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Most legged robotsmustnegotiateunknownenvironmentswith little orno terrainknowl-
edge, as autonomous terrain mapping for robots is limited. A predictive terrain contour
mapping strategy is proposed, which employs the use of a feed-forward neural network
to predict the contours in environments, based on the positions of the neighboring legs.
The predicted performance is better than previous implementations. © 2002 John Wiley &

Sons, Inc.

1. INTRODUCTION

Roughly half the land surface of the earth is inacces-
sible to conventional wheeled or tracked vehicles. A
walking machine that could travel where terrain dif-
ficulties make wheeled or tracked vehicles ineffective
would be useful.

There are advantages of using legged robots over
traditional wheeled vehicles in rough and unstruc-
tured terrain;18 in particular, these include higher
speed, better fuel economy, greater mobility, better
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isolation from terrain irregularity, and less environ-
mental damage.

Robug IV is a compact and powerful general pur-
pose teleoperated eight-legged robot. Its capabilities
include plane transition between surfaces, traverse of
a 0.305 m–deep pit, and autonomous omnidirectional
climbing. To minimize the weight of the robot, the
prototypewas constructed of aluminum.Robug IVhas
the ability to carry 50 m of umbilical and have a 5 kg
payload. With a weight of only 40 kg, Robug IV can be
carried by humans.

The electromechanical design concept of the
vehicle followed the same design rules and princi-
ples that were applied to Robug III. The design was a
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Figure 1. Robug IV.

“spiderlike” vehicle, comprising a central body and
eight peripheral two-link legs. Each leg is 0.7 m long,
consists of two links, and has four actuated points: ab-
ductor, hip, knee and ankle. The body is 0.3 m long by
0.45 mwide and 0.4 m high, and is shown in Figure 1.

The orientation of each joint in the robot leg was
controlled using a double-acting pneumatic cylinder.
Pneumatic actuators were used, as they are lighter
and environmentally more rugged than geared elec-
tric motors.

Force control could be provided directly by the
use of pneumatic actuation. Several design structures
were considered, and a kinematic chain like that of
the PUMA 560 robot was selected, comprising a ver-
tical first axis of rotation and two mutually parallel
horizontal axes for the second and third joints.

Pneumatic cylinders are nonlinear devices. Their
behavior varied both on the small scale of a com-
plete rod stroke and on a larger scale with the op-
erating temperature of the system. Leaks are common
in pneumatic systems, and difficult to prevent com-
pletely.

The loading on different joints in the robot legs
varied widely in normal operation. This could have
been due to the load being carried by the robot to the
point in the walking gait sequence, or simply due to
the position of the leg itself.

2. THE NEED FOR PREDICTION

Each legwasnot a continuous locomotionelement like
a wheel. Therefore it needed to be lifted at the end of
its effective stroke, returned, and placed to begin an-
other support stroke. This creates a phasing problem,
which is defined by the term “gait.” A Fuzzy-Logic
Adaptive Gait (FLAG) algorithm6,11,17 was employed
to determine when to lift and when to place the leg.

The FLAG algorithm was capable of navigating
Robug IV across terrains. Problems arose because the
FLAG algorithm followed the contours of the obsta-
cles too faithfully. For example, when Robug IV de-
tected a collision in the placement phase, a blind
foothold search strategy was executed. In Figure 2,
the algorithm deduced that its leg was in the vicin-
ity of the lower kinematic workspace. Therefore,
the course of action to take was to lift the leg higher in
the Z-axis. To execute this process, a small force was
exerted in the direction of the detected obstacle dur-
ing lifting the foot in order to feel for the top surface
of the obstacle.

Figure 2 shows that Robug IV took a number of
steps before it placed its foot. A terrain mapping sys-
tem, capable of accurately predicting unknown ter-
rain, would be beneficial in assisting smooth and
efficient walkingmotions of legged robots in unstruc-
tured environments, preventing a “juddery” action
of the leg moving from A to C. This could be im-
portant when the autonomous terrain mapping accu-
racy of vision-based systems is reduced, as in poorly
lit or smoke-filled environments. In the local range,
the prediction systems may even provide more accu-
rate information. The better the predictive strategy,
the smoother Robug IV’s path, free of turnings and
vibrations.

Figure 2. Obstacle.
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Table I. Average Prediction Error for
Current Implementation.

Terrain type Average error (in mm)

Flat surface 14.2
Linear ramp 8.8
Set of steps 31.2
Rough terrain 24.1

3. PREDICTIVE STRATEGY IMPLEMENTED

Robug IV already had a terrain mapping system capa-
ble of predicting the Z-axis of the terrain.5 This net-
work was trained for 5000 epochs to predict the next
step, based on data from 5 previous steps. The aver-
age prediction errors for four real terrain surfaces are
shown in Table I.

The sensors used in the robot had an error after
calibration of±6 mm. It was therefore the aim to train
any artificial neural network (ANN) to be within this
error. The prediction error shown in Table 1 was large
compared to the sensor error. The other problemwith
the current predictionmethodwas that the y-axis was
not predicted.

4. IMPROVEMENT TO THE CURRENT STRATEGY

Neural networks have had a good representation in
their application in control andpredictionproblems.13

Their ability to capture and model information from
nonlinear systems and generalize information from
learned data makes them suitable for terrain predic-
tion. Under certain conditions it may be possible to
extend the suitability theories that exist in traditional
control theory to systems that include neural net-
works. This is important if an intelligent control struc-
ture for a walking machine is going to be adopted.

Theproposed solutionuses the feed-forwardneu-
ral network (FFNN), trained using a back-propaga-
tion9 supervised training algorithm.

5. THE ANN

The layout ofRobug IV is shown in Figure 3. Consider-
ing a single leg, the variables that are being predicted
for each leg are shown in Figure 4.

If Robug IV were traversing forward in a straight
line, it would be assumed that the odd legs (1, 3, 5,
and7)wouldencounter the same terrainas their oppo-
site even legs (0, 2, 4, and 6) within 0.45–1.85 m (from

Figure 3. Robug IV plan.

Section 1: leg length 0.7 (×2) and width 0.45). With
this in mind, it seemed logical that an implemented
neural network would benefit from having some of
these inputs fed into it. Therefore, prediction might
only be required for the leading legs.

Robug IV was built as a modular robot, primar-
ily to overcome leg redundancy. The FLAG algorithm
stated that at least three legs must be supporting the
robot before a leg was lifted and placed. When there
were fewer than two legs on each side, Robug IVwent
into a lockdown state to prevent damage to itself.
Therefore, the number of legs on each side of the body
mayvary from two to four, assuming the robot ismov-
ing. If the network is designed to have all four legs
providing inputs to it and two of these legs are redun-
dant, what should these inputs be?

The constraint of available onboard processor
power also had to be considered when designing the
network. Each leg had four Siemens C167 microcon-
trollers. This limited the memory available, so the de-
sign had to be compact, compared to the power of the
desktop PC used for simulation.

Figure 4. Predicting (x, y, z).
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6. SIMULATION

According to Brooks2, simulation can be a terrible
thing, convincing people that robots workwhich then
prove unable to cope in practice, and generally con-
fusing the issue. However, Robug IV was an expen-
sive piece of equipment, capable of damaging itself.
Simulation provided a safe and easyway to test differ-
ent gait strategies, and reject ideas that really do not
work.

There was also a lack of workspace to test all
the adaptive gait strategics. Robug IVwould probably
have to walk for a considerable distance over a vari-
ety of terrains. The only real way to test Robug IV’s
step-climbing ability is to take it to a set of steps
and let it traverse them. Problems arise with gaining
permission to try this and moving the equipment, the
air supply, and Robug IV to the test site.

A simulation, called RobSim, consists of an en-
vironment with a robot walking in it. This simu-
lator tested the FLAG algorithm incorporated into
Robug IV. This code had been proved to emulate
Robug, so it seemed logical to modify this code to give
leg positions to be fed into the neural network.

The simulation could be static (not deal with
acceleration), which simplified things. The basic en-
vironment was a surface, which the robot walked
over. The robot needed to be able to find out if a
given point in space was above or below the sur-
face (i.e., whether it had made contact). The simplest
way to model the surface was as a series of planar
tiles.

7. TRAINING & TESTING

Essentially, training and testing were the same thing,
as the training sequence is close to the testing sequence
(both come from the same source). Using RobSim,
data was acquired for a range of terrains. As RobSim
had been proved, the mathematical calculations re-
mained the same. The x-step that was originally
used was 0.26 m6, therefore one step was roughly
0.26 meters.

This data was then formatted into previous step,
next step, training, and testing data. The total sam-
ple size was 4000 meters, roughly 15,000 steps. From
this, the two sets—training and testing—were de-
rived. These setswere then applied to a genetic FFNN.
The number of inputs was then varied along with
the number of hidden neurons, within the constraints
mentioned in Section 5, in order to find the optimum
configuration.

8. RESULTS

It was assumed that if a rule was developed for leg 0
in Figure 3, then it could be applied to the other legs
(from the theory in Section 5). So leg 0 was selected to
be a trial leg and then the results were implemented
on the other legs.

As it was not possible for Robug IV to maneuver
with fewer than two legs per side, Robug IVwent into
a lockdown state when this occurred; it was therefore
assumed, to overcome the problem of which legs to
feed into the network (Section 5), that the network
would be designed with only two legs as the inputs.
So the previous steps from leg 2 constituted the other
input to the network.

The optimum number of input and hidden layer
neurons was defined as the point when there was no
more advantage in increasing them. The first value
to be setwas thenumber of input neurons.Galt5 stated
that the number of input neurons should be five and
the number of hidden layers should be four, trained
for 5000 epochs.

The number of previous steps that were being
fed back into the network ranged from one to three.
Above three, the size of the FFNN started to become
high, from constraints in Section 5; below one, the
FFNNbecame inane. TheRMSprediction of the y- and
z-axis plotted against the number of hidden neurons
is shown in Figures 5 and 6.

From the RMS prediction error of the y-axis
(Fig. 5), all the previous steps fed into the network ap-
pear in ascending order. Using more than two hidden
neurons significantly reduced the error of the predic-
tion, and using more than eight reduced the RMS of
the prediction to less than 1.0 cm.

The RMS prediction of the z-axis (Fig. 6) is
interesting. Feeding three previous steps into the net-
work and having less than four hidden neurons re-
sults in the network performingworse thanwhen two

Figure 5. y-axis RMS error.
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Figure 6. z-axis RMS error.

previous steps are fed into the network. As with only
using two previous steps, havingmore than eight hid-
den neurons reduced the RMS error to below 1.0 cm
and even close to 0.25 cm.

Taking into consideration the error of the pneu-
matic cylinder once it is calibrated, which is ±6 mm
(Section 3), to reduce the RMS error to within this
amount would require at least eight hidden neurons
and three previous steps to be fed into the network.
Problems arose here, as achieving this increased the
demand on the microcontroller (Section 5). So it was
decided that an RMS error of 1.6 cm was tolerable,
taking advantage of the fact that using two previous
steps the network performs better.

Therefore, two previous steps fed were into the
FFNN, with four hidden neurons. The following re-
sults show how the network performed over the four
terrains.

The figures illustrating these results use error (in
cm) rather than error squared. Because the error is
small, squaring would make the graphs into straight
lines.

8.1. Predicting the y-Axis

Figure 7 shows the position of the leg in the y-axis
when Robug IV was walking up a ramp. The error in

Figure 7. A ramp terrain.

Figure 8. Prediction error of the ramp terrain.

the prediction of this ramp is shown in cm in Figure 8;
the RMS error of this is 0.450374 cm.

Figure 9 shows the position of the leg in the y-axis
whenRobug IVwaswalking across rough terrain. The
error in the prediction of this terrain is shown in cm
in Figure 10; the RMS error of this is 2.418234 cm.

Figure 11 shows thepositionof the leg in the y-axis
when Robug IV was walking across smooth terrain.
The error in the prediction of this terrain is shown in
cm in Figure 12; the RMS error of this is 0.422875 cm.

Figure 13 shows the position of the leg in the
y-axis when Robug IV was walking up a set of stairs.
The error in the prediction of these stairs is shown in
cm in Figure 14; the RMS error of this is 8.256384 cm.

Figure 9. A rough terrain.

Figure 10. Prediction error of the rough terrain.
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Figure 11. A smooth terrain.

Figure 12. Prediction error of the smooth terrain.

Figure 13. A stair terrain.

Figure 14. Prediction error of the stair terrain.

8.2. Predicting the z-Axis

Figure 15 shows the position of the leg in the z-axis
when Robug IV was walking up a ramp. The error in
thepredictionof this ramp is shown in cm inFigure 16;
the RMS error of this is 2.541913 cm.

Figure 17 shows the position of the leg in the
z-axis when Robug IV was walking across rough ter-
rain. The error in the prediction of this terrain is
shown in cm in Figure 18. The RMS error of this is
2.541913 cm.

Figure 15. A ramp terrain.

Figure 16. Prediction error of the ramp terrain.

Figure 17. A rough terrain.
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Figure 18. Prediction error of the rough terrain.

Figure 19 shows thepositionof the leg in the z-axis
when Robug IV was walking across smooth terrain.
The error in the prediction of this terrain is shown in
cm in Figure 20; the RMS error of this is 0.352966 cm.

Figure 21 shows the position of the leg in the
z-axiswhenRobug IVwaswalking up a flight of stairs.
The error in the prediction of these stairs is shown in
cm in Figure 22; the RMS error of this is 2.541913 cm.

8.3. Learning Rate (Epochs)

From Figure 6, the two best predictions were obtain
with four and eight hidden neurons. The learning rate
of the three different inputs is shown in Figures 23
and 24.

Figure 23 suggests that there is no significant ad-
vantage in network learning with more than 2000
epochs, as the RMS prediction error does not improve
by much. With eight hidden neurons (Fig. 24) the
network learning levels off at around 2600 epochs.
As only four hidden neurons were decided upon
(Section 8), the optimum epoch training sequence
would have only 2000 epochs.

Figure 19. A smooth terrain.

Figure 20. Prediction error of the smooth terrain.

Figure 21. A stair terrain.

Figure 22. Prediction error of the stair terrain.

Figure 23. Four hidden neurons.
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Figure 24. Eight hidden neurons.

9. CONCLUSION

A summarized comparison of the results for the four
terrains is given in Table II. The terrain prediction
does not predict the y-axis location of the robot’s leg,
so there is no comparison for the y-axis prediction; a
summary of results is given in Table III.

Assuming that the terrains tested in the current
implementation (see Section 3 and Table 1) are the
same as those tested with the new FFNN, then the
new network performs better than the currently im-
plemented network on a rough, smooth, and stair sur-
face.The rampterrain (Fig. 15) isnot completely linear,
and thismayaccount for thepoorer result in the z-axis.
Itwas also assumed that “average error” quoted in the
previous results was actually the RMS error.

Table II. z-axis Prediction Comparisons.

RMS error (cm) Average error (cm)
Terrain type of new prediction of current prediction

Ramp 2.54 0.88
Rough 1.50 2.41
Smooth 0.35 1.42
Stair 2.13 3.12

Table III. y-axis Prediction Error.

Terrain type RMS prediction error (cm)

Ramp 0.45
Rough 2.41
Smooth 0.42
Stair 8.26

The number of epochs is significantly smaller. The
current implementationuses 5000 epochs; thenew im-
plementation uses less than half that, at 2000 epochs.
This reduces implementation time.
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