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A B S T R A C T

Internet of Vehicles (IoV) enables a wealth of modern vehicular applications, such as pedestrian detection,
real-time video analytics, etc., that can help to improve traffic efficiency and driving safety. However, these
applications impose significant resource demands on the in-vehicle resource-constrained Edge Computing (EC)
device installation. In this article, we study the problem of resource-aware offloading of these computation-
intensive applications to the Closest roadside units (RSUs) or telecommunication base stations (BSs), where
on-site EC devices with larger resource capacities are deployed, and mobility of vehicles are considered at the
same time. Specifically, we propose an Integrated EC framework, which can keep edge resources running across
various in-vehicles, RSUs and BSs in a single pool, such that these resources can be holistically monitored from
a single control plane (CP). Through the CP, individual in-vehicle, RSU or BS edge resource availability can
be obtained, hence applications can be offloaded concerning their resource demands. This approach can avoid
execution delays due to resource unavailability or insufficient resource availability at any EC deployment.
This research further extends the state-of-the-art by providing intelligent multi-task scheduling, by considering
both task dependencies and heterogeneous resource demands at the same time. To achieve this, we propose
FedEdge, a variant Bin-Packing optimization approach through Gang-Scheduling of multi-dependent tasks that
co-schedules and co-locates multi-task tightly on nodes to fully utilize available resources. Extensive experiments
on real-world data trace from the recent Alibaba cluster trace, with information on task dependencies and
resource demands, show the effectiveness, faster executions, and resource efficiency of our approach compared
to the existing approaches.
1. Introduction

Internet of Vehicles (IoV) is a network of modern smart vehicles
aiming to connect and exchange data over the Internet. It is expected
that IoV will be an enabler for Future Mobility [1]. This technol-
ogy supports various kinds of communication patterns, for example,
Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I), and Vehicle-
to-Sensor (V2S), it also enables a series of intelligent applications,
such as personalized navigation, autonomous driving, online AR/VR
gaming, etc., which commonly require significant amount of com-
puting resources and often latency-sensitive [2,3]. To this end, Edge
Computing (EC) [4,5], a new distributed computing paradigm that
brings computation and data storage closer to the location where it is
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needed [6–8], to improve response times, has been recently introduced
to efficiently execute latency-sensitive IoV applications [9–21]. Con-
sequently, automakers have begun installing portable EC devices into
vehicles to enable in-vehicle application execution and other complex
resource-hungry use cases. In doing so, data transfer costs would not
only be reduced significantly but would also enable vehicles to respond
and adapt instantly in real time.

However, the resource constraints of the in-vehicle EC deploy-
ment may be insufficient to fulfill some computation-intensive ap-
plication demands. For example, suppose a vehicle needs to execute
some applications concurrently, where each application is structured
in a microservice architectural style, consisting of a large number of
vailable online 9 June 2023
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Fig. 1. DAG of representative applications.
Fig. 2. (a) An example of random multi-tasks dispatching without considering their
resource demand, dependencies and cluster resource status, and (b) An example of
intelligent multi-tasks dispatching, where tasks resource demand, dependencies and
cluster resource status are considered.

inter-dependent applications, requiring substantial resources for exe-
cution and are latency-sensitive, as shown in Fig. 1. The in-vehicle
EC deployment may not have the resource capacity or availability
to quickly execute such latency-sensitive applications. Although some
existing schemes try to refuse, postpone, or queue these requests on
the EC device, such approaches are not suitable for latency-sensitive
applications. Hence, IoV systems have recently begun offloading such
computation-intensive applications as follows; (i) to another vehicle
with sufficient EC resource availability via vehicle-to-vehicle (V2V)
communications [10,20], and (ii) to roadside units (RSUs) or telecom-
munication base stations (BSs), where on-site EC devices with larger
resource capacities are deployed, via vehicle-to-infrastructure (V2I)
communications [9,11–19,21]. After completing the executions, the re-
sults are immediately and deterministically communicated back to the
vehicle. Nevertheless, to randomly offload applications to any available
Vehicle, RSU or BS, as shown in Fig. 2(a), without any respect to their
resource demands, inter-application dependencies and the Vehicle, RSU
or BS resource availability, can also result in execution delay and
performance degradation. For example, in Fig. 2(a), Job 𝐽1 consists
of inter-dependent tasks 𝑡1,… , 𝑡𝑛, where each task 𝑡𝑖 is randomly dis-
patched or offloaded to a different EC deployment. Such a random
and individual approach would incur a significant delay in the job’s
execution time. The reason for such delay is that each dependent task
dispatched to a different EC deployment would require the execution
result(s) or input data from other tasks to be transmitted back to its host
EC deployment to complete its execution. This transfer of input data is
referred to as an input data flow, and such transmission would incur
additional delay, thereby further affecting the job’s execution time
given the rate and number of transmissions that could occur. Therefore,
one fundamental problem is where and how to offload and schedule
computation/latency-intensive multi-dependent tasks in such diverse
EC deployments so that their collective execution time and response
time are minimized, as well as optimal utilization of the EC resources
is achieved.

For this reason, we wish to consider an approach which seamlessly
integrates all participating edge resources running across 𝑁 deploy-
ments (i.e., in-vehicles, RSUs, BSs, etc.) in a single pool as shown in
2

Fig. 2(b), such that these resources can be holistically monitored from
a control plane (CP), and multi-tasks can be effectively dispatched
dynamically across the resources. This approach is called Edge Feder-
ation (EF) [22–28]. Recently introduced edge computing frameworks,
i.e., KubeEdge,1 MicroK8s,2 etc, have the capabilities of integrating
edge resources running across various platforms, run containerized
tasks and eliminate provider lock-in situations. The EF setup consists of
a host and members. Therefore, given 𝑁 independent edge deploy-
ments, the CP is set up in one of the deployments regarded as the host,
while the remaining 𝑁 −1 deployments are regarded as the members,
which can be added or removed from the CP. The EF system can be
given as:

EF =
𝑁
⋃

𝑖=1
Edge𝑖. (1)

Through the CP, resource availability status, as well as running tasks
status can be obtained from all the deployments (host and members),
thus enabling informed decisions on optimal multi-task dispatching.
EF can play as an agent for information dissemination through data
caching and synchronization, without individual vehicle fetching from
backhauls. Another benefit that EF brings is minimized latency by serv-
ing vehicles from the EC deployment closest to them [22–25]. The work
presented in this paper differs considerably from prior works [23,24],
which addressed the problem of multi-dependent tasks orchestration in
a federated autonomous drone-enabled edge computing system, while
considering the drones’ flight time to avoid loss of jobs [29]. For
example, in Fig. 2(b), all the tasks of Job 𝐽1 can be dispatched to
the same EC deployment with sufficient resource availability, thereby
enabling the inter-dependent tasks to communicate and share input
flow data quickly for faster execution. In addition, moving vehicles can
offload their tasks to an edge deployment closest to them at their initial
locations, then the results can be communicated back to the vehicles
through the closest edge at their current locations [19–21,30]. How-
ever, given the current location of each vehicle, more than one routing
path may exist for each vehicle. Therefore, the routing path with the
best transmission performance can be determined as the optimal one
for the final execution result transmission. To this end, we propose
an EF-assisted routing (EFR), in which the goal is to find the fastest
route to efficiently forward execution results to each vehicle at its
current location. Specifically, our EFR leverages the cooperation among
the participating EC deployments, i.e., host and members to quickly
forward the execution results to the target vehicles. Furthermore, our
EFR also adopts a forwarding policy: direct single copy, in which the
results can only be transmitted from the source EC deployment to the
vehicles without caching at the intermediate EC deployment(s), thus
enabling faster transmission time.

1 https://kubeedge.io/en/.
2 https://microk8s.io/.

https://kubeedge.io/en/
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Table 1
Offloading orders and scheduling units of various schemes.

Scheme Offloading order Scheduling units

FedEdge {𝑇1 , 𝑇2 , 𝑇3 , 𝑇4 , 𝑇5 , 𝑇6 , 𝑇7 , 𝑇8 , 𝑇9 , 𝑇10 , 𝑇11 , 𝑇12} → 𝐸𝑑𝑔𝑒1 1
FDPP {𝑇1 , 𝑇2 , 𝑇3} → 𝐸𝑑𝑔𝑒1; {𝑇4 , 𝑇5 , 𝑇6 , 𝑇7} → 𝐸𝑑𝑔𝑒2; {𝑇8 , 𝑇9 , 𝑇10 , 𝑇11 , 𝑇12} → 𝐸𝑑𝑔𝑒3 3
FDNP-1 {𝑇1 → 𝑇2 → 𝑇3 → 𝑇4 → 𝑇5 → 𝑇6 → 𝑇7 → 𝑇8 → 𝑇9 → 𝑇10 → 𝑇11 → 𝑇12} → 𝐸𝑑𝑔𝑒1 12
FDNP-2 {{𝑇1 , 𝑇2} → {𝑇3 , 𝑇4} → {𝑇5 , 𝑇6} → {𝑇7 , 𝑇8} → {𝑇9 , 𝑇10} → {𝑇11 , 𝑇12}} → 𝐸𝑑𝑔𝑒1 ,… , 𝐸𝑑𝑔𝑒6 6
Random {𝑇 }12𝑖=1 → 𝐸𝑑𝑔𝑒𝑖 12
F
i
t
t
t
t
a
𝑇
a
𝑇
t
g
F
C
t
o
i
q
m
t
i
d
n
t
c
2
w
i
t
E
t
P
s
F
t
F
h

1.1. Challenge and motivation

Having dispatched inter-dependent applications concerning their
resource demands to suitable EC deployment, one challenging issue
is how to schedule such inter-dependent applications, to further mini-
mize their collective scheduling time, and execution time and achieve
high edge resource utilization. To address this problem, we further
propose an intelligent multi-task scheduling approach called FedEdge,
which considers both task dependencies and heterogeneous resource
demands at the same time. FedEdge is a variant Bin-Packing optimiza-
tion approach in which Gang-Schedules [31] multi-dependent tasks by
co-scheduling and co-locating them tightly on nodes to fully utilize avail-
able resources. To avoid interference and resource contention among
co-located tasks, we provide isolation to co-located tasks through con-
tainerization [22,32]. Containerization provides isolation to running
tasks and enables tasks to be executed in any edge deployment regard-
less of the architecture or provider.

Task dependency awareness is critical for achieving optimal per-
formance in cloud/EC dispatching and scheduling problems [33–37].
In Fig. 1, we show an example of multi-dependent tasks, where some
of the tasks require input data from other tasks to complete their
execution. Again, in Fig. 1(a), we have tasks 𝑇1, 𝑇2 and 𝑇3, regarded as
independent tasks, i.e., they do not depend or require input data flow
from other tasks, and they can start execution once there are offloaded
to EC deployment. Tasks 𝑇4 and 𝑇5 require input data from 𝑇1 to enable
hem to complete their execution. Similarly, tasks 𝑇6, 𝑇7 and 𝑇8 depend

on the completion of task 𝑇4, 𝑇5 and 𝑇2, respectively. Dispatching these
tasks to the same edge would enable faster input data flow, thereby
enabling faster execution compared to individual task execution across
different edge clusters, as shown in Fig. 2(a). These complex inter-task
dependencies with heterogeneous resource demands and diverse edge
deployments with heterogeneous resource capacities make task offload-
ing and resource management in edge/cloud computing a non-trivial
task. Considering such demands and resource capacities is necessary to
achieve effective task offloading and scheduling, ultimately to achieve
optimal performance [38,39]. Hence, a key objective of our FedEdge
is to reduce the collective execution time of such tasks and to improve
cluster resource usage by considering the inter-task dependencies.

Therefore, given the 𝑛 multi-dependent tasks 𝑇1, 𝑇2,… , 𝑇𝑛, as shown
n Fig. 1(a), FedEdge adopts the gang-scheduling [31] strategy and

variant bin-packing optimization to efficiently co-schedule and co-
ocate them in a cluster or edge. We consider FedEdge as a Full
ependency and Full Packing (FDFP) approach. Thus, the scheduling

ime can be expressed as:
𝑚
∑

𝑧=1

𝑘𝑧
∑

𝑖=1
𝐸𝑠ℎ𝑧𝑖

∕𝑘𝑧, (2)

here 𝑚 is the number of scheduling units, 𝑘𝑧 is the number of tasks
ithin the 𝑧th scheduling unit having the tasks

{

𝑇𝑧1 , 𝑇𝑧2 ,… , 𝑇𝑧𝑘𝑧
}

.

We illustrate the advantage of the offloading and scheduling ap-
roach in FedEdge over three other existing schemes as follows; (i)
n approach which executes some tasks of a job locally in the vehicle,
ffloads some tasks to the cloud server and some to the RSU for exe-
ution at the same time. We refer to this approach as Full Dependency
nd Partial Packing (FDPP), and it is similar to the approach in [40].
owever, this approach incurs additional waiting time or execution
3

elay through the input data flows among the vehicle, RSU and Cloud.
or example, assuming the video classification application in Fig. 1(a)
s to be executed, this approach executes tasks 𝑇1, 𝑇2 and 𝑇3 locally in
he vehicles, dispatches tasks 𝑇4, 𝑇5, 𝑇6 and 𝑇7 to RSU, and dispatches
he remaining tasks 𝑇8, 𝑇9, 𝑇10, 𝑇11 and 𝑇12 to the Cloud. Since these
asks are inter-dependent tasks, it means that the execution result of
ask 𝑇1 need to be transmitted from the vehicle to the RSU, to serve
s input data to tasks 𝑇4 and 𝑇5, while the execution results of tasks
6 and 𝑇7 need to be transmitted from the RSU to the Cloud, to serve
s input data to task 𝑇10. Finally, the execution results of tasks 𝑇2 and
3 need to be transmitted from the vehicle to the Cloud to complete
he job’s execution. Unlike the FedEdge’s scheduling approach which
ang schedules all tasks of a job tightly on the same EC deployment,
DPP can only schedule subtasks dispatched to the vehicle, RSU and
loud individually; (ii) an approach which offloads all tasks of a job to
he same EC deployment, but assumes that at any EC deployment, only
ne node can execute one task at a time. Therefore, all tasks must wait
n a queue until resources become available for the next task. Such a
ueue is constructed based on the application priority, where it keeps
ultiple applications in decreasing order of their priority. We refer to

his approach as Full Dependency and No Packing (FDNP-1), and it
s similar to the approach in [37]; (iii) an approach which offloads
ifferent subtasks of a job to different EC deployment, where each
ode at the EC deployment can only execute one task at a time and
he task with the highest priority is first selected for scheduling. We
onsider this approach as a Full Dependency and No Packing (FDNP-
), and it is similar to the approach in [41]. Note that this approach
ould also incur additional waiting time or execution delay due to the

nput data flow from one EC deployment to another; (iv) and finally
he Random approach, which offloads tasks randomly to any available
C deployment, and it does not consider both tasks’ dependencies and
ask co-location. We refer to this approach as No Dependency and No
acking (NDNP). It is important to note that delay in dispatching and
cheduling inter-dependent tasks directly impacts their response time.
or the multi-dependent tasks of Fig. 1(a) with 𝑛 = 12 tasks, Table 1 lists
he scheduling orders and scheduling units for the schemes compared.
edEdge only needs one offloading and scheduling unit (𝑚 = 1) which
as 𝑘1 = 12 tasks and it also achieves the lowest execution time of

1
𝑘
∑𝑘

𝑖=1 𝐸𝑒𝑥𝑖 . By contrast, Random has 𝑚 = 12 offloading and scheduling
units, each having a single task. Hence it has the highest execution
time of ∑𝑚

𝑖=1 𝐸𝑒𝑥𝑖 . Thus, FedEdge achieves the lowest scheduling and
execution time. Note that FDPP, FDNP-1 and FDNP-2 dispatch and
schedule individual or subsets of the tasks at a time.

1.2. Novelty and contribution

Motivated by the challenges introduced in Sections 1 and 1.1, in
this paper, we study a novel multi-task dispatching and scheduling
approach under an integrated EC-enabled IoV framework, where smart
vehicles can offload their computation-intensive applications to the
closest edge deployment, concerning tasks resource demand, thus en-
abling faster response time, as well as efficient resource utilization.
Major novelties and contributions are summarized below:

• We investigate a situation whereby multiple resource running
across various edge deployments (i.e., Vehicles, RUSs, BS, etc.)
are integrated through a single control plane (CP), such that each
edge deployment resource status can be obtained and utilized for

an effective IoV application dispatching.
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• Once these applications are dispatched, we introduce an intelli-
gent multi-dependent tasks scheduling strategy that co-schedules
through a gang-scheduling approach.

• To guarantee optimal usage of cluster resources, we further pro-
pose a variant bin-packing optimization approach that co-locates
tasks firmly on available nodes, to avoid resource wastage.

• We further propose an EF-assisted routing, though the direct
single copy (DSC) policy to efficiently forward the application’s
execution result to the target vehicle at its current location.

• We show that our approach is capable of minimizing the actual
completion time of multi-dependent IoV tasks using minimum
resources and minimizing the response time of IoV applications.
We conduct extensive experiments to compare the performance
of our approach with several existing approaches using real-world
data-trace from Alibaba cluster data,3 which provides information
on task dependencies and resource demands.

1.2.1. Paper organization
The remaining parts of our paper are structured as follows. Section 2

presents related works on EC-enabled IoV resource allocation schemes.
In Sections 3 and 4, we detail our proposed FedEdge for achieving high
computation resource utilization and minimizing the response times of
IoV applications deployed on integrated EC resources. In Section 5,
we compare the performance of our proposed FedEdge against those
of several existing schemes through extensive experiments. Finally, we
conclude the paper in Section 6.

2. Related works

EC can efficiently augment a smart vehicle’s performance by execut-
ing its complex and computation-intensive applications in its in-vehicle
EC installation or by offloading them to the closest EC resources de-
ployed at another vehicle, RSUs, BSs, etc. The objective of this work
is to study the task offloading problem in IoV. This study aims to
avoid naive offloading and scheduling strategies, which could result
in resource wastage due to resource underutilization, delay due to
insufficient resource availability, queuing, etc., at the edge clusters. It
also aims to improve the quality of user experience through efficient
task dispatching and faster execution, thereby enlarging the overall
system capacity and benefits.

There is a huge number of existing works that have addressed nu-
merous task-offloading problems in IoVs. For example, Liwang et al. [9]
introduced a futures-based resource trading approach in EC-enabled
IoV (EC-IoV), where a forward contract is used to facilitate resource
trading-related negotiations between an EC deployment and a vehicle
in a given future term. They formulated these futures-based resource
trading as an optimization problem aiming to maximize the vehicle’s
and the EC deployment’s expected utility. Chen et al. [10] proposed
a distributed multi-hop task offloading decision model for task execu-
tion efficiency, which consists of two main parts: a candidate vehicle
selection mechanism for screening the neighboring vehicles that can
participate in offloading, and a task offloading decision algorithm
design part for obtaining the task offloading solution. Zhang et al. [11]
presented a V2V task offloading scheme, by jointly incorporating the
budget constraint into the system design and then, they proposed a joint
deep reinforcement learning (DRL) approach combined with the convex
optimization algorithm to solve the problem. Sun et al. [12] proposed a
resource allocation approach based on Federated Learning (FL), where
they have tackled both the related delay and energy consumption chal-
lenges. Mu et al. [13] proposed a time-optimized, multi-task offloading
model adopting the principles of Optimal Stopping Theory (OST) to
maximize the probability of offloading to the optimal EC servers.
Lu et al. [14] investigated how to analytically design an analytical

3 https://github.com/alibaba/clusterdata.
4

offloading strategy for a multi-user mobile EC-based smart IoV, where
there are multiple computational access points (CAPs) which can help
compute tasks from the vehicular users. Ning et al. [15] constructed an
energy-efficient scheduling framework for EC-enabled IoV to minimize
the energy consumption of RSUs under task latency constraints, by
jointly considering task scheduling among EC servers and downlink
energy consumption of RSUs. In [16], the authors aim at the task
offloading system of the IoV and considered the situation of multiple
EC servers, and proposed a dynamic task offloading scheme based on
deep reinforcement learning (DRL). Similarly, in [17], intending to ad-
dress the dynamic computation offloading problem in IoV, the authors
constructed a Markov decision process (MDP), and then they utilized
the twin delayed deep deterministic policy gradient (TD3) algorithm to
achieve the optimal offloading strategy. Pliatsios et al. [18] considered
a network consisting of multiple vehicles connected to EC-enabled RSUs
and proposed an approach that minimizes the total energy consumption
of the system by jointly optimizing the task offloading decision, the
allocation of power and bandwidth, and the assignment of tasks to EC-
enabled RSUs. In [19] the authors proposed a latency-aware service
migration method with decision theory, by modeling the network archi-
tecture, the transmission and the computation of the service requests.
Then, they considered the high mobility of vehicles and analyzed the
dynamic change of vehicle locations in other to transform the service
migration problem into an uncertain decision optimization problem.
Their main objective is to minimize the service latency and balance
the workload on RSUs. Alam et al. [20] developed a cooperative
three-layer generic decentralized vehicle-assisted EC (VEC) network,
where vehicles in associated RSU and neighbor RSUs are in the bottom
fog layer, EC servers are in the middle cloudlet layer, and cloud in
the top layer. Then, they employed a multi-agent DRL-based Hungar-
ian algorithm (MADRLHA) to solve dynamic task offloading in VEC.
In [21], the authors aim at minimizing the total priority-weighted
task processing delay for all the devices by offloading the tasks to
the EC server or other vehicles, allocating the wireless channels of
the BS, and allocating the computing resource of the EC server and
the vehicles. Wu et al. [42] constructed an authentication scheme for
edge computing-enabled IoV with drone assistance, which keeps the
anonymity of vehicles during data transmissions. They aim to resist
forgery attacks in the main process. Fontes et al. [43] reviewed recent
studies that use artificial intelligence (AI) algorithms to schedule data
offloading and manage distributed computational resources in mobile
edge computing (MEC)-Enabled IoV Networks.

The above methods leverage EC to offload smart vehicle applica-
tions, they promise traffic efficiency and driving safety but lack the
consideration of joint optimization of task resource demands and EC
deployment resource status. Consequently, a resource-aware computa-
tion offloading strategy is proposed in this paper. On the other hand,
it is also important to avoid any form of resource wastage, i.e., re-
source underutilization, because efficiently managing edge resources
directly dictates service quality and performance [44]. As a result,
task co-location has gained attention both in academia and industry
as an optimal solution for improving resource utilization and system
throughput in distributed systems. However, effective task co-location
is a non-trivial task, as it requires an understanding of the computing
resource requirement of the co-running tasks, to determine how many
of them can be co-located. To this end, a tasks co-location mechanism
was proposed in [45], where it shows that by accurately estimating
the resource level needed, a co-location scheme can effectively de-
termine how many tasks can co-locate on the same host to improve
the system throughput, by taking into consideration the memory and
CPU requirements of co-running tasks. Intending to maximize resource
utilization, the authors of [46] utilized reinforcement learning to co-
locate interactive services with batched ML workloads. Our previous
works [38,39] focused on workload co-location in cloud environments,
rather than edge systems. To further improve edge resource manage-

ment, a resource management scheme was proposed in [23–28] which

https://github.com/alibaba/clusterdata
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Fig. 3. An example architecture of dynamic integrated edge-enabled IoV multi-task
offloading.

unifies distributed edge resources, such that they can be holistically
managed. Our previous works [22–24] proposed a dependency-aware
task scheduling in such a unified system, and illustrates how modern
applications are usually structured with inter-task dependencies, where
a task depends on the output from another task (s). A huge number
of existing works, i.e., [33–37,47–49] have also tackled the problem
of scheduling such inter-dependent tasks or multi-dependent tasks, and
their common goal is to formulate a scheduling decision that minimizes
the average completion time of such tasks.

Different from the aforementioned works, in this article, we con-
sider multiple inter-dependent applications and propose a fine-grained
offloading strategy to maximize the overall IoV system efficiency,
which jointly considers tasks dependencies, unified service entities and
distributed edge resources, such that they can be holistically man-
aged from a single control plan (CP), where resource status informa-
tion can be utilized for effective multi-task dispatching, co-scheduling
and co-location. Our research extends existing schemes by proposing
resource-aware multi-task dispatching in a unified EC-enabled IoV
system, which includes parked and moving vehicles, all service entities
and resources running across various EC platforms (i.e., in-vehicle EC
deployment, RSUs, BS, etc.). We further propose a variant bin-packing
optimization approach through gang-scheduling of multi-dependent
tasks, which quickly co-schedules and co-locates tasks firmly on avail-
able nodes, to avoid resource wastage. We also propose an EF-assisted
routing strategy for faster execution result transmission. We finally
show that our scheme is capable of minimizing the response time of IoV
multi-dependent tasks using minimum EC resources through extensive
experiments and comparison.

3. System model and problem formulation

In this section, we introduce our proposed FedEdge for achieving
high resource utilization and faster response times for IoV applications
deployed on federated edge resources, then the problem formulation
and algorithm framework.

3.1. System model

We consider an urban vehicular network environment where IoV
applications are offloaded from vehicles to integrated EC deployments
across various vehicles, RSUs, BSs, etc. Each vehicle is equipped with
a powerful wireless interface that can be used to connect with other
vehicles, RSUs, BSs, etc. Our work focuses on V2V and V2I offloading
as illustrated in Fig. 3. Note that these EC deployments are made up of
5

heterogeneous resources. For example, the in-vehicle EC deployment
may not be as large as those of the RSUs, while those of the RSUs
may not be as large as the BSs, etc, in terms of resource capacity.
The most important feature of EC is the ability to provide storage and
computing resources closer to where it is needed so that applications
can process data and respond within a minimum time. One of the
advantages of using an integrated edge system is the ability to cache
and synchronize core data across all participating EC deployments, such
that the same high efficiency can be achieved wherever it is needed. For
example, a smart vehicle moving within a road segment at a constant
speed 𝑣 should be able to access the closest EC deployment and
react immediately to changing road conditions, without first offloading
its core data which could lead to increased latency. Therefore, data
caching and synchronization is the best-fit solution for IoVs to fully
exploit EC. For applications with small data sizes, it is possible to
package the applications and database in containers,4 and then to
deploy it to the closest EC deployment whenever it is needed. For
such applications, let ⟨𝛿, 𝑐, 𝑚⟩ represent the size of data input, CPU and
memory requirements, respectively.

Let EF = {𝐸𝑑𝑔𝑒1,… , 𝐸𝑑𝑔𝑒𝑀} represent the integrated or federated
EC deployments, where each individual participating EC deployment
𝐸𝑑𝑔𝑒𝑖 (i.e., vehicle, RSU, BS, etc.) is a cluster of container-instances
i.e., edge device(s) with virtualized container-optimized nodes. Let
𝐶⟨𝛿,𝑐,𝑚⟩
𝐸𝑑𝑔𝑒𝑖

represent the resource availability of each participating edge
𝐸𝑑𝑔𝑒𝑖, and  = {𝑥𝑖, 𝑦𝑖} to represent its location coordinate. Through the
control panel (CP) of the EF, 𝐶⟨𝛿,𝑐,𝑚⟩

𝐸𝑑𝑔𝑒𝑖
and  of each edge can be obtained

to make an informed decision on multi-task offloading or dispatching.
Let V = {1,… ,𝑀} represent the index set of vehicles. We consider
both parked and moving vehicles [17,19,20]. At time 𝑡, the location
coordinate 𝑞(𝑡) of a moving vehicle 𝑞 is given as {𝑥𝑞 , 𝑦𝑞}, then at 𝑡 > 0
the location coordinate 𝑞(𝑡 > 0) changes to {𝑥𝑞′ , 𝑦𝑞′}. The vehicle 𝑞
can choose to execute its ready application locally in its in-vehicle EC
device installation if there is sufficient resource availability or offload
it to the closest EC deployment 𝐸𝑑𝑔𝑒𝑖⋆ ∈ EF with sufficient resource
availability. Let 𝜗

[

𝑞(𝑡)
]

denote the offloading decision variable, which
is measured by

𝜗
[

𝑞(𝑡)
]

=
{

1, tasks are offloaded,
0, tasks are processed locally. (3)

At time 𝑡, while 𝜗
[

𝑞(𝑡)
]

= 0, the multi-task C ∈ 𝑞 is decided to
perform local execution procedure in the vehicle 𝑞 , otherwise while
𝜗
[

𝑞(𝑡)
]

= 1, C ∈ 𝑞 is to be offloaded to the EC deployment (𝐸𝑑𝑔𝑒𝑖⋆ )
with sufficient resources closest to 𝑞 . A task 𝑇 ∈ C can be dependent
on other tasks (i.e., microservice or inter-dependent application, as
shown in Fig. 1). Each task 𝑇 has three resource requirements: storage,
CPU and memory, as the total amount of resources needed for its
execution, denoted as 𝑑⟨𝛿,𝑐,𝑚⟩𝑇 . For simplicity, we will focus on the CPU
and memory requirements/capacity of all tasks and resources. That is,
the storage is sufficient for the size of data input 𝛿, and hence the
requirement ⟨𝛿, 𝑐, 𝑚⟩ is simplified as ⟨𝑐, 𝑚⟩. For each task 𝑇 ∈ C, let 𝐸𝑠ℎ,
𝐸𝑠𝑡 and 𝐸𝑐𝑝 denote its scheduling time, starting time and completion
time, respectively. Therefore, the execution time of a task is thus:

𝐸𝑒𝑥 = 𝐸𝑐𝑝 − 𝐸𝑠𝑡. (4)

Recall that EF enables core data to be cached and synchronized
across all participating EC deployments, thereby eliminating the need
for core data transmission delay. However, existing offloading strate-
gies (i.e., [40,41], etc.) allow subtasks of a job to be offloaded sepa-
rately across different EC deployments, thus creating additional delay
in the application’s response time, as explained in Section 1.1. For
example, when a vehicle in such an approach begins to offload its tasks,
the delay includes three parts: (1) the time to offload subtasks from

4 Application containers (i.e., Docker [32]) provide isolation, portability
and lightweight tasks offloading solution from devices to edge clusters.
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the vehicle to different EC deployments, given as 𝐸𝑜𝑓 , (2) the time
to transmit results of executed subtasks from one EC deployment to
another EC deployment, given as 𝐸𝑠𝑢𝑏, and (3) the time to transmit the
final result from EC deployment to the vehicle, given as 𝐸𝑟𝑠𝑡. Therefore,
the response time of the vehicle’s job is given as:

𝐸𝑟𝑠𝑝 =
∑

𝑇∈C

(

𝐸𝑜𝑓 + 𝐸𝑠𝑢𝑏 + 𝐸𝑠ℎ + 𝐸𝑒𝑥

)

+ 𝐸𝑟𝑠𝑡. (5)

In this paper, we aim to offload or dispatch a set of applications C
belonging to a parked or moving vehicle 𝑖 directly to a single and the
closest EC deployment 𝐸𝑑𝑔𝑒𝑖⋆ having sufficient resource capacity or
vailability to accommodate the tasks, called a single-hop computation
offloading, such that 𝐸𝑜𝑓 is minimized, 𝐸𝑠𝑢𝑏 is avoided, as well as the
overall 𝐸𝑠ℎ and 𝐸𝑒𝑥 is minimized, namely,

C ⇒ 𝐸𝑑𝑔𝑒⋆, (6)

hence, the response time of the vehicle’s job changes to:

𝐸𝑟𝑠𝑝 = 𝐸𝑜𝑓 +
∑

𝑇∈C

(

𝐸𝑠ℎ + 𝐸𝑒𝑥

)

+ 𝐸𝑟𝑠𝑡. (7)

Note that for a parked vehicle, the final execution result is also trans-
mitted back to the vehicle in a single-hop along the reverse offloading
path. However, for a moving vehicle, a single-hop transmission of the
final execution result might not be possible due to the mobility or
change in location of the vehicle. Hence, an EF-assisted routing (EFR)
to quickly forward the execution results to the vehicle at its current
location is further proposed in this paper, by determining the optimal
route for the transmissions to minimize 𝐸𝑟𝑠𝑡. Recall that at time 𝑡, while
𝜗
[

𝑞(𝑡)
]

= 1, it is decided that a vehicle 𝑞 (i.e., parked vehicle or
moving vehicle) is to offload its multi-task C to the closest edge 𝐸𝑑𝑔𝑒⋆
with sufficient resource availability. Hence, the coordinates of the
vehicle’s location  = {𝑥𝑞 , 𝑦𝑞}, and the coordinates of all surrounding
EC deployments, i.e., vehicles, RUSs, BSs, etc, are used to compute the
distances matrix DM, to select the closest edge with sufficient resource
availability. DM is the distance between a vehicle and surrounding
EC deployments. It can be obtained using the Manhattan Distance,5
in which the distance between two locations 𝑧 = {𝑥𝑧, 𝑦𝑧} and 𝑗 =
{𝑥𝑗 , 𝑦𝑗} is given as:

𝑑𝑖𝑠𝑡𝑧,𝑗 = |𝑥𝑧 − 𝑥𝑗 | + |𝑦𝑧 − 𝑦𝑗 |. (8)

Thus, the distance matrix between a vehicle 𝑞 and a set of 𝑀 sur-
rounding EC deployments is given as;

DM =

⎡

⎢

⎢

⎢

⎢

⎣

𝑑𝑖𝑠𝑡𝑞 ,𝐸𝑑𝑔𝑒1

𝑑𝑖𝑠𝑡𝑞 ,𝐸𝑑𝑔𝑒2

⋮

𝑑𝑖𝑠𝑡𝑞 ,𝐸𝑑𝑔𝑒𝑀

⎤

⎥

⎥

⎥

⎥

⎦

. (9)

Therefore, the closest EC deployment is defined as

𝐸𝑑𝑔𝑒⋆ = arg min
𝐸𝑑𝑔𝑒𝑖∈EF

(

𝑑𝑖𝑠𝑡𝑞 ,𝐸𝑑𝑔𝑒𝑖
)

,∀𝑐,𝑚. (10)

Once C has been dispatched to 𝐸𝑑𝑔𝑒⋆, FedEdge utilizes the gang-
cheduling [31] strategy which co-schedules all ready applications at
time. Given a cluster of container instances or nodes 𝐼𝑖 ∈ 𝐸𝑑𝑔𝑒⋆, let

𝐼 ⟨𝑐,𝑚⟩𝐸𝑑𝑔𝑒⋆
denote each node’s resource capacity or availability. In a real

scenario where multi-vehicle  ∈ V offload multi-tasks with multi-
ependency at 𝑡, these applications are dispatched as a multi-Job J,
.e., J ⇒ 𝐸𝑑𝑔𝑒⋆, where each Job 𝐽 is a collection of each vehicle’s
ulti-tasks, with collective resource demand denoted as ∑𝑘

𝑖=1 𝑑
⟨𝑐,𝑚⟩
𝑇𝑖

=
⟨𝑐,𝑚⟩′
𝑇 . Hence, we can dispatch J to 𝐸𝑑𝑔𝑒⋆ with suitable resource
vailability. Therefore, the aggregate scheduling time and execution
ime of a multi-job J is given as:

∑

𝐽∈J

𝑘
∑

𝑖=1

𝐸𝑠ℎ𝑖
𝑘

= 𝐸𝑠ℎ′, (11)

5 https://en.wikipedia.org/wiki/Taxicab_geometry.
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and
∑

𝐽∈J

𝑘
∑

𝑖=1

𝐸𝑒𝑥𝑖
𝑘

= 𝐸𝑒𝑥′, (12)

respectively. The resource utilization of the cluster for multi-job is thus

 ⟨𝑐,𝑚⟩
𝐸𝑑𝑔𝑒𝑖

=
∑

𝐽∈J 𝑑
⟨𝑐,𝑚⟩′
𝑇

𝐶⟨𝑐,𝑚⟩
𝐸𝑑𝑔𝑒𝑖

. (13)

Similarly,  ⟨𝑐,𝑚⟩
𝐸𝑑𝑔𝑒𝑖

includes the CPU utilization  ⟨𝑐⟩
𝐸𝑑𝑔𝑒𝑖

and the memory

utilization  ⟨𝑚⟩
𝐸𝑑𝑔𝑒𝑖

, which are defined respectively by

⟨𝑐⟩
𝐸𝑑𝑔𝑒𝑖

=
∑

𝐽∈J 𝑑
⟨𝑐⟩′
𝑇

𝐶⟨𝑐⟩
𝐸𝑑𝑔𝑒𝑖

, (14)

⟨𝑚⟩
𝐸𝑑𝑔𝑒𝑖

=
∑

𝐽∈J 𝑑
⟨𝑚⟩′
𝑇

𝐶⟨𝑚⟩
𝐸𝑑𝑔𝑒𝑖

, (15)

here ∑

𝐽∈J 𝑑
⟨𝑐⟩′
𝑇 and ∑

𝐽∈J 𝑑
⟨𝑚⟩′
𝑇 are the total collective CPU and mem-

ry demands, respectively. After completing the multi-job executions,
he final execution results are immediately and deterministically trans-
itted to the target vehicles at their current locations. Since there could

e multiple routes or multi-hop transmissions to individual vehicles, we
ave leveraged the cooperation among the stationary EC deployments
ithin the EF, i.e., parked vehicles, RSUs, BSs, etc, and proposed an
F-assisted routing (EFR) to quickly forward the execution results to
ach vehicle by determining the optimal route for the transmissions. We
lso adopt a forwarding policy: direct single copy (DSC), where the
esults can be transmitted from the host EC deployment to the vehicles
ithout the intermediate EC deployment(s) keeping a copy. This policy
uarantees faster transmission compared to other types of policies that
ake and keeps a copy of each result passing through the intermediate
C deployment(s). Although, DSC caches the original results only at
he host EC deployment such that they can be transmitted to any other
ehicle(s) upon request. Therefore, given a multi-Job J = 𝐽1,… , 𝐽𝑁 ,
xecuted at 𝐸𝑑𝑔𝑒⋆, the set of final execution results R = 1,… ,𝑁
s destined for a set of vehicles V = 1,… ,𝑁 at different location
oordinates. For any result 𝑞 to be transmitted from 𝐸𝑑𝑔𝑒⋆ to a
ehicle 𝑞 at location 𝑞(𝑡 > 0) = {𝑥𝑞′ , 𝑦𝑞′}, there are assumed
o be a maximum of 𝐾 available routing paths between them. The
umber of hops of the 𝑘𝑡ℎ routing path between 𝐸𝑑𝑔𝑒⋆ and target 𝑞 is
epresented by 𝐻𝐸𝑑𝑔𝑒⋆ ,𝑞 . Let 𝑘 =

{

𝐸𝑑𝑔𝑒⋆, 𝐸𝑑𝑔𝑒𝑖, 𝐸𝑑𝑔𝑒𝑗 ,… ,𝑞
}

be a
equence denoting the 𝑘𝑡ℎ transmission path from 𝐸𝑑𝑔𝑒⋆ to target 𝑞 ,
he path is composed of segments denoted by defining a function:

(𝑘) =
{(

𝐸𝑑𝑔𝑒⋆, 𝐸𝑑𝑔𝑒𝑖
)

,
(

𝐸𝑑𝑔𝑒𝑖, 𝐸𝑑𝑔𝑒𝑗
)

,… ,
(

𝐸𝑑𝑔𝑒𝑧,𝑞
)}

, (16)

here an ordered pair 𝑎 = (𝑖, 𝑗), is the segment from 𝑖 to 𝑗, 𝑎[0] = 𝑖,
nd 𝑎[1] = 𝑗. For each transmission path 𝑖 ∈ 𝐾, we first compute the

total distance, given as:

𝑑𝑖𝑠𝑡𝑡𝑜𝑡𝑎𝑙𝑘
=

𝐻𝐸𝑑𝑔𝑒⋆,𝑞
∑

𝑖=1

𝐻𝐸𝑑𝑔𝑒⋆,𝑞+1
∑

𝑗=𝑖+1
𝑑𝑖𝑠𝑡

(

𝐸𝑑𝑔𝑒𝑖 ,𝐸𝑑𝑔𝑒𝑗
)

. (17)

ur EFR aims to determine the optimal transmission path 𝑖 for each
oving vehicle  ∈ V and to apply the DSC policy, such that 𝐸𝑟𝑠𝑡 is

minimized, namely:

𝑖 = arg min
𝑖∈𝐾

(

𝑑𝑖𝑠𝑡𝑡𝑜𝑡𝑎𝑙𝑖

)

. (18)

3.2. Problem formulation

The basic notations adopted are described in Table 2. The objectives
are to minimize the response time, 𝐸𝑟𝑠𝑝 of (7) for all 𝐽 ∈ J and to
maximize the computation or cluster resource utilization  ⟨𝑐,𝑚⟩

𝐸𝑑𝑔𝑒𝑖
of (13),
subject to certain constraints. The response time 𝐸𝑟𝑠𝑝 of (7) comprises

https://en.wikipedia.org/wiki/Taxicab_geometry
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Table 2
Notations.

Notation Description

EF Integrated edge deployments
𝑇 Individual application or task
⟨𝛿, 𝑐, 𝑚⟩ Storage, CPU and memory resources
C A set of containerized applications
DM Distance matrix
𝑑⟨𝑐,𝑚⟩
𝑇 Application or task resource requirements

𝐸𝑑𝑔𝑒𝑖 Individual edge deployment or cluster
𝐸𝑑𝑔𝑒⋆ Closest edge deployment or cluster
𝐼𝑖 Container-instance or node in a cluster
𝐼 ⟨𝑐,𝑚⟩
𝑖 Resource capacity or availability of a node
𝐶⟨𝑐,𝑚⟩
𝐸𝑑𝑔𝑒𝑖

Resource capacity/availability in an edge

𝑈 ⟨𝑐,𝑚⟩
𝐸𝑑𝑔𝑒𝑖

Resources used for execution

𝑈 ⟨𝑐⟩
𝐸𝑑𝑔𝑒𝑖

, 𝑈 ⟨𝑚⟩
𝐸𝑑𝑔𝑒𝑖

CPU, memory resource used for execution

𝑅𝑈 ⟨𝑐,𝑚⟩
𝐸𝑑𝑔𝑒𝑖

Actual resources usage of jobs

𝑅𝑈 ⟨𝑐⟩
𝐸𝑑𝑔𝑒𝑖

, 𝑅𝑈 ⟨𝑚⟩
𝐸𝑑𝑔𝑒𝑖

Actual CPU, memory resources usage

𝐸𝑠𝑡, 𝐸𝑐𝑝 Application/task start, completion time
𝐸𝑒𝑥 Application or task execution time
𝑑𝑖𝑠𝑡𝑖,𝑗 Distance between locations 𝑖 and 𝑗
 ⟨𝑐,𝑚⟩

𝐸𝑑𝑔𝑒𝑖
Cluster resource utilization

 ⟨𝑐⟩
𝐸𝑑𝑔𝑒𝑖

,  ⟨𝑚⟩
𝐸𝑑𝑔𝑒𝑖

Cluster CPU, memory resource utilization

𝐽 , J A Job, A set of Jobs
 , V A Vehicle, A set of Vehicles

of the dispatching or offloading time 𝐸𝑜𝑓 , in which the Closest and
ang-single-hop computation offloading policies are jointly adopted, thus
nabling faster offloading time; the scheduling time 𝐸𝑠ℎ′ of (11); the
xecution time 𝐸𝑒𝑥′ of (12); and the final execution results transmission
ime 𝐸𝑟𝑠𝑡.

onstraints
First, the collective resource demand or request of a multi-job J or

ulti-task at any given time 𝑡 cannot exceed the collective resource
apacity or available in the selected EC deployment:
∑

𝐽∈J
𝑑⟨𝑐,𝑚⟩′𝑇 ≤ 𝐶⟨𝑐,𝑚⟩

𝐸𝑑𝑔𝑒⋆
, ∀𝑐,𝑚. (19)

Second, unused or inactive nodes 𝐼𝑖 ∈ 𝐸𝑑𝑔𝑒⋆ would be shut down.
ll the nodes can be expressed in one of these two states: Active and
nactive. An Active node is a node that is running and is currently
onsidered for allocation or has at least a job that is started, executed
r completed. An Inactive node is a node that is not running and is not
urrently considered for allocation and not having at least a job that is
eing started, executed or completed. These two states can be expressed
s follows:

𝑐, 𝑚 𝛽
(

𝐼𝑖
)

=
{

1, 𝐴𝑐𝑡𝑖𝑣𝑒 if 𝐽𝑖 ∈ [𝐸𝑠𝑡, 𝐸𝑐𝑝, 𝐸𝑒𝑥],
0, 𝐼𝑛𝑎𝑐𝑡𝑖𝑣𝑒 if 𝐽𝑖 ∉ [𝐸𝑠𝑡, 𝐸𝑐𝑝, 𝐸𝑒𝑥],

(20)

here the indicator 𝛽
(

𝐼𝑖
)

= 1 indicates that the node 𝐼𝑖 is ready to
ccept new jobs, and at least a job 𝐽𝑖 is being started, executed or
ompleted, i.e., 𝐽𝑖 ∈ [𝐸𝑠𝑡, 𝐸𝑐𝑝, 𝐸𝑒𝑥], on 𝐼𝑖; otherwise 𝛽

(

𝐼𝑖
)

= 0.

ptimization formulation
Hence, maximizing utilization of the selected EC deployment or

luster depends on application orchestration:

𝐚𝐱𝐢𝐦𝐢𝐳𝐞  ⟨𝑐,𝑚⟩
𝐸𝑑𝑔𝑒𝑖

=
∑

𝐽∈J 𝑑
⟨𝑐,𝑚⟩′
𝑇

𝐶⟨𝑐,𝑚⟩
𝐸𝑑𝑔𝑒𝑖

, (21)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 J ⇒ 𝐸𝑑𝑔𝑒⋆, ∃, (22)

𝛽
(

𝐼𝑖
)

∈ {0, 1}, ∃, (23)
∑

𝐽∈J
𝑑⟨𝑐,𝑚⟩′𝑇 ≤ 𝐶⟨𝑐,𝑚⟩

𝐸𝑑𝑔𝑒⋆
, ∀𝑐,𝑚. (24)
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The constraints (22) to (24) indicate the dispatching of multi-job J to
the closest edge having sufficient resource capability or availability.
More specifically, (22) is the J dispatching constraint, guaranteeing that
J is dispatched to a cluster, such that dependent tasks within each 𝐽 ∈ J
an communicate and execute faster. The condition (23) guarantees
hat active nodes (𝛽

(

𝐼𝑖
)

= 1) should be used for execution, and inactive
odes (𝛽

(

𝐼𝑖
)

= 0) should be shut down. The constraint (24) guarantees
hat 𝑑⟨𝑐,𝑚⟩′𝑇 of J should not exceed 𝐶⟨𝑐,𝑚⟩

𝐸𝑑𝑔𝑒𝑖
of any selected cluster.

e shall discuss the details of our multi-job dispatching principle in
ection 4.1 and Algorithm 1. Hence, we aim to minimize the number
f active nodes used for execution by co-locating jobs tightly on each
ode to maximize resource utilization. We shall discuss the details of
ur co-location strategy in Section 4.2 and Algorithm 2. On the other
and, the overall scheduling time and execution time can be minimized
epending on orchestration:

𝐌𝐢𝐧𝐢𝐦𝐢𝐳𝐞
∑

𝐽∈J

𝑘
∑

𝑖=1

𝐸𝑠ℎ𝑖
𝑘

= 𝐸𝑠ℎ′, (25)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 J ⇒ 𝐸𝑑𝑔𝑒⋆, ∀𝑐,𝑚, (26)

and

𝐌𝐢𝐧𝐢𝐦𝐢𝐳𝐞
∑

𝐽∈J

𝑘
∑

𝑖=1

𝐸𝑒𝑥𝑖
𝑘

= 𝐸𝑒𝑥′, (27)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 J ⇒ 𝐸𝑑𝑔𝑒⋆, ∀𝑐,𝑚. (28)

The constraint (26) and (28) guarantees that J is dispatched to the
same cluster, such that dependent tasks within each 𝐽 ∈ J can com-
municate and execute faster. The details of our multi-job dispatching
principle are given in Section 4.1 and Algorithm 1. Finally, the result
transmission time for a moving vehicle can be minimized depending on
routing:

𝐌𝐢𝐧𝐢𝐦𝐢𝐳𝐞
∑

𝐽∈J
𝐸𝑟𝑠𝑡, (29)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑖 = arg min
𝑖∈𝐾

(

𝑑𝑖𝑠𝑡𝑡𝑜𝑡𝑎𝑙𝑖

)

. (30)

The constraint (30) guarantees that the shortest route is selected for
the result transmission. The details of our result transmission policy
are given in Section 4.3 and Algorithm 3

4. FedEdge algorithm framework

Our FedEdge solution is composed of three parts: offloading or
dispatching, scheduling and result transmission (note that result trans-
mission is only applied to a moving vehicle). The dispatching strategy
is based on the orchestration of ready multi-task to the closest EC
deployment with sufficient available resources to accommodate the
tasks, as expressed in Eq. (10), while the scheduling strategy involves
packing or co-location of these tasks tightly on container-instances to
fully utilize the available resources. These three components aim at
providing optimal performance for vehicular multi-task execution in
an integrated EC system, such that the optimizations in Eqs. (11), (12)
and (13) are achieved. FedEdge is developed considering the following
policies:

1. Selecting the EC deployment with sufficient available resources
and the least distance (i.e., single hop) to any vehicle ready to
offload its multi-task. This is referred to as the Closest policy.

2. Dispatching these multi-tasks as a unit to the Closest EC deploy-
ment. This is referred to as the Single-hop Offloading policy.

3. After the multi-task execution, the execution result(s) is trans-
mitted back to the vehicle. If the vehicle’s location remains the
same (i.e., a parked vehicle), the result(s) is transmitted back
through a single-hop transmission, but if its location changes
(i.e., a moving vehicle), the result(s) is transmitted by determin-

ing the optimal transmission path. In this case, FedEdge applies
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Fig. 4. Application dispatching strategies.
the direct single copy (DSC) policy, in which the result(s) is
transmitted from the host EC deployment to the vehicle without
caching at the intermediate EC deployment(s) within its path.

4.1. Offloading or dispatching policy

When sets of vehicular multi-tasks J = 𝐽1,… , 𝐽𝑁 are ready to be
offloaded, our policy is to dispatch them to the closest edge 𝐸𝑑𝑔𝑒⋆
with the sufficient resource capacity or availability, i.e., ∑𝐽∈J 𝑑

⟨𝑐,𝑚⟩′
𝑇 ≤

𝐶⟨𝑐,𝑚⟩
𝐸𝑑𝑔𝑒𝑖

. For the rationale of this strategy, consider Ericsson Connected

Vehicle Platform6 (CVP), which serves about 5.5 million active vehicles
across more than 150 countries. Assuming that there are 0.1% of these
vehicles at a location  and at time 𝑡 deciding to offload their multi-
tasks i.e., 𝜗 [ ∈ V] = 1, we would see a total load of 4000 requests.
Executing these loads would require an EC deployment with 40 nodes
or container instances if we assume that a container instance can co-
locate 100 containerized tasks. To serve these vehicles efficiently, it is
better to dispatch these tasks as a unit to the closest EC deployment,
i.e., J ⇒ 𝐸𝑑𝑔𝑒⋆, having sufficient resource capacity or availability. The
closest heuristic given in Equation Eq. (10) is to minimize the offloading
time 𝐸𝑜𝑓 and to further minimize the overall response time 𝐸𝑟𝑠𝑝 of J.
Closest or Nearest is a popular task offloading heuristic in distributed
systems, since IoT and other end devices often need to communicate
only with the closest or nearest clusters and cloud. Existing works,
e.g., [23,24,39], adopted the closest principle as the task offloading
policy. Holistic dispatching of J treats each 𝐽 ∈ J as a high-priority
job. Algorithm 1 describes the dispatching procedure.

With the collective resource demand of J, each 𝐸𝑑𝑔𝑒𝑖 ∈ EF resource
status 𝐶⟨𝑐,𝑚⟩

𝐸𝑑𝑔𝑒𝑖
is obtained from the CP, the dispatcher selects the closest

having matching resources through the DM (line 2). It dispatches the
J to 𝐸𝑑𝑔𝑒⋆ (line 3). If J cannot be dispatched to 𝐸𝑑𝑔𝑒⋆, then J is
dispatched to the next 𝐸𝑑𝑔𝑒⋆ (line 5). If the collective J are greater
than any 𝐸𝑑𝑔𝑒𝑖 ∈ EF, i.e., ∑𝐽∈J 𝑑

⟨𝑐,𝑚⟩′
𝑇 > 𝐶⟨𝑐,𝑚⟩

𝐸𝑑𝑔𝑒𝑖
, ∀𝐸𝑑𝑔𝑒𝑖 ∈ EF, then J

cannot be dispatched as a whole. The dispatcher can allow fractional
dispatching of each 𝐽 ∈ J to closest 𝚖𝚎𝚖𝚋𝚎𝚛 (line 8∼18). Note that
fractional dispatching of each 𝐽 ∈ J to closest 𝚖𝚎𝚖𝚋𝚎𝚛 would still allow
inter-dependent tasks within each 𝐽 ∈ J to execute faster.

To illustrate the effectiveness of our dispatching policy, we give a
practical example. Suppose each sub-application or task 𝑇1,… , 𝑇𝑛 of the
applications in Fig. 1(a) and (b) is randomly offloaded or dispatched to
different EC deployments, then each dependent task would require the
input data from other tasks to be transmitted back to its host edge de-
ployment to complete its execution, as shown in Fig. 4(a). This transfer
of input data would incur additional delay, thereby further affecting
the average latency, given the rate and number of transmissions that
could occur. More specifically, assuming the video classification and

6 https://www.ericsson.com/en/connected-vehicles/platform.
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Algorithm 1 FedEdge: Multi-Job Dispatching Policy

Input: J arrived at time 𝑡; 𝐸𝑑𝑔𝑒𝑖∈EF; ∑𝐽∈J 𝑑
⟨𝑐,𝑚⟩′
𝑇

Output: Dispatch J to 𝐸𝑑𝑔𝑒⋆ with matching 𝐶⟨𝑐,𝑚⟩
𝐸𝑑𝑔𝑒⋆

, such that J ⇒
𝐸𝑑𝑔𝑒⋆
1: for 𝐸𝑑𝑔𝑒𝑖 ∈ EF do
2: if ∑

𝐽∈J 𝑑
⟨𝑐,𝑚⟩′
𝑇 ≤ 𝐶⟨𝑐,𝑚⟩

𝐸𝑑𝑔𝑒𝑖
and 𝐸𝑑𝑔𝑒𝑖 =

argmin𝐸𝑑𝑔𝑒𝑖∈EF

(

𝑑𝑖𝑠𝑡∈V,𝐸𝑑𝑔𝑒𝑖
)

then
3: J ⇒ 𝐸𝑑𝑔𝑒𝑖 = 𝐸𝑑𝑔𝑒⋆
4: break
5: else
6: Dispatch J to next 𝐸𝑑𝑔𝑒⋆
7: end if
8: end for
9: if J cannot be dispatched as a whole then

10: for 𝐸𝑑𝑔𝑒𝑖 ∈ EF do
11: for 𝐽 ∈ J do
12: if 𝑑⟨𝑐,𝑚⟩′𝑇 ≤ 𝐶⟨𝑐,𝑚⟩

𝐸𝑑𝑔𝑒𝑖
and 𝐸𝑑𝑔𝑒𝑖 =

argmin𝐸𝑑𝑔𝑒𝑖∈EF

(

𝑑𝑖𝑠𝑡𝑖 ,𝐸𝑑𝑔𝑒𝑖
)

then
13: 𝐽 ⇒ 𝐸𝑑𝑔𝑒𝑖 = 𝐸𝑑𝑔𝑒⋆
14: break
15: else
16: Dispatch 𝐽 to next 𝐸𝑑𝑔𝑒⋆
17: end if
18: end for
19: end for
20: end if

image processing applications in Fig. 1(a) and (b), respectively, are to
be executed, the work in [40] proposed an approach which offloads
the tasks across multiple edge deployments, i.e., 𝑇11 , 𝑇12 , 𝑇13 , 𝑇21 and
𝑇22 to Edge 1, offloads tasks 𝑇14 , 𝑇15 , 𝑇16 , 𝑇17 , 𝑇23 and 𝑇24 to Edge 2,
and offloads the remaining tasks 𝑇18 , 𝑇19 , 𝑇110 , 𝑇111 , 𝑇112 , 𝑇25 and 𝑇25
to Edge 3. Since these tasks are inter-dependent tasks, it means that
the execution results of tasks 𝑇11 and 𝑇21 need to be transmitted from
Edge 1 to Edge 2, to serve as input data to tasks 𝑇14 , 𝑇15 , 𝑇23 and
𝑇24 , while the execution results of tasks 𝑇16 and 𝑇17 ; 𝑇22 , 𝑇23 and 𝑇24
need to be transmitted from edge Edge 2 to edge Edge 3, to serve
as input data to tasks 𝑇10 and 𝑇25 , respectively. Finally, the execution
results of tasks 𝑇12 and 𝑇13 need to be transmitted from edge Edge 1 to
edge Edge 3 to complete the video classification application execution.
This approach increases the time complexity and overall latency of the
applications. To eliminate the need for input data flow, our dispatching
policy dispatches the two applications as a multi-job J to a suitable
edge having required resource availability, i.e., J is dispatched to Edge
2, as shown in Fig. 4(b). This approach would enable faster response
time by enabling faster interactions among the dependent tasks, thus

https://www.ericsson.com/en/connected-vehicles/platform
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Algorithm 2 FedEdge: Multi-job Co-location
Input: J dispatched to closest member 𝐸𝑑𝑔𝑒⋆, resource demand of
each 𝐽 ∈ J: 𝑑⟨𝑐,𝑚⟩′𝑇 , resource availability of each node 𝐼𝑖∈𝐸𝑑𝑔𝑒⋆: 𝐼 ⟨𝑐,𝑚⟩𝑖
Output: J is co-located, such that Minimize∑𝐼𝑖∈𝐸𝑑𝑔𝑒⋆

𝐼𝑖 ≡
Minimize 𝑅𝑈 ⟨𝑐,𝑚⟩

𝐸𝑑𝑔𝑒⋆
1: for 𝐼𝑖 ∈ 𝐸𝑑𝑔𝑒⋆ do
2: if 𝛽

(

𝐼𝑖
)

= 1 then
3: 𝐼 ⟨𝑐,𝑚⟩𝑖 = ⟨𝑐, 𝑚⟩, i.e., initial resource available
4: for 𝐽 ∈ J do
5: if 𝛤

[

𝐽 , 𝐼𝑖
]

=0 and 𝑑⟨𝑐,𝑚⟩′𝑇 ≤𝐼 ⟨𝑐,𝑚⟩𝑖 then
6: 𝐽 ⇒ 𝐼𝑖
7: 𝛤

[

𝐽 , 𝐼𝑖
]

= 1
8: 𝐼 ⟨𝑐,𝑚⟩𝑖 = 𝐼 ⟨𝑐,𝑚⟩𝑖 − 𝑑⟨𝑐,𝑚⟩′𝑇
9: end if

10: if 𝐼 ⟨𝑐,𝑚⟩𝑖 close to zero then
11: break
12: end if
13: end for
14: end if
15: end for

Algorithm 3 FedEdge: Final Result Transmission
Input: The current locations of each vehicle {𝑥𝑞′, 𝑦𝑞′} and speed 𝑠, and
the Distance matrix DM
Output: The optimal transmission route 𝑞 , such that Minimize 𝐸𝑟𝑠𝑡𝑞
1: for 𝑞 ∈ V do
2: Compute the number of transmission paths 𝐾 to 𝑞
3: for 𝑞 ∈ 𝐾 do
4: Compute the total number of hops

[

𝐻𝐸𝑑𝑔𝑒⋆ ,𝑞

]

5: Compute the total distance
[

𝑑𝑖𝑠𝑡𝑡𝑜𝑡𝑎𝑙𝑞

]

6: end for
7: Compute and select the path that minimizes 𝐸𝑟𝑠𝑡

8: i.e., 𝑞=argmin𝑞∈𝐾

[

𝑑𝑖𝑠𝑡𝑡𝑜𝑡𝑎𝑙𝑞

]

9: end for

enabling faster execution time. Nevertheless, if the edge deployments
cannot accommodate J due to insufficient resource availability, each
∈ J can be dispatched disjointly, i.e., 𝐽1 can be dispatched to Edge

2, while 𝐽2 can be dispatched to Edge 3, given there is sufficient
resource availability at Edge 2 and Edge 3 to accommodate 𝐽1 and
2, respectively, as shown in Fig. 4(c). This fractional dispatching can
lso avoid input data flow, and enable faster interactions among the
ependent tasks, thus enabling faster execution time.

.2. Scheduling policy

Once J is dispatched to 𝐸𝑑𝑔𝑒⋆, our scheduling algorithm uses the
esource availability 𝐼 ⟨𝑐,𝑚⟩𝑖 of each container-instance in 𝐸𝑑𝑔𝑒⋆, and
he resource demand 𝑑⟨𝑐,𝑚⟩′𝑇 of each 𝐽 ∈ J to provide efficient co-
ocation, such that fewer container-instances or nodes are used for
xecution in 𝐸𝑑𝑔𝑒⋆. Specifically, the gang scheduling [31] approach
s adopted alongside our bin-packing optimization to co-schedule and
o-locate all 𝐽 ∈ J at a time. Bin-packing is one of the most popular
acking problems. The goal is to minimize the number of nodes used
s given in optimization in Eq. (31). Unlike other IoV task offloading
n EC approaches, such as [37,41]which assumes that each node at the
elected EC deployment can only execute one task at a time, would
esult in massive resource under-utilization and wastage. For example,
he applications executed in Fig. 4 which contains a total of 26 tasks,
ill require 26 nodes for execution in such approaches, whereas in
ur Algorithm 2 which describes our scheduling strategy, can co-locate
9

ulti-dependent tasks firmly on nodes, such that for any given jobs,
esource wastage is avoided and fewer nodes are used for execution. It
akes the resource demand of multi-task/job and resource availability
f nodes as input, then scans all 𝐽 ∈ J and maps them to active nodes
n full utilization. Our approach scans all 𝐽 ∈ J and maps 𝐽𝑖 to active
odes in full utilization (line 2). All 𝐽 ∈ J are co-located firmly on
ctive nodes so that resource wastage is avoided and fewer nodes are
sed to execute all jobs concurrently (line 4∼9). Hence, for every J

offloaded to 𝐸𝑑𝑔𝑒⋆, our co-location strategy is to find the solution to
the problem:

𝐌𝐢𝐧𝐢𝐦𝐢𝐳𝐞
∑

𝐼𝑖∈𝐸𝑑𝑔𝑒⋆

𝐼𝑖 ≡ 𝐌𝐢𝐧𝐢𝐦𝐢𝐳𝐞𝑅𝑈 ⟨𝑐,𝑚⟩
𝐸𝑑𝑔𝑒⋆

=
𝑈 ⟨𝑐,𝑚⟩
𝐸𝑑𝑔𝑒⋆

𝐶⟨𝑐,𝑚⟩
𝐸𝑑𝑔𝑒⋆

, (31)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 J ⇒ 𝐸𝑑𝑔𝑒⋆, ∃, (32)
∑

𝐽∈J
𝛤
[

𝐽 , 𝐼𝑖
]

⋅ 𝑑⟨𝑐,𝑚⟩′𝑇 ≤ 𝐼 ⟨𝑐,𝑚⟩𝑖 , ∀𝑐, 𝑚, (33)

where

𝛤
[

𝐽 , 𝐼𝑖
]

=
{

1, if 𝐽 ⇒ 𝐼𝑖,
0, otherwise. (34)

We aim to minimize the number of nodes used for executing J, which
is equivalent to minimizing the actual resources usage in 𝐸𝑑𝑔𝑒⋆, given
as 𝑅𝑈 ⟨𝑐,𝑚⟩

𝐸𝑑𝑔𝑒⋆
, is the ratio of the resources used for execution 𝑈 ⟨𝑐,𝑚⟩

𝐸𝑑𝑔𝑒⋆
over

the edge’s resource capacity or availability 𝐶⟨𝑐,𝑚⟩
𝐸𝑑𝑔𝑒𝑖

. The metric 𝑅𝑈 ⟨𝑐,𝑚⟩
𝐸𝑑𝑔𝑒⋆

includes the actual CPU resource usage 𝑅𝑈 ⟨𝑐⟩
𝐸𝑑𝑔𝑒⋆

and the actual memory
resource usage 𝑅𝑈 ⟨𝑚⟩

𝐸𝑑𝑔𝑒⋆
, which are defined respectively as

𝑅𝑈 ⟨𝑐⟩
𝐸𝑑𝑔𝑒⋆

=
𝑈 ⟨𝑐⟩
𝐸𝑑𝑔𝑒⋆

𝐶⟨𝑐⟩
𝐸𝑑𝑔𝑒⋆

, (35)

𝑈 ⟨𝑚⟩
𝐸𝑑𝑔𝑒⋆

=
𝑈 ⟨𝑚⟩
𝐸𝑑𝑔𝑒⋆

𝐶⟨𝑚⟩
𝐸𝑑𝑔𝑒⋆

, (36)

here 𝑈 ⟨𝑐⟩
𝐸𝑑𝑔𝑒⋆

and 𝑈 ⟨𝑚⟩
𝐸𝑑𝑔𝑒⋆

are the used CPU and memory resources,
espectively, while 𝐶⟨𝑐⟩

𝐸𝑑𝑔𝑒⋆
and 𝐶⟨𝑚⟩

𝐸𝑑𝑔𝑒⋆
are the edge’s CPU and memory

esource capacity, respectively. Therefore, the constraint in Eq. (32)
s the multi-job J deployment constraint, guaranteeing that J are dis-
atched to the closest cluster, such that dependent tasks within each
∈ J can communicate and execute faster. As we have stated pre-

iously that if J cannot be dispatched as a whole to a cluster, the
ispatcher can allow fractional dispatching of each 𝐽 ∈ J to the
losest 𝚖𝚎𝚖𝚋𝚎𝚛 edge. The constraint in Eq. (33) indicates that the total
stimated resource requirements of co-located jobs 𝑑⟨𝑐,𝑚⟩′𝑇 cannot exceed
⟨𝑐,𝑚⟩
𝑖 , the node resource availability. The condition in Eq. (34) means
hat if job 𝐽𝑖 is placed on the node 𝐼𝑖, then 𝛤

[

𝐽𝑖, 𝐼𝑖
]

= 1; otherwise,
[

𝐽𝑖, 𝐼𝑖
]

= 0. This is to guarantee that each 𝐽 ∈ J is placed in exactly
ne node. To solve this multi-job packing problem, we have adopted the
olving Constraint Integer Programs (SCIP) solver, which is currently
ne of the fastest mathematical programming (MP) solvers for this
roblem.

Note that in modern systems, the dispatcher and scheduler need
o understand the characteristics of both the applications (i.e., de-
endencies, resource requirements, etc.) and edge resources (in terms
f availability). Specifically, the scheduler should understand the re-
ource requirements of each sub-application, resource availability of
ach node, node availability, etc., and assumes the responsibility for
xecuting the applications on the nodes so that the desired objectives
re achieved. Therefore, the offloading and scheduling policies should
e jointly designed to achieve the desired goals. For example, our
cheduling policy which adopted bin-packing optimization can easily
dapt to other types of offloading policies. However, if these offload-
ng policies do not consider the dependencies among tasks, resource
equirements and edge resource availability, the overall execution of
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the tasks would be delayed due to input data flow from one edge
deployment to another or insufficient resource availability. Likewise,
other scheduling policies i.e., FDPP, FDNP-1, FDNP-2 and NDPP in our
baselines (Section 5.2), would also incur the same execution delay from
such offloading policies.

4.3. Execution result transmission policy

After the execution of 𝐽 ∈ J, the final result is immediately
transmitted back to each vehicle. However, due to changes in the
original location of a moving vehicle, more than one routing path may
exist for each vehicle, therefore, the final result can be transmitted
through intermediate EC deployments by considering the vehicle’s
current location {𝑥𝑞′, 𝑦𝑞′} speed 𝑠 and the distance matrix given in
9). Therefore, our transmission policy is to determine the optimal
ransmission route such that a minimized transmission time is achieved,
s given in Optimization (29). To this end, the goal of our EFR is
o find the fastest route to efficiently forward execution results to
ach vehicle at its current location. Given other approaches in [50],
hich transmits to each vehicle in a store-and-forward manner with
nknown delay, may cause latency-sensitive applications to face a high
ailure probability, hence our EFR adopts a forwarding policy: direct
ingle copy, in which the results can only be transmitted from the
ource EC deployment to the vehicles without the intermediate EC
eployment(s) keeping a copy, thus enabling faster transmission time.
lgorithm 3 describes our result transmission procedure, where the
umber of paths to each vehicle is first computed (line 2), then the
umber of hops and total distance in that path is computed (lines 4
nd 5). Finally, the shortest path with high transmission capability
s selected. Note that the input data flow is different from the final
esult transmission. For instance, the input data flow is transmitted
rom one EC deployment to another within a single-hop transmission,
hile the job’s final result transmission applies to a moving vehicle
ue to its change in the original location. Furthermore, the final result
ransmission might involve multi-hop transmissions, hence a routing
lan is essential to achieve minimized transmission time. To solve this
outing problem, we have adopted the CP-SAT solver.

.4. Algorithms time complexity analysis

The dispatching algorithm has a runtime of (1) in the Big-O
otation when dispatching multi-job J to the closest edge deployment,
here the edge has suitable resource availability to execute the jobs.

n the worst case, the run time increases due to the dispatcher being
nable to dispatch the jobs as a whole. Hence, the dispatcher can allow
ractional dispatching of each 𝐽 ∈ J to closest 𝚖𝚎𝚖𝚋𝚎𝚛𝚜, resulting in a
un time of (𝑀) in the worst case, where 𝑀 is the number of ready
obs. In Algorithm 2, the run time complexity is also (𝑁), where 𝑁 is
he number of nodes. It includes calculating the resource availability of
ach active node in the selected edge cluster and intelligently placing
asks tightly on each node. In Algorithm 3, the run time complexity is
lso (𝐾), where 𝐾 is the number of vehicles. It includes calculating the
umber of hops and total distance to a given vehicle and then choosing
he path with the least distance to the vehicle. To further improve
he computational speeds of our algorithms, we have adopted various
olvers, i.e., the SCIP solver and CP-SAT solver.

.5. Connection with optimization objectives

As stated previously, our objectives are to minimize the total re-
ponse time of multiple IoV applications, which consist of Optimiza-
ions (25), (27) and (29), and maximize the EC cluster resource utiliza-
ion given in Optimization (21). Algorithms 1, 2 and 3 together achieve
hese objectives. By gang-dispatching the multi-jobs to an edge having
ufficient resource availability, Algorithm 1 ensures that any EC deploy-
ent selected has sufficient resources 𝐶⟨𝑐,𝑚⟩ needed for jobs execution,
10

𝐸𝑑𝑔𝑒⋆
such that the dependent tasks can be executed faster, ultimately leading
to a smaller aggregate scheduling time and execution time, i.e., 𝐸𝑠ℎ′
and 𝐸𝑒𝑥′ respectively. By intelligently packing dependent tasks tightly
on nodes, Algorithm 2 is capable of fully utilizing available resources
at EC clusters, ultimately leading to the resource assigned for the
execution of jobs 𝑈 ⟨𝑐,𝑚⟩

𝐸𝑑𝑔𝑒⋆
as small as possible while guaranteeing it is

sufficient for the multi-jobs. More specifically, the resource usage (RU)
of the cluster for multi-job J deployment is given in Optimization (31).
Finally, Algorithm 3 ensures that the optimal transmission route is used
to transmit the execution results of jobs, as given in Optimization (29).

5. Performance evaluation

We evaluate our FedEdge on real-time Alibaba cluster data traces
and compare its performance with three existing state-of-the-art.

5.1. Experiment setup

Computing Resources: Our EF setup consist of 3 RSUs and 3 BSs,
as summarized in Table 3. These platforms consist of large resource
capacity EC devices. For example, AWS Wavelength7 embeds AWS
compute and storage services within BSs, providing mobile EC infras-
tructure for developing and scaling ultra-low-latency applications. The
input data flow time, final result transmission time, vehicle’s speed and
road area were drawn from a uniform distribution range of (0.2, 0.4] s,
(0.4, 4] s, (40, 80] km∕h and [2 km×2 km], respectively [51]. Therefore,
we conduct extensive experiments with orchestrated sets of multi-
dependent tasks having heterogeneous resource requests across the EC
resources. For each deployment, we compare the performance of our
FedEdge with the existing state-of-the-art.

Applications: We employ the v-2018 version of Alibaba cluster
trace, which records the activities of about 4000 machines in a period
of 8 days. The entire trace contains more than 14 million tasks with
more than 12 million dependencies and more than 4 million jobs.
Among these, we deployed a total of 253 jobs with a total of 821 tasks
(including dependencies) for our experiments. The task dependency
depth among the jobs ranges from (1, 17]. Table 4 list the details of our
Multi-Jobs. Task dependencies in Alibaba data trace are valuable for
our investigation. Researchers have thoroughly investigated the v-2018
version of Alibaba cluster trace and used it for various task scheduling
problems [52–54].

5.2. Heuristics and baselines

In our experiments, we assume that all tasks are of high priority.
Our strategy called FedEdge utilizes the closest heuristic and adopts
the gang-scheduling strategy and a variant bin-packing optimization
to efficiently co-schedule and co-locate multi-task in a cluster or edge
to minimize the overall response time. We consider FedEdge as a Full
Dependency and Full Packing (FDFP) approach.

We compare the dispatching and scheduling approach of FedEdge
with the following four existing schemes, as follows:

1. FDPP [40] is an approach which executes subtasks of a job
locally in the vehicle, and offloads subtasks to the cloud server
and others to the RSU for execution at the same time. We refer
to this approach as Full Dependency and Partial Packing (FDPP).

2. FDNP-1 [37] is an approach which offloads all tasks of a job
to the same EC deployment, but assumes that at any EC de-
ployment, a node can only execute one task at a time, and it
schedules one task at a time. Therefore, unscheduled tasks must
wait in a queue until resources become available for the next
task(s). Such a queue is constructed based on the application

7 https://aws.amazon.com/wavelength/.

https://aws.amazon.com/wavelength/
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Fig. 5. Task deployment ratio across the federated edge clusters.
Table 3
Integrated-Edge resource capacities.

EC deployments EC device(s) installation CPU capacity (Cores) Mem capacity (GiB/TiB)

RSU-1 Lenovo ThinkSystem(x1) 32 512 GiB
RSU-2 AWS Snowball(x1) 40 80 GiB
RSU-3 Dell EMC VxRail(x2) 112 6144 GiB
BS-1 IBM Power Systems(x4) 80 8 TiB
BS-2 HPE Edgeline(x5) 140 10 TiB
BS-3 IBM Power Systems(x1) + HPE Edgeline(x1) 48 4 TiB
Table 4
Multi-Job dispatched to integrated EC.

Multi-Job J Jobs Tasks Dependency Cluster

Multi-Job1 13 39 (1, 8] RSU-1
Multi-Job2 19 51 (1, 5] RSU-2
Multi-Job3 40 117 (1, 8] RSU-3
Multi-Job4 31 101 (1, 17] BS-1
Multi-Job5 38 137 (1, 11] BS-2
Multi-Job6 12 49 (1. 11] BS-3
Multi-Job7 44 139 (1. 11] RSU-3
Multi-Job8 56 188 (1. 11] BS-2

priority, where it keeps multiple applications in decreasing order
of their priority. We refer to this approach as Full Dependency
and No Packing (FDNP).

3. FDNP-2 [41] is an approach which offloads different subtasks
of a job to different EC deployments, where each node at the
selected EC deployment can only schedule and execute one task
at a time, and the task with the highest priority is first selected
for scheduling. We consider this approach as a Full Dependency
and No Packing (FDNP).

4. NDPP [55] is an approach which offloads different subtasks of a
multi-Job to available EC deployment, by considering each task
completion deadline. However, this approach does not respect
inter-task dependencies but co-locates tasks on a node. We refer
to this approach as No Dependency and Partial Packing (NDPP).

5.3. Deployment results and comparison

The investigation focuses on IoV multi-tasks response time, which
includes offloading time, scheduling time, execution time and result
transmission time. Since our offloading policy is the Closest and within
the one-hop transmission, therefore the offloading time is relatively
smaller compared to multi-hop offloading strategies, hence we focus
our investigation on scheduling time, execution time and result trans-
mission time. We use the cluster data trace from Alibaba to obtain task
start time, completion time, resource requirements (CPU, Mem) and
11
all task dependencies. The results obtained by FedEdge (FDFP), FDPP,
FDNP-1, FDNP-2 and NDPP are compared. We also investigate the EC
deployment CPU and memory usage/utilization.

5.3.1. Resource usage and resource utilization
Fig. 5 shows the task deployment ratio of FedEdge with the four

baseline schemes. It can be seen that for each multi-job offloaded, Fed-
Edge can deploy its constituent tasks to a single edge. This is because
FedEdge selects the closest edge with sufficient resource availability to
accommodate all the tasks, and co-locates them tightly in each node.
Recall that some of the baseline schemes, i.e., FDNP-1 and FDNP-2
do not co-locate tasks on each node, but assume each node can only
execute one task at a time. Therefore, they either execute subtasks at
a time or dispatch other subtasks to another edge, given the number
of nodes at each edge. For example, Multi-Job1 which consists of
13 jobs is deployed and co-located on RSU-1 edge cluster by FedEdge,
in turn, allows for faster input data flow transmissions. For the same
Multi-Job1, FDPP, FDNP-2 and NDPP deploy the jobs across three
edge clusters. Although FDPP and NDPP can partially co-locate tasks at
each of the edge clusters, the three schemes incur additional execution
delays due to input data flow transmissions across the three edge
clusters. On the other hand, FDNP-1 is also able to deploy all the jobs
on a single edge, but it executes a task on each node at a time. Hence,
it can only execute several tasks at a time, given the number of nodes
available in the edge cluster. Fig. 6 shows the average resource usage
of the multi-jobs deployed by FedEdge with those of the four baseline
schemes across the integrated edge clusters. It can be seen that FedEdge
consumes the fewest resources by using a single edge for each multi-job,
while FDNP-2 uses the highest resources (up to three clusters) for the
same multi-job. The CPU and memory resource utilization comparisons
are shown in Figs. 7 and 8, respectively. Again, FedEdge achieves the
highest resource utilization compared with the four baseline schemes.
We now examine the performance of FedEdge compared with the
baseline schemes for each multi-job offloaded (as shown in Table 4)
in detail. Multi-Job1: FedEdge dispatch 100% of the tasks in a
single-hop offloading to RSU-1. It first optimizes the deployment by
gang-scheduling and co-locating as many tasks in a node as possible to

fully utilize the available resources in the node. These tasks are tightly
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Fig. 6. Average resource usage across the federated edge clusters.
Fig. 7. CPU resource utilization across the federated edge resources.
Fig. 8. Memory utilization across the federated edge resources.
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acked on nodes using the packing algorithm, which uses 81% of
SU-1 edge resources to execute the tasks, and achieves 93% and 2%
tilization of the CPU and memory resources respectively. For the same
ulti-Job1, some of the baseline schemes such as FDPP, FDNP-2 and
DPP offload the tasks across three edge clusters, using up to 2.7× more

esources than FedEdge. FDNP-1 schedules one task on a node at a time
sing a single-edge cluster. Thus, it uses all available resources (100%)
t the cluster and keeps the unscheduled tasks on a task queue until
esources become available. Overall, FedEdge achieves better resource
sage and utilization compared to the four baseline schemes, as shown
12

w

n Figs. 6, 7 and 8. Multi-Job2: This multi-job consists of 19 jobs
ith a total of 51 tasks, where each job has a task dependency in

he range of (1, 5]. FedEdge optimizes the deployment to ensure that
esources are fully utilized. Containers provide isolation to running
pplications, making it possible to co-locate multiple applications on
he same node without any interference. A single container-optimized
ode can execute more containerized applications, given that there are
ufficient available resources. For the scheduling, FedEdge deploys all
he tasks at a time on RSU-2 edge cluster, using 80% of the resources,
hile FDPP, FDNP-2 and NDPP use 85%, 255% and 85% of resources
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Fig. 9. Task scheduling times across the federated edge resources.
Fig. 10. Task execution times across the federated edge resources.
across three clusters, respectively. FedEdge and FDNP-1 utilize 99% and
31% of CPU resources, respectively. Although FDNP-1 uses all available
resources in the cluster but achieves low resource utilization due to its
inability to co-locate tasks on nodes, which results in resource under-
utilization. Again FedEdge outperformed all four baseline schemes in
terms of task deployment ratio, resource usage and utilization.
Multi-Job3: FedEdge dispatches Multi-Job3 to RSU-3, which
is a memory-intensive and high-capacity edge cluster. This cluster is
made up of 2 Dell EMC VxRail edge devices, with CPU and memory
capacity of 112 vCPU and 6144 GiB, respectively. The multi-job consists
of 40 CPU-intensive jobs, with a total of 117 tasks, where each job
has a task dependency range (1, 8]. FedEdge improves resource usage
by using a single cluster and up to 3× fewer compared with the four
baseline schemes, as can be seen from Fig. 6. It also achieves 98% and
0.65% high CPU and memory resource utilization in a single cluster,
respectively. On the other hand, FDPP and NDPP achieve 93% and
0.62% CPU and memory resource utilization at each of the three edge
clusters they individually used to offload subtasks of Multi-Job3.
Note that the Multi-Job3∼Multi-Job8 clusters are CPU intensive
jobs. Therefore, the jobs can only consume and utilize a few cluster
memory resources, as shown in Fig. 8. FDNP-1 and FDNP-2 perform
worst by consuming the highest resources and achieving the lowest
resource utilization. Multi-Job4, Multi-Job5 and Multi-Job6:
These multi-jobs are offloaded by FedEdge to BS-1, BS-2 and BS-3,
respectively. Among all the schemes, FedEdge uses the least resources
for each multi-job execution across the three clusters. Specifically,
FedEdge consumes 88%, 69% and 75% of resource at BS-1, BS-2
and BS-3, respectively. It also achieves the highest CPU (average of
99%) and memory (average of 0.5%) resource utilization across the
BS clusters compared to the four baseline schemes. FDPP and NDPP
consume 90% each across three different clusters for Multi-Job4
execution, with an average of 96% CPU and 0.4% memory utilization.
FDNP-1 consumes all available resources at BS-1, BS-2 and BS-3 for
13
Multi-Job4, Multi-Job5 and Multi-Job6 executions, respec-
tively, while recording the lowest resource utilization at each cluster.
FDNP-2 consumes the second highest resources and achieves the second
lowest resource utilization for the same multi-jobs execution. Multi-
Job7 and Multi-Job8: After the multi-jobs are executed at the
integrated edge deployments, the cluster resources become available
for incoming multi-jobs. Therefore, FedEdge dispatches Multi-Job7
and Multi-Job8 to RSU-3 and BS-2, respectively, after previously
executed Multi-Job3 and Multi-Job5 on the clusters. Multi-
Job7 and Multi-Job8 are made up of 44 and 56 jobs, respectively.
From Figs. 5, 6, 7 and 8, which show the tasks deployment ratio,
resource usage, CPU and memory utilization, it shows that FedEdge is
the best with the least consumed resources of 82% and 91% at RSU-
3 and BS-2, respectively. In addition, FedEdge achieves the highest
CPU/memory utilization up to 71% and 0.5% than the benchmark
schemes. The other four baseline schemes either consume all available
resources in a single cluster or consume more resources across multi-
cluster. Moreover, the superior performance of FedEdge over the other
benchmark schemes is overwhelmingly clear.

5.3.2. Multi-task scheduling, execution and response times
The aggregate job scheduling time 𝐸𝑠ℎ′ defined in Eq. (11), which

is the time it takes to place multi-jobs/tasks on the nodes in a cluster, is
an important performance metric to assess the integrated edge clusters.
Another even more important performance metric is the aggregate
job execution time 𝐸𝑒𝑥′ defined in Eq. (12). More importantly, is the
response time 𝐸𝑟𝑠𝑝′ which is defined in Eq. (7). Figs. 9–11 compare
the scheduling times, execution times and response times, respectively,
attained by the five schemes. It can be seen that the scheduling times
are typically very small, and the execution times and response times
by contrast are significantly larger. Across the integrated edge clusters,
FedEdge consistently achieves the fastest scheduling, execution and

response times, compared to the four benchmark strategies. Note that
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Fig. 11. Task response times across the federated edge resources.
we have focused on the scheduling, execution and result transmission
times components of the response time. This is because the offloading
time 𝐸𝑜𝑓 ′ is relatively small due to our offloading policy which en-
sures that jobs are offloaded to the closest edge cluster and within a
single-hop offloading. Specifically, for 𝙼𝚞𝚕𝚝𝚒 − 𝙹𝚘𝚋𝟷, FedEdge achieves
very fast scheduling, which is 17× faster than FDPP and NDPP, and
52× faster than FDNP-1 and FDNP-2. For 𝙼𝚞𝚕𝚝𝚒 − 𝙹𝚘𝚋𝟸 scheduling,
FedEdge achieves significantly faster scheduling times than the four
benchmark strategies, i.e., FedEdge is 18× faster than FDPP and NDPP,
and 51× faster than FDNP-1 and FDNP-2. For 𝙼𝚞𝚕𝚝𝚒 − 𝙹𝚘𝚋𝟹, FDNP-
1 and FDNP-2 attain the lowest scheduling times, while FDPP and
NDPP attain the second lowest scheduling time. FedEdge achieves
the best performance, up to 39× faster than the other four schemes.
For 𝙼𝚞𝚕𝚝𝚒 − 𝙹𝚘𝚋𝟺∼𝙼𝚞𝚕𝚝𝚒 − 𝙹𝚘𝚋𝟽, FedEdge again achieves the fastest
scheduling time, followed by FDPP and NDPP, while FDNP-1 and
FDNP-2 have the worst scheduling time performance. For 𝙼𝚞𝚕𝚝𝚒 − 𝙹𝚘𝚋𝟾,
FedEdge is approximately 54× faster than FDPP and NDPP, and 27×
faster than FDNP-1 and FDNP-2.

In terms of execution time, it is important to note that the in-
put data flow time also contributes to the total execution time of
a job. FDPP, FDNP-2 and NDPP incur additional time due to their
approach of task offloading across multiple clusters, which leads to
input data flow (which is in the range of (0.2, 0.4] s) across the
clusters. FedEdge is 26.4×, 2.6×, 26.5× and 2.7× faster than FDNP-
1, FDPP, FDNP-2 and NDPP, respectively, in executing 𝙼𝚞𝚕𝚝𝚒 − 𝙹𝚘𝚋𝟷,
while for 𝙼𝚞𝚕𝚝𝚒 − 𝙹𝚘𝚋𝟸 execution, it is approximately 51×, 3×, 51×
and 3.3× faster, respectively, over the four benchmarks. Similarly, for
𝙼𝚞𝚕𝚝𝚒 − 𝙹𝚘𝚋𝟹, 𝙼𝚞𝚕𝚝𝚒 − 𝙹𝚘𝚋𝟺 and 𝙼𝚞𝚕𝚝𝚒 − 𝙹𝚘𝚋𝟻 as well as 𝙼𝚞𝚕𝚝𝚒 − 𝙹𝚘𝚋𝟼,
𝙼𝚞𝚕𝚝𝚒 − 𝙹𝚘𝚋𝟽 and 𝙼𝚞𝚕𝚝𝚒 − 𝙹𝚘𝚋𝟾 executions, FedEdge also achieves ap-
proximately up to 189×, 9×, 189× and 13× faster execution times
than FDNP-1, FDPP, FDNP-2 and NDPP, respectively. The significant
advantage of FedEdge in terms of aggregate job execution time can
be explained as follows. It deploys sets of multi-jobs/tasks as a unit
through the gang scheduling strategy in a single EC cluster. These
applications are deployed and executed concurrently. By contrast, the
benchmark approaches schedule and execute the given DAGs indi-
vidually and in parts across multiple EC clusters, resulting in input
data flow transmission delay and a longer time to execute the overall
tasks. Recall that the response time of a job as defined in Eq. (7), is
the addition of its offloading time, scheduling time, execution time
and final result transmission time. Therefore, the ultimate aim is to
minimize the response time of IoV applications offloaded to EC clusters.
Fig. 11 compares the response time of FedEdge and the four benchmark
schemes. FedEdge outperforms the four benchmark schemes by achiev-
ing the fastest response time for all the multi-jobs, and up to 60.7×,
3.37×, 60.7× and 3.5× faster than FDNP-1, FDPP, FDNP-2 and NDPP,
respectively.
14
5.4. Discussion

FedEdge has demonstrated superior QoS in resource management
and IoV multi-task orchestration in integrated edge clusters. Our pro-
posed algorithm achieves both the highest edge cluster resource utiliza-
tion and the minimum scheduling, execution and response times for
IoV multi-tasks/jobs compared to the baseline strategies. We observe
that FedEdge consumes up to 34% fewer resources and achieves up to
76% high cluster resource utilization, while leading to up to 54× faster
scheduling time, up to 189× faster execution time and up to 62× faster
response time. Achieving faster scheduling time and execution time,
and in particular faster response time are crucial for smart vehicular
applications to perform better. The gains achieved by FedEdge as
observed from our experiments include efficient load-balancing and an
increase in the number of tasks that can be deployed at a time 𝑡 as
well as faster response time of the overall tasks and improved usage of
edge resources. Recall that, unlike FedEdge, the existing methods do
not deploy all ready tasks at a time or in a single edge cluster or do not
respect task dependencies, leading to more edge resource usage and
cluster underutilization as well as causing longer task execution time.

6. Conclusions

This paper has presented a resource-aware and dependency-aware
IoV multi-task orchestration in an integrated EC system, called Fed-
Edge, to improve edge resource efficiency and performance. We have
utilized a resource-aware dispatching strategy that selects the closest
edge cluster suitable for a given job(s), and a container-based bin-
packing optimization strategy that packs or co-locates tasks tightly
on nodes to fully utilize available resources. Our approach involves
obtaining the resource demand of tasks and integrated-edge clusters up-
date the state, through a single control plane (CP), then gang schedule
and co-locate multi-task on container-optimized nodes called container-
instances. To evaluate our approach, we have illustrated use cases
of real-world CPU and memory-intensive tasks from Alibaba cluster
trace, which records the activities of both long-running containers (for
Alibaba’s e-commerce business) and batch jobs across 8 days. We have
compared our approach with the state-of-the-art dependency-aware IoV
task orchestration baseline strategies. Our experimental results have
demonstrated that FedEdge achieves both the highest cluster resource
utilization and the minimum scheduling, execution and response times
for IoV multi-tasks/jobs compared to the baseline strategies.
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