER pre-
diction model constructed by the SEMLM and GAP-SER changes
from sample to sample. This makes it difficult to employ such a
changeable-size adaptive prediction model for implementing an
adaptive controller for online control purposes.

Kernel based learning, as effective means of globally model-
ing nonlinear characteristics from data, have been widely used
for nonlinear process modeling and identification. One typical
approach of such global kernel learning is to adopt radial basis
function (RBF) neural network. With a set of nonlinear kernels
imposed on the training input data, the orthogonal least squares
(OLS) learning can readily be applied to construct a parsimonious
RBF model [19–22]. During online operation, a RBF network can
track the process variations by updating its weight vector us-
ing adaptive estimators [23,24]. Similarly, the online sequential
extreme learning machine (OS-ELM) [25–28] randomly selects a
large number of training data as the RBF centers to fix the RBF
model structure during offline training, and updates the model
weights online using the recursive least squares (RLS) algorithm.
Because the size of an OS-ELM model has to be very large to cover
the overall process dynamics, the online weight adaptation is
computationally costly and, moreover, there is no guarantee that
the fixed RBF nodes, no matter how dense they are in the train-
ing data space, will also cover the changing nonstationary data
space well. Therefore, this type of adaptive kernel based learning
performs reasonably well only when the process dynamics vary
slowly with time, but may fail to track the system dynamics when
the process changes rapidly or abruptly.

In order to track the time-varying process characteristics well,
the model structure should also be updated online. A simple
way of adapting the RBF model structure is to grow the RBF
nodes with arriving input data based on their significance, and
this is the strategy adopted by the recourse-allocating network
(RAN) [29,30]. A potential drawback of the RAN is that its size
may grow to be very large. Also as aforementioned, the growing
size of the RAN may hinder online adaptive model-based con-
troller implementation. From an online control perspective, it is
far better to adopt a compact fixed-size RBF model with tunable
nodes rather than a RBF model with growing size. Unlike the RAN,
the fast tunable RBF method of [31] fixes a compact model size
in advance, and adjusts the RBF nodes as well as weights online
to adaptively modeling nonstationary data. Specifically, during
online operation when the error for the current data becomes
unacceptable, the fast tunable RBF adapts the model structure by
replacing an ‘insignificant’ node with a new node which is opti-
mized to fit the current data. In this way, the fast tunable RBF is
capable of efficiently capturing the newly emerged process state
and encoding it in the fixed-size model, while maintaining a low
online computational complexity. Simulation results of [31] show
that this tunable RBF outperforms the RAN and OS-ELM in terms
of both adaptive modeling accuracy and online computational
complexity for modeling nonstationary data.

For nonstationary time series involving variations of local
mean and trend, the series can be made stationary by applying
a difference operation on the raw data [32]. By incorporating a
similar mechanism into the RBF model, the gradient RBF (GRBF)
network was proposed for nonstationary time series prediction
in [33]. The input to this GRBF model is generated by differencing
the original data, and each of its hidden nodes is modified to be a
perfect local one-step predictor for an input vector in training.
The OLS learning can readily be applied to select a compact
GRBF network during training. This GRBF network significantly
outperforms the RBF model for nonstationary time series predic-

tion [33]. However, this GRBF network is restricted to time series E
prediction, not for identification of dynamic processes. Moreover,
nonstationary data generally exhibit other time-varying charac-
teristics, not just variations of local mean and trend. The GRBF
network of [33] is non-adaptive because its model structure,
constructed from training data, is fixed. Therefore, it cannot track
the time-varying underlying process dynamics that are unseen in
training.

Motivated by the above background, this paper proposes a
fast tunable GRBF network for online modeling of time-varying
dynamic processes, which is capable of tracking the nonlinear
and nonstationary data well with a fixed small GRBF model
structure, while imposing very low online complexity. Our novel
contributions are summarized as follows.

1. Our first contribution is to extend the original GRBF net-
work of [33] to a general form which is suitable for
dynamic system identification problems. During the initial
training, a compact GRBF model can readily be constructed
by the OLS algorithm, similar to other RBF type models,
such as [31,33].

2. Our main contribution is to derive an adaptive mechanism
to adapt the GRBF model online. During online operation,
the worst performing node of the GRBF model is replaced
by a new node when the current GRBF network does not
fit the current data well. Unlike the tunable RBF network
of [31,34], which involves a complicated high-complexity
iterative procedure to determine the structure of the new
replacing RBF node, our adaptive algorithm of determining
the new replacing GRBF node is not only very simple and
hence imposing much less online computational complex-
ity but also is optimal in the sense that the replacing
GRBF node is the local one-step predictor of the current
new data. Specifically, owing to the fundamental property
of GRBF network structure, we can place the center and
the associated scalar of the new replacing node to the
current data and the output gradient, respectively. The new
node then becomes a perfect local one-step predictor that
encodes the current new data.

3. Extensive simulation experiments involving a simulated
nonlinear time-varying process and two real-world chemi-
cal processes are used to evaluate this fast tunable GRBF
network. The results obtained demonstrate that our fast
tunable GRBF network significantly outperforms the ex-
isting state-of-the-art online models, including the GAP-
SER [18] and the fast tunable RBF network [31], in terms of
both adaptive modeling accuracy and online computational
complexity.

2. The system model

We consider the generic discrete-time nonlinear and nonsta-
tionary dynamic process that can be represented by the following
system model [35,36]

yt = F (xt; t) + ξt , (1)

where t denotes the sampling index, F (·; t) is the unknown time-
arying underlying system mapping, and ξt is the uncorrelated
bservation noise with zero mean, while

t = [x1,t · · · xn,t ]T = [yt−1 · · · yt−ny ut−1 · · · ut−nu ]
T, (2)

s the system input vector with dimension n = ny + nu. In this
ystem representation, ut and yt are the process input and output
t sample t , respectively. while nu and ny are the input and output
ags, respectively. The task of online modeling is that given the
bservation {xt , yt}, constructing an estimator to approximate the
nderlying dynamic F (·; t), at every sampling time t . It can be
een that this is essentially a one-step ahead predictor problem.

xtension to the multiple-step ahead predictor is straightforward.
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Fig. 1. The proposed GRBF network for dynamical system identification.

.1. The proposed GRBF network

We extend the GRBF network of [33], originally designed
or nonstationary time series prediction, to modeling the non-
inear time-varying dynamic system (1). The structure of our
roposed GRBF network for this dynamical system identification
s illustrated in Fig. 1. This identification task is to construct
he GRBF network whose output for the given input (2) mod-
ls the underlying system F (xt; t). First, the input layer of the

GRBF network generates the actual input vector to the hidden
layer from xt of (2) by differencing the system output sequence
{yt−1, yt−2, . . . , yt−ny}:

xt =
[
yt−1 − yt−2 · · · yt−ny − yt−ny−1 ut−1 · · · ut−nu

]T
, (3)

where for notational simplicity, we still denote this ‘differenced’
input vector as xt .

Let M be the number of the hidden nodes in this GRBF net-
work. In a conventional RBF network, the Gaussian function is
typically employed to serve as the hidden node’s nonlinearity
which compares the similarity of the input vector to the hidden
node’s center. This hidden node’s function is kept in the GRBF
network. The difference of the GRBF node and the classic RBF
node is that the response of a GRBF node is further multiplied
by an additional term

(
yt−1 + δ

)
. Hence, the response of the jth

GRBF hidden node to the input vector xt is given by

ϕj(xt ) = exp

(
−
xt − c j

2
2σ 2

)
×
(
yt−1 + δj

)
, (4)

where σ is the width of Gaussian kernel, c j is the node center, and
δj is a constant scalar associated with the hidden node. As the rule
of thumb, the value of σ can be set as the maximum Euclidean
distance among nodes [37]. The term

(
yt−1+δj

)
an be interpreted

as a local one-step prediction of yt by the jth hidden node. From
(4), if the input vector is very similar to the jth center, the value of
the jth Gaussian function is close to 1 and the predictor

(
yt−1+δj

)
becomes fully active.

The output of the GRBF network is then produced as the
weighted sum of its hidden layer’s response as

yt =

M∑
wjϕj(xt ) = φT

M,twM , (5)

j=1
which is an estimate of the system’s output yt , where wM =

w1 · · · wM ]
T is the output layer’s weight vector, and φM,t =

ϕ1(xt ) · · · ϕM (xt )]T is the hidden layer’s response vector.

.2. OLS construction of GRBF network in training

Given the initial training data set of
{
xt , dt; yt

}N
t=1, where

t = yt − yt−1, (6)

compact M-term GRBF network with M ≪ N can readily be
onstructed from the training data set

{
xt , dt; yt

}N
t=1 using the

LS algorithm [19–21]. Specifically, similar to [33], if xt is selected
s the jth center c j, we set δj = dt to ensure that the jth hidden
ode is a perfect local predictor of yt , which is illustrated in
ig. 2 (a). By considering all the data points {xt , dt}Nt=1 as the
RBF hidden nodes {c j, δj}Nj=1, we obtain the full N-term GRBF
etwork. This full N-term GRBF network over the training data
et is expressed as

N = ΨNwN + ξN , (7)

here yN = [y1 · · · yN ]
T, ξN = [ξ1 · · · ξN ]

T are the modeling errors,
nd

N =
[
ψ1 ψ2 · · ·ψN

]
=
[
φN,1 φN,2 · · ·φN,N

]T
. (8)

The OLS algorithm selects a subset of M significant model
ases from the full set of N model bases defined in (8) [19–21].
pecifically, let the orthogonal decomposition of the regression
atrix ΨN be ΨN = PNAN , where AN is the upper triangular
atrix defined by

N =

⎡⎢⎢⎣
1 a1,2 · · · a1,N
0 1 · · · a2,N
...

. . .
. . .

...

0 · · · 0 1

⎤⎥⎥⎦ , (9)

nd PN =
[
p1 p2 · · · pN

]
∈ RN×N denotes the orthogonal regres-

ion matrix which satisfies pT
i pj = 0 for i ̸= j. The space spanned

y the set of the orthogonal bases {pi} is the same space spanned
y the set of the original bases {ψi}, and (7) can be rewritten as

N = PNθN + ξN , (10)

here the transformed weight vector θN =
[
θ1 θ2 · · · θN

]T
=

NwN , whose elements are readily calculated according to the
east squares (LS) estimator as θi = pT

i yN/pT
i pi for 1 ≤ i ≤ N .

he sum of squares or energy of yN is given by

T
NyN =

N∑
j=1

θ2
j p

T
j pj + ξTNξN . (11)

he contribution of the jth node can be measured by its error
eduction ratio [err]j defined as

err]j =
pT
j pjθ

2
j

yT
NyN

. (12)

his error reduction ratio offers an effective means of seeking
he M significant model bases (centers and scalars {c i, δi}) in a
greedy-based forward selection procedure [19–21]. Specifically,
at each selection step, the candidate with the maximum error
reduction ratio among all the remaining candidates is selected
as the new node. The regression procedure is terminated when
1−

∑M
j=1[err]j is smaller than a pre-set threshold, and this yields

a regression model with M hidden nodes {c j, δj}Mj=1, together with
the selected subset orthogonal regression matrix P ∈ RN×M and
M



56 T. Liu, S. Chen, S. Liang et al. / Journal of Process Control 93 (2020) 53–65

p

Fig. 2. The jth hidden node in (a) Training mode: if the training input vector xt is selected as the center c j , the scalar δj is set to dt , and the jth node becomes a
erfect local predictor of yt ; and (b) Predictive mode: if the center c j matches the new observation xt ,

(
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becomes an accurate local estimator of yt .
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the associated weight vector gM ∈ RM as well as the correspond-
ing upper triangular matrix AM ∈ RM×M . Then the weight vector
wM of the selected M-term subset GRBF network can readily be
solved from gM = AMwM by the backward substitution.

2.3. Prediction capability of GRBF network

After training, the resulting compact GRBF network is ready
for predictive operation. Similar to the classic RBF network, each
hidden node compares the current input xt with its center c j. The
Gaussian response of each hidden node indicates the degree of
matching between xt and c j. However, unlike the conventional
RBF network whose prediction is the weighted Gaussian response
of all the hidden nodes, where weights are fixed by training, in
the case of the GRBF network, if the jth center c j matches well
the current input vector xt , (yt−1 + δj) is likely to be a very
good prediction of yt , which is illustrated in Fig. 2 (b). Hence
the jth hidden node’s response is ‘amplified’ by its accurate local
predictor. Consequently, the prediction of the GRBF network is
weighted more heavily by the jth local predictor, leading to the
more accurate prediction for yt than the classic RBF network. This
is the elegance of the GRBF network compared with the classic
RBF network.

The above discussion indicates that the GRBF network has
better prediction capability than the classic RBF network for sta-
tionary processes. Furthermore, since the GRBF network naturally
models variations of local means and trend in nonstationary
processes, the fixed or non-adaptive GRBF network obtained in
training has better prediction capability than its RBF network
counterpart for nonstationary processes.

For a highly time-varying process, however, the process dy-
namics can vary dramatically, and it exhibits the serious non-
stationary characteristics other than variations of local means
and trend, the fixed GRBF network constructed in training may
become unable to track the process’s changing dynamics. A main
contribution of this paper is to propose a highly effective and
very efficient adaptive learning strategy for adapting the GRBF
network online.

3. Proposed online adaptive learning

A simple way of adapting the GRBF network online is to apply
the RLS algorithm for online weight adaptation. However, this is
unlikely to be sufficient for highly time-varying systems. Thus
both the model structure and weight parameters need to be
updated online. Clearly, optimizing all the hidden nodes every
sample is impractical, because it cannot meet the real-time con-
straint. Furthermore, since the nodes of the GRBF network encode
the past system dynamics learned, it may be unwise to change
them all. In order to meet the tight real-time constraint of small
 S
sampling period, the fast tunable RBF method of [31] adopts the
following online adaptive strategy. It carries the weight updating
every sample using the RLS algorithm as usual. If the predic-
tion performance of the RBF model is judged to be insufficient,
it replaces the hidden node that contributes least with a new
one. This involves an iterative optimization procedure based on
gradient descend to determine the replacement node’s center and
width. This kind of adaptive strategy is attractive owing to its
excellent online modeling performance, and we adopt a similar
online adaptive learning strategy for the GRBF network.

Note that the complicated iterative optimization of [31] may
impose relatively high online computational complexity that may
violate the small sampling period constraint. By contrast, we
do not need complicated iterative optimization to determine
the replacement node’s structure and, consequently, the adap-
tive learning for the GRBF network imposes much lower online
computational complexity. Recalling from the structure of GRBF
network, each hidden node basically encodes a local process state,
i.e., an input vector as its center, and it acts as a perfect local
predictor for the corresponding output. Hence, we only need to
set the replacement node’s center to the current input and its
scalar to the current output gradient.

Specifically, there are two adaptive modes during online adap-
tation of GRBF network, namely, the weight adaptation mode and
node adaptation mode. During online operation, the residual error
of the GRBF network is monitored. If the GRBF network performs
poorly, i.e., the residual error is large, the node adaptation mode
take places to replace the worst node with a new one. Otherwise
only the weight adaptation mode operates. Let φM,t denote the
hidden layer response vector for the given input xt and wM,t−1
be the weight vector obtained at the previous sample. Then the
residual for the prediction of yt based on current model is given
by

et = yt − φT
M,twM,t−1. (13)

he model performance can be measured by the cost

t =
e2t
y2t

. (14)

hen, we have the following criterion{
IF ẽt ≥ ε Node adaptation mode,
IF ẽt < ε Weight adaptation mode,

(15)

here ε is a constant threshold which is set according to the
erformance requirement. In general, the smaller ε is, the better
nline modeling accuracy can achieve, but the more frequently
he node replacement may occur which increases online compu-
ational complexity. This is because every time a node replace-
ent takes place, the weight vector must be recalculated using

he regularized LS estimator. See Section 3.1. The impact of ε
n the achievable performance will be investigated further in
ection 4.
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3.1. Node adaptation mode

In this mode, the most insignificant node with least contribu-
tion to the model performance is replaced by a new node. Similar
to [31], the significance of a node is defined by its weighted node
output (WNO). Hence for the jth node

WNOj = w2
j,t−1ϕ

2
j (xt ), 1 ≤ j ≤ M. (16)

We select the node with the smallest WNO value from all the M
nodes. Let

WNOK = min
1≤j≤M

WNOj. (17)

Then the node K is replaced by a new one.
Two parameters associated with the new replacement node K

is its center cK and scalar δK . Recall that in constructing the GRBF
network during training, a hidden node’s center and associated
scalar are set to an input and the corresponding output gradient,
respectively. Exploiting this physical property of GRBF hidden
nodes, we can simply set cK = xt and δK = yt − yt−1. It can be
seen that there is no need at all to use an iterative optimization
procedure to determine the replacement node as in the case of
the fast tunable RBF network [31], and the new replacement
node is a perfect local predictor of the current output yt . Thus,
ur tunable node mechanism enables automatically encoding the
ewly emerged process state and forgetting the most out-of-date
ata state, while imposing a very low complexity. Noted that
ince the set of the centers now contain a new one, the width
f the Gaussian response σ should be recalculated based on the
aximum Euclidean distance among the centers.
After the new hidden node is determined, the whole weight

ector of the new GRBF network needs to be recalculated. We
se the p latest data

{
xt−i, yt−i

}p−1
i=0 to calculate the weight vector

of the newly undated GRBF network based on the regularized
LS estimator. Specifically, the estimate of wM,t is obtained by
minimizing the regularized LS cost function

Jt =
yp − Φp×MwM,t

2 + λ∥wM,t∥
2, (18)

where λ ≥ 0 is the regularization parameter, which is used to
prevent overfitting when p is small, and yp = [yt yt−1 · · · yt−p+1]

T

Rp, while the regression matrix Φp×M ∈ Rp×M is given by

p×M =

⎡⎢⎢⎢⎣
ϕ1(xt ) ϕ2(xt ) · · · ϕM (xt )

ϕ1(xt−1) ϕ2(xt−1) · · · ϕM (xt−1)
...

...
...

...

ϕ1(xt−p+1) ϕ2(xt−p+1) · · · ϕM (xt−p+1)

⎤⎥⎥⎥⎦. (19)

he regularized LS solution of (18) is given by

M,t =
(
ΦT

p×MΦp×M + λIM
)−1

ΦT
p×Myp, (20)

here IM denotes the M × M identity matrix.
In general, a large p offers accurate LS estimation but may

egrade the tracking performance for fast time-varying systems,
hile imposing relatively high complexity. For highly
ime-varying processes with abrupt drift, a small p is preferred.

.2. Weight adaptation mode

In this mode, the hidden layer of the GRBF network has not
een changed, and we can simply apply the standard RLS algo-
ithm to update the weight vector⎧⎪⎨⎪⎩
kt = Γt−1φM,t

(
γ + φT

M,tΓt−1φM,t
)−1

,

Γt =
(
Γt−1 − ktφ

T
M,tΓt−1

)
γ −1, (21)
wM,t = wM,t−1 + ktet , w
Algorithm 1 Fast tunable GRBF network

1: Parameters: Node replacement threshold ε, bandwidth p,
regularization parameter λ, forgetting factor γ .

2: Initialize: Construct initial M-term GRBF model based on
training data set {xt , yt}Nt=1 with OLS algorithm, set ΓN =ϑIM ,
and denote weight vector as wM,N .

3: for sample instant t = N + 1,N + 2, . . . do
4: Compute prediction ŷt = φT

M,twM,t−1 for given xt .
5: When yt is available, compute ẽt with (13) and (14).
6: if ẽt < ε

7: Update weight vector to wM,t with RLS (21).
8: else if ẽt ≥ ε

9: Compute the WNO values for all M nodes with (16).
10: Find the minimum WNO node, node K , and replace it with

a new node:
set new center to cK = xt and new scalar to δK = yt−yt−1.

1: Compute new Gaussian width σ based on maximum
Euclidean distance

among nodes.
2: Use p latest data

{
xt−i, yt−i

}p−1
i=0 to compute weight vector

wM,t with
regularized LS estimation (20).

3: Re-initialize Γt according to (22).
4: end if
5: end for

where kt ∈ RM is the Kalman gain vector, 0.9 ≤ γ < 1 is the
forgetting factor, and the inverse of covariance matrix Γt ∈ RM×M

s usually initialized to Γ0 = ϑIM in which ϑ is a large positive
onstant.
It is worth noted that if a node adaptation takes place at

ample t , the RLS updating (21) will not take place, and we need
o initialize the inverse covariance matrix to

t =
(
ΦT

p×MΦp×M + λIM
)−1 (22)

fter the regularized LS estimation (20), This will ensures a
mooth transition from the node adaptation mode to the weight
daptation mode at the next sample.

.3. Algorithm summary

Algorithm 1 summarizes the operations of our proposed fast
unable GRBF network, which consists of two learning phases:
1) off-line initialization, and (2) online prediction and adaptation.
uring the off-line initialization (line 2), a parsimonious M-term
RBF model is constructed based on the training data set with
he OLS learning. The selected hidden nodes stores the most
elevant knowledge or process characteristics from the training
ata. Since the process’s dynamics are time-varying, during the
nline operation, in addition to provide the prediction, we need
o remove the out-of-date knowledge and to encode the newly
merged process state as fast as possible. This is carried out by
he online prediction and adaptation for each sample t (lines 4 to
4). More specifically, if the observed process variation is small,
he GRBF network operates in the weight adaptation mode, where
ts weight vector is updated with the RLS algorithm to track the
mooth and small data variation. When the abrupt changes occur
n the process, the GRBF network switches to the node adaptation
ode, where a most out-of-date node is replaced by a new node
o encode the newly emerged process state.

The computational complexity of operating in the node adap-
ation mode is dominated by the regularized LS estimation (20),
hich is on the order of O(p3), while the complexity of operating
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in the weight adaptation node is on the order of O(M2), which
s determined by the RLS algorithm (21). Therefore, the online
omputational complexity per sample of Algorithm 1 is no more
han max

{
O(p3),O(M2)

}
. Since p and M are typically very small,

he online computational complexity per sample of the proposed
lgorithm is clearly affordable and is much less than the fast
unable RBF, which involves an iterative optimization procedure
o determine the replacement RBF node [31]. Very low adaptation
omplexity of our fast tunable GRBF network coupled with its
mall and fixed model size makes it particularly suitable for
daptive control applications.

. Simulation results

The performance of the proposed fast tunable GRBF network
s evaluated using three case studies, a synthetic nonlinear time-
arying system and two real-world chemical processes, specifi-
ally, an industrial debutanizer column process [8,38,39] and a
ulfur recovery unit (SRU) process [40]. The mean square error
MSE) metric

SEt =
1
t

t∑
i=1

(
yi − ŷi

)2
, (23)

is used to evaluate the online modeling accuracy, where ŷi is
the model prediction for yi. Following the common practice, the
value of the MSE is expressed in dB, namely, in 10 log10 MSE. The
online computational complexity is quantified by the ACTpS. The
experiments are carried out on Matlab 2017a, running on a PC
with i7-3770 3.40GHz processor of 4 cores and 16 GB of RAM.
The proposed fast tunable GRBF model is compared with various
online modeling approaches, including the OS-ELM [25–28], the
RBF network [19,20], the GRBF network presented in Section 2 of
this paper, and the fast tunable RBF network [31] as well as our
SEMLM [17] and GAP-SER [18].

For the OS-ELM with RBF hidden nodes, the centers are ran-
domly chosen from the training data points, and online weight
adaptation is performed by the RLS algorithm. Similar to the fast
tunable GRBF network, the initial compact RBF, GRBF and fast
tunable RBF networks are constructed from the training data set
using the OLS algorithm. During online operation, the RBF net-
work and the GRBF network only perform weight adaptation by
the RLS algorithm, while the fast tunable RBF network adjust both
weight and structure using an iterative scheme proposed in [31].
Like the proposed tunable GRBF network, the node replacement
threshold ε and bandwidth p for the tunable RBF network need
to be carefully chosen. For the tunable RBF, the gradient descent
is used to optimize the new node, where the step size and the
number of iterations are empirically set to 0.1 and 5, respectively,
for all the three cases. Also the regularization parameter is λ =

0.001 for the regularized LS estimation and the forgetting factor
of the RLS algorithm is γ = 0.98, for all the three cases.

The SEMLM and GAP-SER are quite different from the above
fixed-size models. A set of local linear models are initialized on
the training data set. During online operation, both SER prediction
and local model adaptation are performed. The key algorithmic
parameters for these two adaptive learning schemes are the win-
dow size W , bandwidth p and model selection threshold ε. The
details of the algorithmic parameter sensitive analysis for these
two methods can be found in [17,18].

4.1. Synthetic nonlinear time-varying system

This synthetic time-varying nonlinear system is described by
the following difference equation [41]

y = 0.72y + 0.025y u + 0.01u2
+ 0.2u . (24)
t t−1 t−2 t−1 t−2 t−3
Table 1
Performance comparison of the OS-ELM, RBF, GRBF, SEMLM, GAP-SER, tunable
RBF and proposed method for online identification of synthetic nonlinear
time-varying system.
Model Nodes/Models MSE (dB) ACTpS (ms)

OS-ELM 100 −17.7504 0.2635
500 −22.3459 4.0074

RBF 10 −22.0003 0.0171
20 −22.1841 0.0219

GRBF 10 −30.4484 0.0160
20 −30.5935 0.0227

SEMLM 2 to 231 −31.3484 0.7751

GAP-SER 2 to 2 −31.2119 0.3398
Tunable RBF 10 −28.1882 0.1883
Proposed 10 −32.1531 0.1618

The input signal ut is generated as follows. For t ≤ 500, ut is the
independent and identically distributed (i.i.d.) uniform sequence
over [−1, 1], and

ut =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

sin
(

π t
45

)
, 500 < t ≤ 1000,

sin
(

π t
25

)
, 1000 < t ≤ 1250,

+1, 1250 < t ≤ 1500,
−1, 1500 < t ≤ 1750,

0.3 sin
(

π t
25

)
+ 0.1 sin

(
π t
32

)
+0.6 sin

(
π t
10

)
, 1750 < t ≤ 2000.

(25)

he data set contains 2000 data samples {xt , yt} generated using
(24) and (25) with the input vector xt given by

xt =
[
ut−1 ut−2 ut−3 yt−1 yt−2

]T
. (26)

he first 1000 pairs of the data are used for training and the re-
aining 1000 pairs for online prediction and adaptation. Clearly,

he system (24) with the input (25) is nonstationary, as the
istribution of yt is time varying.
In general, the model size of the OS-ELM network must be

uch larger than the RBF/GRBF networks constructed by OLS
earning, as the OS-ELM randomly selects the input data points as
ts centers in training. For the SEMLM and GAP-SER, the window
ize W and bandwidth p are carefully tuned to be 30 and 5, while
heir model selection thresholds are empirically set to ε = 0.01
nd 0.7, respectively. Note that the model selection criteria for
he SEMLM and GAP-SER are different, and hence appropriate se-
ection thresholds for them are different. For the tunable RBF and
he proposed tunable GRBF, the node replacement thresholds are
et to ε = 0.1 and 0.01, respectively, while their bandwidths are
oth p = 1. Note that choosing a very small p is appropriate for
his highly time-varying process with abrupt dynamic changes.

Table 1 compares the performance of various online adaptive
odels. Observe that the performance of the OS-ELM is poor.
o achieve a similar online prediction accuracy as a small RBF
etwork, it needs 500 hidden nodes and imposes the highest
CTpS of 4 ms. The compact RBF and GRBF models attain the
owest ACTpS, as they only adapt a small weight vector using the
LS algorithm. It can also be seen that a small network size of
0 hidden nodes is sufficient for the RBF and GRBF networks.
bserve that the GRBF network presented in Section 3 is 8 dB
etter in the online prediction MSE than the classic RBF model.
or the SEMLM, the number of the local linear models grows from
he initial 2 to 231. By contrast, the GAP-SER with its effective
runing strategy is able to adapt the set of linear local models
hile keeping its size small and consequently maintaining a

ower ACTpS than the SEMLM. The online prediction accuracy
f the tunable RBF model [31] is 6 dB better than that of the



T. Liu, S. Chen, S. Liang et al. / Journal of Process Control 93 (2020) 53–65 59

t
n

t
(
r
i
t
1
e
A
1

Fig. 3. MSE learning curves for synthetic nonlinear time-varying system iden-
ification by various adaptive models. Both the RBF and GRBF have 20 hidden
odes, while the OS-ELM has 500 nodes.

Fig. 4. Model prediction by the proposed method for online identification of
synthetic nonlinear time-varying system. The black vertical line ‘mode’ indicates
the sample where mode switching (either from node adaptation mode to weight
adaptation mode or from weight adaptation mode to node adaptation mode) take
places during online operation.

RBF network. The proposed tunable GRBF model achieves the
best online prediction accuracy, while imposing a very low online
complexity. Observe that the online prediction accuracy of the
tunable GRBF is 2 dB better than the GRBF network.

The MSE learning curves of the OS-ELM with 500 nodes, the
RBF and GRBF with 20 nodes, the GAP-SER, the tunable RBF and
the proposed tunable GRBF are compared in Fig. 3. During the
online operation, there are three major changes in the underlying
process dynamics around t = 1250, 1500 and 1750, respec-
ively, lined to the three switches in the input ut as given in
25). The first and third changes are relatively smooth, as the
elated switches of ut are relatively smooth with relatively small
nput magnitude changes. The second process dynamic change at
= 1500 is very sharp as ut switches from +1 to −1 at t =

500. The OS-ELM has the worst online adaptation ability, and it
xperiences sharp increases in MSE at t = 1250, 1500 and 1750.
lso the GAP-SER experiences a sharp increase in MSE at t =

500 when the process is undergoing a sharp dynamic change.
Fig. 5. The impact of node replacement threshold on the online modeling
accuracy of synthetic nonlinear time-varying system for the tunable RBF and
proposed tunable GRBF.

Fig. 6. Flowchart of the debutanizer column process [38].

By contrast, our method has an excellent online adaptation abil-
ity and can cope with sharp changes of the process dynamics
well. Adaptive model prediction by the proposed tunable GRBF
is shown in Fig. 4. Observe that the node replacement only hap-
pens when the process dynamics change; otherwise the weight
adaptation is sufficient. Since the node replacement strategy of
both the tunable RBF and tunable GRBF depends on the threshold,
the impact of the threshold ε on online modeling accuracy is
investigated in Fig. 5. It can be seen that the MSE first decreases
as the threshold deceases. After reaching the minimum value, the
MSE remains approximately the same as the threshold decreases
further. Fig. 5 also confirms that setting the node replacement
thresholds to ε = 0.1 and 0.01, respectively, are appropriate for
the tunable RBF and our tunable GRBF.

4.2. Debutanizer column process

The debutanizer column [8,38,39] is an important part of real-
world refinery process that is used for desulfuration and naphtha
split. As illustrated in Fig. 6, the main task is to minimize butane
content at the bottom of the column, and the butane content
measurement is normally obtained by the gas chromatography
with a large measurement delay. To deal with this long measure-
ment delay and to improve the control quality of the column,
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Table 2
Variable description in the debutanizer column process.
Input and output variables Description

u1 Top temperature
u2 Top pressure
u3 Reflux flow
u4 Flow to next process
u5 6th tray temperature
u6 Bottom temperature A
u7 Bottom temperature B

y Concentration of butane

Fig. 7. The impact of node replacement threshold on the modeling accuracy and
time complexity to the proposed tunable GRBF for debutanizer column process.

prediction model has to be adopted to timely estimate the con-
centration of butane in the bottom, which is regarded as the
output y of this industrial process. Several hardware sensors,
abeled as U1 to U7 in Fig. 6, are installed in the debutanizer
olumn for obtaining the process inputs, which are denoted as
1 to u7. Table 2 lists the variables of this process.
Hence, at time sample t , the task of the prediction model is

o make a K -step ahead prediction of y based on the available
easurements of u1 to u7 and y at t , where K ≥ 1. Guided by the
xpert knowledge and physical insight, the predictor structure
an be expressed as follow [40]

t+K =F̂
(
u1,t , u2,t , . . . , u5,t , (u6,t + u7,t )/2,

u5,t−1, u5,t−2, u5,t−3, yt−4, yt−5, yt−6; t
)
, (27)

where ui,t , 1 ≤ i ≤ 7, denote the measurements of ui at t , while
the newest available measurement of y at t is yt−4. A total of 2388
amples are collected from the process. The first 717 samples
re used for training and the rest 1672 samples are for online
rediction and model adaptation.
The window size W and bandwidth p for both the SEMLM and

AP-SER are empirically set to 35 and 5, respectively, while the
hreshold is set to 0.1 for the SEMLM and 0.6 for the GAP-SER. For
he proposed tunable GRBF, the bandwidth is set to p = 1, and the
node replacement threshold is a key parameter that needs to be
carefully chosen. The impact of threshold on modeling accuracy
and online time complexity for the debutanizer column process
is shown in Fig. 7. Observe that the MSE decreases first and than
increases after reaching its minimal value, while the ACTpS keeps
stable and then increases dramatically when threshold ε > 0.01.
Clearly, ε = 0.01 is the best choose which perfectly trades off the
modeling accuracy and time complexity. For the tunable RBF, the
bandwidth and threshold are set to 1 and 0.01, respectively.
Table 3
One-step prediction performance comparison of the OS-ELM, RBF, GRBF, SEMLM,
GAP-SER, tunable RBF and proposed method for online modeling of debutanizer
column process.
Model Nodes/Models MSE (dB) ACTpS (ms)

OS-ELM 100 −23.4884 0.2892
500 −22.4204 6.6783

RBF 10 −17.0616 0.0227
20 −19.7042 0.0342

GRBF 10 −26.0051 0.0108
20 −26.7762 0.0201

SEMLM 30 to 75 −33.2229 1.2101

GAP-SER 30 to 30 −33.6665 0.3229
Tunable RBF 10 −34.2301 0.1804
Proposed 10 −39.6241 0.0655

Fig. 8. MSE learning curves for online modeling of debutanizer column process
by various one-step ahead prediction models. Both the RBF and GRBF have 20
hidden nodes, while the OS-ELM has 100 nodes).

The one-step ahead (K = 1) prediction performance compar-
son for various adaptive models are listed in Table 3. Similar
onclusions to those observed for the synthetic nonlinear time-
arying system can be drawn from the results of Table 3, which
gain confirm that the proposed fast tunable GRBF network at-
ains the best online prediction accuracy, while imposing a very
ow online computational complexity. Only the RBF and GRBF
odels can achieve lower ACTpS, but their prediction accuracies
re 20dB and 13dB worst than the proposed tunable GRBF model,
espectively. Fig. 8 depicts the online MSE learning curves by
arious one-step prediction models. The online one-step ahead
rediction ŷt+1 values of the GRBF with 20 hidden nodes, GAP-

SER, tunable RBF and our proposed tunable GRBF are compared
with the actual process output observation yt+1 in Fig. 9. Contrast
o the consistently accurate predictions produced by our fast
unable GRBF, the GRBF, GAP-SER and tunable RBF find it difficult
o predict accurately when sharp and abrupt changes occur in the
rocess output. Observe that during the online operation around
= 1070, the process output yt changes sharply, possibly caused
y raw materials, catalyst deactivation or external disturbances.
he GRBF predictor experiences considerable increases in the
rediction errors for the samples around t = 1070, as can be
learly seen from Fig. 9 (d). This causes the first big jump in the
SE for the GRBF around t = 1070 shown in Fig. 8. When the
econd big change in yt occurs around t = 1210, significant
ncreases in the prediction errors for the samples around t =
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Fig. 9. Online one-step modeling of debutanizer column process: (a) Proposed, (b) GAP-SER, (c) Tunable RBF, and (d) GRBF with 20 hidden nodes.
210 are again observed in Fig. 9 (d), and the second big jump in
he MSE occurs in Fig. 8 for the GRBF predictor. When the third
ig change in yt occurs, however, the predictor has seen it before,
ince the third big change in yt is basically very similar to the
econd big change in yt . Consequently, the response of the GRBF
o the third big change in yt is much better, as can be seen from
ig. 9 (d), and the increase in the MSE is much smaller, as can be
een from Fig. 8.
We further investigate the impact of model size for the RBF,

RBF, tunable RBF and proposed tunable GRBF methods. It can
e seen from Fig. 10 that the online prediction MSEs of the
unable RBF and GRBF decrease dramatically as the number of
idden nodes increases before reaching 6 hidden nodes. Then the
rediction MSEs of the both online models remain approximately
nchanged as the model size increases further. The performance
f the RBF model with online weight updating only remains poor
s the model size increases.
All the online prediction models considered can easily be

xtended to be multi-step-ahead predictors, and the K -step ahead
rediction performance of the GAP-SER, the tunable RBF and the
roposed tunable GRBF are compared in Fig. 11. The algorithmic
arameters of these three online K -step predictors are the same
s their one-step counterparts. It can be seen that the online
rediction performance of the GAP-SER varies dramatically as
he prediction step increases. By contrast the performance of the
unable RBF and proposed tunable GRBF remain consistent across
he wide range of the prediction step. As expected, our proposed
pproach attains the best multi-step ahead online prediction
ccuracy.
Fig. 10. Impact of model size on online modeling debutanizer column process
by the RBF, GRBF, tunable RBF and proposed tunable GRBF networks.

4.3. Sulfur recovery unit

The SRU is used to remove environment pollutions from the
acid gas streams [40]. A simplified block diagram of SRU is de-
picted in Fig. 12. Two main acid gases, the MEA gas that is rich
in H2S and the SWS gas that is rich in NH3, enter the SRU. H2S
is transformed into pure sulfur by a partial oxidation with air.
The nonconverted gas is fed to the Maxisulfur plant in the final
conversion phase. The tail gas from the SRU contains residual H S,
2
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Fig. 11. Multi-step prediction performance of online modeling debutanizer
column process by the tunable RBF, GAP-SER and proposed tunable GRBF.

Fig. 12. The block diagram of SRU process.

Table 4
Variable description in the SRU process.
Input and output variables Description

u1 MEA gas flow
u2 First air flow
u3 Second air flow
u4 Gas flow in SWS zone
u5 Air flow in SWS zone

y Concentration of H2S

which is harmful to the atmosphere and human health. Therefore,
it is vital to monitor its concentration online and to make sure
that the concentration is below the required value before it can be
released into the atmosphere. Five process variables and concen-
tration of H2S tabulated in Table 4 are considered as the process
nputs and output, respectively. Total 3000 samples are collected
rom the SRU data set, among which the first 1000 samples and
he rest of the data samples are used for initial training and online
rediction and model adaptation, respectively.
The measurement of acid gas H2S has delay. Furthermore,

cid gas H2S often damages the sensors through corrosion, and
ardware instruments are frequently removed for maintenance.
herefore, for online prediction of y, it is preferred not relying
n the past measurements of y. A such online prediction model
Fig. 13. The impact of node replacement threshold on the modeling accuracy
and time complexity for sulfur recovery unit process given the prediction model
framework of (28).

Table 5
Performance comparison of the OS-ELM, RBF, GRBF, SEMLM, GAP-SER, tunable
RBF and proposed method for online modeling of sulfur recovery unit process
given the prediction model framework of (28).
Model Nodes/Models MSE (dB) ACTpS (ms)

OS-ELM 100 −23.5819 0.2968
500 −25.9830 6.6832

RBF 10 −27.8135 0.0277
20 −26.8619 0.0328

GRBF 10 −35.8132 0.0102
20 −40.2139 0.0178

SEMLM 33 to 44 −39.9077 0.5623

GAP-SER 51 to 51 −40.1138 0.3421

Tunable RBF 10 −39.1152 0.0707
Proposed 10 −51.8437 0.0369

structure is given as [40]

yt+1 =F̂
(
u1,t , u1,t−5, u1,t−7, u1,t−9, u2,t , u2,t−5, u2,t−7,

u2,t−9, . . . , u5,t , u5,t−5, u5,t−7, u5,t−9; t
)
, (28)

where ui,t , 1 ≤ i ≤ 5, are the measurements of the inputs ui at
sample t , and ŷt+1 denotes the prediction of y at the next sample
t + 1. The window size W and bandwidth p for both the SEMLM
and GAP-SER are empirically tuned to 40 and 2, respectively,
while the threshold is set to 0.1 for the SEMLM and 0.8 for the
GAP-SER. For the proposed tunable GRBF, the bandwidth is set
to 1 and the impact of node replacement threshold is shown in
Fig. 13. Similar tendency can be found with previous simulation,
and we set threshold ε = 0.01. The bandwidth and threshold
for tunable RBF are set to 1 and 0.01, respectively. Note that
even with the model structure of (28), we still need the past
output information (output gradients) in the training data set to
construct hidden nodes of a GRBF network. By contrast, with the
model structure of (28), a RBF model does not require any output
information in making prediction.

The performance of various adaptive models under the pre-
diction framework (28) are tabulated in Table 5. Our fast tunable
GRBF model with 10 hidden nodes achieves the best prediction
accuracy, which is almost 10dB better than the second-best GRBF
network with 20 hidden nodes, while imposing the third lowest
ACTpS of 0.0369 ms. The GRBF network with only weight updat-
ing not only achieves the second best prediction accuracy but also
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Fig. 14. MSE learning curves for online modeling of SRU by various adaptive
models given the prediction model framework of (28). The RBF and GRBF have
10 and 20 hidden nodes, respectively, while the OS-ELM has 500 nodes.

Table 6
Performance comparison of the OS-ELM, RBF, GRBF, SEMLM, GAP-SER, tunable
RBF and proposed method for online modeling of sulfur recovery unit process
given the prediction model framework of (29).
Model Nodes/Models MSE (dB) ACTpS (ms)

OS-ELM 100 −41.6397 0.2752
500 −39.5544 6.6191

RBF 10 −32.3621 0.0216
20 −36.1458 0.0321

GRBF 10 −35.6760 0.0102
20 −38.6540 0.0174

SEMLM 51 to 93 −47.4914 1.5851

GAP-SER 51 to 51 −48.5733 0.5231
Tunable RBF 10 −44.2916 0.0576
Proposed 10 −52.0765 0.0365

has the lowest ACTpS. The online MSE leaning curves of the OS-
ELM with 500 nodes, the RBF with 10 nodes, the GRBF with 20
nodes, the GAP-SER, the tunable RBF and the tunable GRBF are
compared in Fig. 14. It can be seen that GRBF-type models signifi-
cantly outperform their classic RBF-type counterparts. The reason
is of course that a GRBF model is provided with more information,
specifically, the past output information (output gradient), which
a RBF type model does not have. Thus the comparison of Table 5
is unfair to RBF-type models.

If the past output measurements are available we may include
hem in the prediction model to improve the achievable perfor-
ance. For a fairer comparison, for example, we may consider the
rediction model structure of

t+1 =F̂
(
u1,t , u1,t−5, u1,t−7, u1,t−9, u2,t , u2,t−5, u2,t−7,

u2,t−9, . . . , u5,t , u5,t−5, u5,t−7, u5,t−9, yt−1, yt−2, yt−3; t
)
,

(29)

Table 6 compares the performance of various online adap-
tive models under the prediction model structure (29). Again,
our tunable GRBF achieves the best online prediction accuracy
while imposing the third lowest ACTpS. Observe however that the
performance of the OS-ELM, RBF, SEMLM, GAP-SER and tunable
RBF are significantly better than their respective counterparts
based on the prediction structure of (28). This simply confirms the

well-known fact that the past output information help predicting
Fig. 15. MSE learning curves for online modeling of SRU by various adaptive
models given the prediction model framework of (29). The RBF and GRBF have
20 20 hidden nodes, while the OS-ELM has 1000 nodes.

the future output. By contrast, the performance of the GRBF
and tunable GRBF given in Table 6 are very similar to those of
Table 5, because the information provided to a GRBF-type model
under (29) is similar to that under (28). The online MSE learning
curves of various adaptive models are compared in Fig. 15. The
prediction outputs by the four adaptive models are compared
with the real process output in Fig. 16. Observe that both the GAP-
SER and tunable RBF have difficulty to track rate and gradient sign
changes. By contrast, our proposed tunable GRBF is inherently
immune to this difficulty.

5. Conclusions

In this paper, we have proposed an adaptive tunable GRBF
network for online modeling and prediction of nonlinear time-
varying processes. First, we have provided a novel GRBF network
structure, where each hidden node encodes a local process state
and has a geometric property of a local predictor of the process
output. During initial training, a small GRBF model can readily
be constructed using the OLS algorithm. Second, we have pro-
posed a new adaptive mechanism to online update the GRBF
network during real-time operation by replacing the least sig-
nificant or most-out-of-date hidden node with a new hidden
node that automatically encodes the newly emerged process state
and acts a perfect local predictor of the current process output.
Owing to the geometric property of GRBF hidden node, this
optimal hidden node replacement is straightforward and imposes
little online computational complexity. Extensive experiments
involving a synthetic nonlinear time-varying system and two
real-world chemical processes have demonstrated that our pro-
posed fast tunable GRBF network significantly outperforms the
existing state-of-art online modeling methods for real-time track-
ing changes in process dynamics. Notably, our method achieves
excellent online prediction accuracy, while imposing very low
real-time computational complexity.

In addition to accurate prediction accuracy and fast adapta-
tion capability with very low online computational complexity,
our proposed tunable GRBF method maintains a small fixed-size
network structure. This makes it particularly attractive for im-
plementation on embedded devices for adaptive control system
applications.
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Fig. 16. Online one-step modeling of SRU with prediction model framework (29): (a) Proposed, (b) GAP-SER, (c) Tunable RBF, and (d) GRBF with 20 hidden nodes.
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