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A novel two-stage construction algorithm for linear-in-the-parameters classifier is proposed, aiming at
noisy two-class classification problems. The purpose of the first stage is to produce a prefiltered signal
that is used as the desired output for the second stage to construct a sparse linear-in-the-parameters
classifier. For the first stage learning of generating the prefiltered signal, a two-level algorithm is

algorithm using singular value decomposition is employed at the lower level while the two regularisa-
tion parameters are selected by maximising the Bayesian evidence using a particle swarm optimization
algorithm. Analysis is provided to demonstrate how “Occam's razor” is embodied in this approach. The
second stage of sparse classifier construction is based on an orthogonal forward regression with the
D-optimality algorithm. Extensive experimental results demonstrate that the proposed approach is
effective and yields competitive results for noisy data sets.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

A basic principle in constructing mathematical models from
data is “Occam's razor”, as in many data modelling problems,
such as regression and pattern classification, the aim is to find the
smallest possible models with the capability to approximate
system output for unseen new input data. It is known that Occam's
razor is naturally embodied by two important modelling appro-
aches of cross validation (CV) [1,2] and evidence maximisation
with a Gaussian prior [3]. Models are identified according to some
objective criteria which manifest in the Bayesian approach by two
levels of inference. At the first level of inference, the model
parameters are inferred by maximising the a posterior probability
(MAP) of the model parameters, and at the second level of
inference, models are ranked by evidence, i.e. the marginal prob-
ability for the given hypothesis or model [3].

Modelling techniques based on model construction or selection
have been widely studied, e.g. support vector machine (SVM),
relevance vector machines (RVM), and orthogonal forward
ll rights reserved.

), jbgao@cse.edu.au. (J. Gao),
.J. Harris)
regression (OFR) [4–7]. The orthogonal least square (OLS) algo-
rithm [8] was developed as a practical construction algorithm for
linear-in-the-parameters model, which include a large class of
non-linear model representations, such as radial basis functions
(RBF) networks and SVM. Using the class labels as the desired
output for training, a two-class classification problem can be
configured into a regression framework that solves a separating
hyperplane for two classes. The orthogonal forward selection
(OFS) procedure of [8] can then be applied to construct parsimo-
nious two-class classifiers incrementally by maximising the Fisher
ratio of class separability measure [9,10] or by minimising the
misclassification rate [11].

The l2-norm regularisation assisted OLS (ROLS) approaches
have been proposed based on minimising the leave-one-out
criteria for regression, classification and probability density esti-
mation [12]. The l2-norm regularisation techniques are developed
to carry out parameter estimation and model structure selection
simultaneously [5,13–16]. It has been shown that l2 norm para-
meter regularisation is equivalent to adopting a Gaussian prior for
the model parameters from Bayesian viewpoint [3,16]. There-
fore, from the powerful Bayesian learning perspective, the l2 norm
regularisation parameter is equivalent to the ratio of the related
hyperparameter to the noise parameter, lending to an iterative
evidence procedure for solving the optimal regularisation
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Fig. 1. Schematic diagram of the proposed two stage classifier construction
using elastic net prefiltering.
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parameters [3,16]. Note that fundamentally l2-norm regularisation
methods can only drive many model parameters to small but non-
zero values.

Alternatively, the model sparsity can be achieved by minimis-
ing the l1 norm of the parameters, which is the fundamental
approach adopted in the basis pursuit or least absolute shrinkage
and selection operator (LASSO) [17,18]. The least angle regression
(LAR) procedure [19] is developed for solving the l1-norm regular-
isation problem efficiently. The Bayesian interpretation for the
l1-norm regularisation is simply by adopting a Laplacian prior for
the parameters. The advantage of the LASSO is that it can achieve
much sparser models by forcing many parameters to exactly zero,
rather than small, but non-zero, parameter values derived from
the minimisation of the lp norm, where p41. Unfortunately
introducing non-differentiable l1 norm in the cost function leads
to the difficulties of model parameter estimation and finding an
appropriate l1 regularizer. Another disadvantage of adopting the
l1-norm optimisation is that a group of correlated model terms
cannot be selected together, which is not desirable since intui-
tively if a particular model term is selected, other correlated model
terms should also be included for the sake of model interoper-
ability. The OLS algorithm of [8] has been combined with the
l1-norm regularisation for constructing sparse regression models
[20].

Recently, a promising concept of the elastic net (EN) has been
proposed by minimising the l1 and l2 norms of the parameters
together [21]. The EN keeps the model sparsity of the LASSO [18],
while strongly correlated model terms tend to be selected or
not selected together. It is shown that the EN problem can be
transformed into an equivalent LASSO problem on the augmented
data, fromwhich the LAR procedure is applied, which is referred to
as the LARS-EN in [21]. Similarly, there is a Bayesian connection to
the EN [21,22]. In the work [22], the authors proposed a Bayesian
method based on Gibbs sampler to calculate two regularisation
parameters simultaneously. Note that there exists a dilemma in
the modelling of unknown systems using Bayesian approach. The
priors, which are subjective by nature, should be allowed to be
flexible, in terms of their functional form, but the problems of
evidence maximisation for non-Gaussian priors are generally
difficult to compute. It is therefore highly desirable to develop
computational methods to tackle the tractability issues, such as
the computation of Bayesian evidence based on different priors.
Furthermore, since there are two regularisation parameters in
the EN, the cross validation has to be performed over a two-
dimensional space. Assume that the ten-fold cross validation
is used in choosing the two regularisation parameters based on
a grid search, as is typically adopted in practice. Then, for each
setting of the l2 norm regularisation parameter over a grid of the
l2 norm regularisation parameter values, the LARS-EN algorithm
produces the entire solution path of the EN, which is used to select
the l1 norm regularisation parameter by ten-fold cross validation.
Clearly, this may not yield the optimal regularisation parameters if
the grid search is set at a coarse level, but increasing the grid
search at a very fine level would inevitably increase the computa-
tional cost to an unacceptably high level.

Against this background, in this paper we propose a novel
two-stage construction algorithm for two-class linear-in-the-
parameters classifier in order to avoid overfitting to the noise in
the training data set as well as to enhance the classifier's general-
isation capability. The basic idea is that a sparse classifier is
constructed using a prefiltered signal, rather than the original
class label vector, as the desired output. The Bayesian EN regular-
isation is applied to produce the prefiltered signal in the first stage,
in which a two-level algorithm is introduced, aiming to maximise
the model's generalisation capability by the Bayesian EN approach.
Specifically, at the lower level, a new EN model identification
algorithm is employed based on the significant eigenvectors of the
regression matrix, while the two regularisation parameters are
optimised at the upper level using a particle swarm optimisation
(PSO) algorithm [23,24] to maximise the Bayesian evidence using
the prefiltered signal. It is shown that due to the orthogonality
Bayesian evidence can be computed with ease, and the resultant
formula also leads to insights on the basic principle of Occam's
razor. Furthermore, the PSO aided optimisation is much more
efficient than the traditional grid search for optimising the two
associated regularisation parameters. The second stage of sparse
classifier construction is based on the OFR with D-optimality
algorithm [7], which the tested efficiency and simplicity in sparse
model construction.

This paper is organised as follows. Section 2 formulates the
proposed novel two-stage construction algorithm for selecting
sparse two-class classifiers, which are robust to the noise in the
training data and have excellent generalisation performance.
In Section 3, we obtain the Bayesian evidence formula based on
the resultant prefiltered signal, and then present the PSO algo-
rithm to optimise the two EN regularisation parameters. Critical
mathe-
matical analysis is provided to interpret the relationship between
the Bayesian evidence and the Occam's razor. In Section 4, the
experimental results are employed to demonstrate the effective-
ness of the proposed approach, leading to a discussion on the
merits of this novel two-stage algorithm. Finally, our conclusions
are given in Section 5.
2. Two stage classifier construction using elastic
net prefiltering

In this section, we first briefly outline the concept of linear-
in-the-parameters classifier, and then introduce the proposed
two stage procedure for constructing sparse classifiers as depicted
in Fig. 1. More specifically, the proposed classifier construction
procedure includes the stage one of initial generation of the
prefiltered signal, based on singular value decomposition (SVD),
using the PSO aided EN regularisation parameters optimization,
followed by the stage two of a two-class sparse classifier selection
using the OFR with D-optimality algorithm of [7].

2.1. Linear-in-the-parameters classifier

Consider an approximately balanced two-class training data set
DN ¼ fxðkÞ; yðkÞgNk ¼ 1, in which yðkÞ∈f1;�1g denotes the class type
for the feature vector xðkÞ∈Rn. Let a linear-in-the-parameters
classifier f ðxÞ : Rn-f1;�1g be formed using the data set DN, given
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by

ŷðkÞ ¼ sgnðf ðxðkÞÞÞ with f ðxðkÞÞ ¼ ∑
L

i ¼ 1
θiϕiðxðkÞÞ; ð1Þ

where

sgnðsÞ ¼
1 if s≥0;
�1 if so0;

(
ð2Þ

L is the number of regressors or kernels, ϕið�Þ denote the classifier's
kernels with a known non-linear basis function, such as radial
basis function (RBF), and θi are the model parameters, while ŷðkÞ
denotes the predicted class label for xðkÞ. The error between the
true class label and the classifier's output signal is given by
eðkÞ ¼ yðkÞ�f ðxðkÞÞ, which can be written in the matrix form

y¼Φθþ e ð3Þ

where

y¼

yð1Þ
yð2Þ
⋮

yðNÞ

2
66664

3
77775; Φ¼ ½ϕ1 ϕ2 ⋯ ϕL�;

θ¼

θ1

θ2

⋮
θL

2
6664

3
7775; e¼

eð1Þ
eð2Þ
⋮

eðNÞ

2
66664

3
77775; ð4Þ

and the regressor columns are ϕi ¼ ½ϕiðxð1ÞÞ ϕiðxð2ÞÞ ⋯ ϕiðxðNÞÞ�T,
for 1≤i≤L.

Geometrically, the hyperplane defined by

∑
L

i ¼ 1
θiϕiðxÞ ¼ 0 ð5Þ

divides the data into two classes.
2.2. Prefiltering using SVD based elastic net regularisation

The aim of prefiltering is to “filter out” the noise in the training
data and, therefore, to define a robust classification boundary over
the training data set which can be used as the target or desired
output for classifier construction. Consider the SVD of the regression
matrix Φ given by Φ¼USVT, where the diagonal matrix S ¼ diag
fs1; s2;…; sns ;0;…;0g∈RL�L with s1≥s2≥⋯≥sns 40 denoting the resul-
tant ns non-zero singular values, while U ¼ ½u1u2⋯uL�∈RN�L and
V ¼ ½v1v2…vL�∈RL�L containing the orthogonal columns that satisfy
UTU ¼ IL and VTV ¼ IL, respectively, in which IL denotes
L-dimensional identity matrix. With this SVD of Φ, the regression
model (3) can alternatively be expressed as

y¼Urg þ e; ð6Þ

where Ur ¼ ½u1 u2 … uns �∈RN�ns and g ¼ ½g1 g2 … gns
�T. Clearly,

UT
rUr ¼ Ins . Thus, the SVD maps the original L-dimensional space

spanned by Φ onto a lower dimensional space spanned by Ur which
represents the true dimension in the sense that Φ¼∑ns

i ¼ 1siuivTi .
We note that solving (5) by minimising ‖y�Φθ‖2 is an ill-posed

problem. Thus, some structural regularisation is needed to empha-
size the smoothness of the decision boundary in order to avoid
overfitting to the noise. For example, for some appropriately
chosen fixed positive λ1 and λ2, the naive elastic net (NEN)
criterion is defined as [21]

Lðλ1; λ2; θÞ ¼ ‖y�Φθ‖2 þ λ2‖θ‖2 þ λ1‖θ‖1; ð7Þ
where ∥�∥ denotes the Euclidean norm while ‖θ‖1 ¼∑L
i ¼ 1jθij is the

l1 norm of θ. The NEN estimator is the minimiser of

θðNENÞ ¼ arg min
θ

fLðλ1; λ2; θÞg: ð8Þ

This can be transformed into an equivalent LASSO problem on the
augmented data, and solved by the LARS-EN [21]. The EN has some
desirable properties, as it maintains the model sparsity of
the LASSO, but is not as aggressive as the LASSO in excluding
correlated terms in the model. This is because these terms tend to
be either selected or not selected in the model together, as
a consequence the l2 norm regularisation [21]. Note that there is
no analytical solution to (8) unless the model terms are
orthogonal.

Based on the NEN criterion of (7), in this paper, we propose to
apply the following SVD based elastic net criterion:

Leðλ1; λ2; gÞ ¼ ‖y�Urg‖2 þ λ2‖g‖2 þ λ1‖g‖1: ð9Þ
Since the model terms contains in Ur are orthogonal, an analytical
solution can be derived by minimising Leðλ1; λ2; gÞ. In fact, the NEN
solution for g is obtained by setting the subderivative [25] of
Le with respect to g to zero, namely, ð∂Le=∂gÞ ¼ 0, which yields

UT
r y�

λ1
2

signðgÞ ¼ ð1þ λ2Þg; ð10Þ

where signðgÞ ¼ ½signðg1Þ signðg2Þ … signðgns
Þ�T with

signðsÞ ¼ 1 if s40;
signðsÞ ¼�1 if so0;
signðsÞ∈½�1;1� if s¼ 0:

8><
>: ð11Þ

The solution of (10) is readily given by

gðNENÞi ¼ 1
1þ λ2

gðLSÞi

��� ���� λ1=2
1þ λ2

� �
þ
signðgðLSÞi Þ; ð12Þ

where gðLSÞi ¼ uT
i y, 1≤i≤ns, are the usual least squares (LS) estimates

of gi, and

zþ ¼ z if z40;
0 if z≤0:

(
ð13Þ

Note that the cost function (9) contains a sparsity inducing l1

norm so that some parameters gðNENÞi will be zeros, producing a
sparse model containing only nm5ns significant singular vectors.

Let gðNENÞ ¼ ½ ~g ðNENÞ
1

~g ðNENÞ
2 … ~g ðNENÞ

nm
�T∈Rnm , consisting of all the non-

zeros parameters, and denote the sub-matrix of Ur , which consists
of the columns corresponding to the non-zeros parameters, by
Us ¼ ½ ~u1 ~u2 … ~unm �∈RN�nm . We can construct a prefiltered signal
using

ypre ¼ ½ypreð1Þypreð2Þ;…; ypreðNÞ�T ¼UsgðNENÞ: ð14Þ

Notice that the dimension is further reduced in the latent space by

eliminating any term with jgðLSÞi j less than the threshold λ1=2.

We further notice that jgðLSÞi j, which is subject to the noise in the
estimation data, directly measures the correlation between each
singular vector and the noisy system output. This means that if λ1
is appropriately chosen according to the noise level, we can
significantly reduce the error propagation into the prefiltered
signal ypre from the noisy training data via model parameters,
and thus produces a smoother decision boundary.

Instead of thresholding by λ1, the effect of λ2 scales down
parameters by multiplication, which offers another degree of
freedom in controlling the parameter estimation variance. In the
original EN procedure [21], a double shrinkage problem has been
observed, and in order to mitigate this problem a rescaling step is
applied to the NEN solution obtained by (8). Clearly, in the case of
minimising the cost function (7) where the model bases are
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correlated, the resultant sparse model terms are dependent on the
value of λ2, and hence the effect of λ2 lies in the terms selected into
the model as well as the associated model parameters. However,
as our proposed criterion (9) is defined on an orthogonal space,
and this means that the rescaling step, if is applied, is equivalent to
setting λ2 ¼ 0. In order to have more flexibility in regularisation
control, we opt to use the NEN solution directly, which includes
λ1 ¼ 0 or λ2 ¼ 0 as special cases.

Obviously, it is critically important to choose appropriate values
for the two regularisation parameters λ1 and λ2. The conventional
grid search based on cross validation suffers from some serious
drawbacks, as discussed previously in the Introduction section.
We propose a PSO procedure to efficiently optimise the two
regularisation parameters based on a novel Bayesian analysis that
is different from any existent approach. This will be detailed in
Section 3.

2.3. Sparse classifier construction using OFR with D-optimality

The aim of the sparse classifier construction stage is to identify
a linear-in-the-parameters classifier as described in Section 2.1,
with excellent generalisation capability and simultaneously a
sparse representation containing only a small number of kernels.
The advantages of parsimonious models are that they are compu-
tationally more efficient when applying to the new data and easier
to interpret in physical applications. Although ypre obtained in (14)
defines a classification boundary in the latent space via SVD and
can be used to generate predicted labels over the training data set,
we note that it cannot be directly used as a classifier for unseen
data samples. Nor does it lead to a sparse kernel classifier, because
each singular vector ui is a linear combination of all the kernels
ϕiðxðkÞÞ.

However, the prefiltered signal ypre(k), 1≤k≤N, can be used as
the desired output to construct a kernel classifier f ðxðkÞÞ in a
regression framework, where the OFR with D-optimality algorithm
[7] can readily be applied to automatically select a sparse classifier
with excellent generalisation properties. The advantage of using
the prefiltered signal, instead of the original training labels, as the
desired output is that the noise in the original training data has
been filtered out and this substantially reduces the adverse efforts
of the noise in sparse classifier construction. The D-optimality is a
model structure robustness criterion used in experimental design
to tackle ill-conditioning in model structure and to minimise
estimation variance [26]. The OFR with D-optimality algorithm is
an efficient forward regression method incorporating structure
selection and parameter estimation simultaneously [7,16].

Formally, we can write a regression model linking ypre(k) and
f ðxðkÞÞ as

ypreðkÞ ¼ f ðxðkÞÞ þ εðxðkÞÞ ¼ ∑
L

i ¼ 1
θiϕiðxðkÞÞ þ εðkÞ; ð15Þ

where εðkÞ is defined as the modelling error at xðkÞ between the
proposed two-class kernel classifier and the prefiltered signal.
Since the target ypre(k) is free of noise, E½ε2ðkÞÞ� is expected to be
just the approximation error and much smaller than E½y2preðkÞ�. It
can then be assumed that the classification performance of the
final optimal sparse model classifier f ðxðkÞÞ is close to that of the
prefiltered signal ypre(k). For example, unless

jεðxðkÞÞj4 jf ðxðkÞÞj and sgnðεðxðkÞÞÞ≠sgnðf ðxðkÞÞÞ;
which is most unlikely, the predicted class label based on the
sparse classifier f ðxðkÞÞ should be the same as that of ypre(k).

By denoting ϵ¼ ½εð1Þ εð2Þ … εðNÞ�T, the regression model (15)
can be written in the matrix form

ypre ¼Φθþ ϵ: ð16Þ
Let the orthogonal decomposition of the regression matrix Φ be
given by

Φ¼WA; ð17Þ
where

A¼

1 a1;2 ⋯ a1;L
0 1 ⋱ ⋮
⋮ ⋱ ⋱ aL�1;L

0 ⋯ 0 1

2
6664

3
7775 ð18Þ

and

W ¼ ½w1 w2 ⋯ wL� ð19Þ
with columns satisfying wT

i wj ¼ 0, if i≠j. The regression model (16)
can alternatively be expressed as

ypre ¼Wγ þ ϵ; ð20Þ
where the weight vector γ¼ ½γ1 γ2 … γL�T is easily estimated by
minimising the LS criterion JðγÞ ¼ ϵTϵ. Then the original model
parameter vector θ can be determined using Aθ¼ γ by backward
substitution.

The OFR with D-optimality algorithm selects model terms
one at a time with the final model consisting of ns5L columns
of Φ, which is denoted as Φs. The D-optimality [7] is defined
as max det½ΦT

s Φs�. Since det½ΦT
s Φs� ¼ det½WT

s W s� ¼∏ns
l ¼ 1w

T
l wl,

where W s is the orthogonal matrix corresponding to Φs, the
combined error reduction ratio (CERR) defined as

½cerr�l ¼ ðwT
l wlγ

2
l þ β log ðwT

l wlÞÞ=yTpreypre ð21Þ
is used to select the lth model term at the lth forward selection
stage. Note that this CERR is aimed at maximising the reduction
in modelling error (the term wT

l wlγ
2
l ) and the D-optimality (the

term log ðwT
l wlÞ) simultaneously, where β is a fixed small positive

weighting for the D-optimality cost. The first part is related to the
training performance, while the second part is related to the
generalisation performance [7,16].

Since the D-optimality naturally penalises overparameterisa-
tion, the modelling process can automatically terminates so as to
achieve a sparse model by setting appropriately β as a predeter-
mined very small number. More specifically, at some stage, which
is referred to as the nsth stage, the remaining unselected model
terms will meet the condition

½cerr�l ≤0; ns þ 1≤l≤L; ð22Þ
and this terminates the model construction process with a sparse
model containing ns5L significant model terms [7,16]. The
OFS with the D-optimality algorithm utilising the modified Gram–

Schmidt scheme is given in Appendix A.
3. PSO assisted regularisation parameter selection
via Bayesian evidence

This section details the two-level algorithm used in the stage
one of Fig. 1. From the discussion in Section 2.2, it can be seen that
optimising the two regularisation parameters is crucial in order
to produce the optimal prefiltered signal ypre(k) in terms of its
generalisation ability. In this section, we describe the Bayesian
framework for two level inference, and then the problem of
Bayesian evidence maximisation for selecting the two regularisa-
tion parameters. Finally, the PSO algorithm is applied as the
optimisation tool for the problem.

3.1. Likelihood and priors

At the first level of inference, the model parameters are
inferred by the MAP estimate of the parameters [3]. Specifically,
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for the regression model described in (6), the optimal g is obtained
by maximising the posterior probability of g, given by

pðgjy;h; ρÞ ¼ pðy; gjh; ρÞ
pðyjh; ρÞ ¼ pðyjg; ρÞpðgjhÞ

pðyjh; ρÞ ; ð23Þ

where ρ denotes the inverse of the noise variance in the target,
and the likelihood is assumed to be

pðyjg; ρÞ ¼ ρ

2π

� �N=2
exp � ρ

2
‖y�Urg‖2

� �
: ð24Þ

For Bayesian elastic net, the priors over g is assumed to be

pðgjhÞ ¼ ðCðhÞÞns exp � h2
2
‖g‖2�h1

2
‖g‖1

� �
; ð25Þ

with h¼ ½h1 h2�T denoting the vector of the two hyperparameters.
Both h1 and h2 are positive parameters. This is a compromise
between Gaussian and Laplacian distribution. It can be shown (see
Appendix B) that the normalising constant CðhÞ is given by

CðhÞ ¼
ffiffiffiffiffi
h2

pffiffiffiffiffiffi
2π

p exp � h2
1

8h2

 !
1

erfc
h1

2
ffiffiffiffiffiffiffiffi
2h2

p
 ! ; ð26Þ

where

erfcðxÞ ¼ 2ffiffiffi
π

p
Z 1

x
exp ð�t2Þ dt: ð27Þ

Maximising log pðgjy;h; ρÞ with respect to g is equivalent
to minimising the following Bayesian cost function:

LBðh; ρ; gÞ ¼ ρ‖y�Urg‖2 þ h2‖g‖2 þ h1‖g‖1: ð28Þ
It can easily be seen that the criterion (28) is equivalent to (9) with
the relationships λ1 ¼ h1=ρ and λ2 ¼ h2=ρ.

3.2. Bayesian evidence

The second level inference is used to perform model selection,
i.e. to determine which model structure or prior is more plausible
given the data. In our problem, our aim is to find the optimal
prefiltered signal ypre(k) with respect to the two regularisation
parameters. To infer from the data what values should λ1 and λ2
have, we evaluate the evidence pðyjh; ρÞ given by

Ξðh; ρÞ ¼ pðyjh; ρÞ ¼
Z

pðy; gjh; ρÞ dg; ð29Þ

in which pðy; gjh; ρÞ can be rewritten as

pðy; g h; ρÞ ¼ pðy g; ρÞpðg hÞ
������

¼ ρ

2π

� �N=2
ðCðhÞÞns

�exp � ρ

2
‖y�Urg‖2�

h2
2
‖g‖2� h1

2
‖g‖1

� �
: ð30Þ

In general, the integral (29) is difficult to solve, and closed-form
solutions are only available for very limited types of probability
functions. Due to the orthogonality introduced by the proposed
SVD based EN regularisation, this difficulty is alleviated.

To account for sparsity factor, denote the index set of the
selected singular vectors in the prefilter as S. Following Appendix
C, we express the log evidence log ðΞðh; ρÞÞ as:

Jðh; ρÞ ¼N
2

log
ρ

2π

� �
�ρ

� �
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; ð31Þ

where jSj denotes the cardinality of S, rðzÞ ¼ expðz2Þ erfcðzÞ, and
gðLSÞi is the LS estimate of gi. In the following, we reveal some
remarkable properties about the maximum of the log evidence,
which give some intuitive insights into the proposed approach.
Clearly rðzÞ40 and rð0Þ ¼ 1. In addition, we have:

Lemma 1. r(z) is a monotonically decreasing function.

Proof. Proof is given in Appendix D.

It can be seen that the log evidence is composed of a number
of additive terms, denoted by terms A, B, C and D in (31), that
are either concave or monotonic. Their effects can be analysed as
follows:
1.
 Term A is a concave function with respect to ρ, with the
maximum occurring at ρ¼ 1. This implies that ρ far away from
1 will be penalised when the log evidence is maximised.
2.
 The contribution from term B is always negative, reducing the
log evidence. For fixed ρ, the larger h2, the lesser the reduction.
3.
 The contribution from term C is always positive, increasing
the log evidence. For fixed h2, the larger h1, the larger the
contribution.
4.
 Term D is composed of the contributions from model terms.
It can be verified that any model term with jgðLSÞi j4
h1=2ρ¼ λ1=2 increases the log evidence. This corresponds to
the selected singular vector from (12).

While increasing h1, which is favoured by the above point (3),
there will be fewer terms to be remained in the model to gain the
positive contributions due to term D. Effectively, the contributory
model terms are in conflict with each other and, therefore, there
exists a compromised solution. Basically, the best models are the
simplest ones but also with sufficient number of model terms,
in agreement with “Occam's razor”.

3.3. Evidence maximisation using PSO

From the previous discussion, in order to obtain the optimal
prefiltered signal ypre(k), the two regularisation parameters
λ¼ ½λ1 λ2�T should be optimised, and this can be achieved by
maximising the log evidence (31). Formally, this optimisation
problem is stated as follows:

ðhopt; ρoptÞ ¼ arg max
ðh;ρÞ

fJðh; ρÞg; ð32Þ

λopt ¼
hopt

ρopt
: ð33Þ

The evidence (31) is non-differentiable and, therefore, it is difficult
to apply a gradient based optimisation algorithm. On the other
hand, the conventional three-dimensional grid search is inefficient
to solve the Bayesian evidence maximisation (32). We propose to
apply the PSO algorithm [23,24] to efficiently solve the optimisa-
tion problem (32).

The PSO [23,24] constitutes a population based stochastic
optimisation technique, which is inspired by the social behavi-
our of bird flocks or fish schools. The algorithm commences
with random initialisation of a swarm of individuals, referred
to as particles, within the specific problem's search space. The
entire swarm then endeavours to find a global optimal solution
collaboratively by utilising swarm intelligence. Specifically, each
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particle gradually adjusts its trajectory with the aid of its own
cognitive information (its own best location) and the swarm's
social information (the best position of the entire swarm) at each
optimisation iteration. The PSO method is popular owing to its
simplicity in implementation, inherent ability to rapidly converge
to a “reasonably good” solution and to “steer clear” of local minima.
It has been successfully applied to wide-ranging practical optimi-
sation problems [12,27–32].

Referring to the stage one in Fig. 1, the upper level is the PSO
optimiser with a population size of S. It learns the two optimal
regularisation parameters based on the log evidence values
provided by the lower level of the S particles. At the lower level,
each particle calculates the associated the log evidence value using
(31) for the given value of ðh; ρÞ by the upper level. For notational
convenience, denote ω¼ ½ω1 ω2 ω3�T ¼ ½h1 h2 ρ�T. The optimisation
(32) is represented by

ωopt ¼ arg max
ω∈∏3

j ¼ 1 ½0;Ωj;max �
JðωÞ; ð34Þ

where

∏
3

j ¼ 1
½0;Ωj;max� ð35Þ

defines the search space. A swarm of particles, fωðmÞ
i gSi ¼ 1, that

represent potential solutions are “flying” in the search space (35),
where m denotes the iteration step. Each particle has a velocity,
denoted as γðmÞ

i , to direct its search. In order to avoid excessive
roaming of particles beyond the search space [29], a velocity space
is imposed, so that

γðmÞ
i ∈ ∏

3

j ¼ 1
½�ϒ j;max;ϒ j;max�: ð36Þ

The flowchart of the PSO optimiser is depicted in Fig. 2, where Imax

denotes the maximum number of iterations, and pbðmÞ
i denotes the

cognitive information of the ith particle at the mth iteration, while
gbðmÞ is the swarm's social information at the mth iteration.
The PSO algorithm for maximising the log evidence is summarised
in Appendix E.

The search space (35) is defined by the specific problem to be
solved, and the velocity space (36) can be empirically set. Usually,
the velocity limit ϒ j;max is related to Ωj;max by ϒ j;max ¼Ωj;max
Fig. 2. Flowchart of PSO optimiser for Bayesian evidence maximisation.
or ϒ j;max ¼Ωj;max=2. Appropriate swarm size S and maximum
number of iterations Imax are empirically chosen, and they can
typically be set to relatively small values.

3.4. Complexity of proposed two stage classifier construction

We have completed the descriptions of all the components for
the proposed two-stage classifier construction algorithm depicted in
Fig. 1. Our proposed algorithm overcomes two major obstacles. Firstly,
we have derived the analytical Bayesian evidence formula based on
the cost function (9) rather than (7), which would otherwise be very
difficult to compute for models with non-orthogonal basis functions.
Secondly, because the evidence formula is non-differentiable and
subject to positiveness constraints of the regularisation parameters,
this would make it very difficult for conventional gradient based
optimization algorithms. Thus, we resort to the PSO as a highly
effective optimisation tool to solve this problem.

We are now ready to analyse the computational complexity of the
proposed two stage classifier construction procedure. The computa-
tional costs of the proposed two-stage algorithm as depicted in Fig. 1
comprise: (1) the cost of the SVD which is in the order of OðN3Þ;
(2) the cost of the PSO assisted two-level procedure for generating the
optimal prefiltered signal, which is in the order of OðS � Imax � NÞ;
and (3) the cost of the OFS with D-optimality for the final construction
of a sparse classifier, which is in the order of OðL� NÞ. The total
computational complexity is less than twice of that of the SVD. This
is because S � Imax and ns are much smaller than N for the large
training data sets. L can be set to the same value as N, or smaller when
N is very large. Our extensive experience with the PSO algorithm
suggests that S and Imax can be chosen to be relatively small values.
4. Experimental results

Eight two-class classification experiments were performed to
demonstrate the effectiveness of the proposed algorithm, in compar-
ison to the six existing state-of-the-arts classification algorithms
studied in [33]. We also compare with our recent work, referred to
as prefiltering with LOO algorithm [34], which is also based on the
idea of elastic net based prefiltering, but the leave one out (LOO)
misclassification rate was minimized for regularization parameters
optimization. Eight noisy data sets were chosen from [35] for our
experimentation, and they are: Banana, Breast Cancer, Diabetes,
German, Heart, Flare Solar, Titanic, and Waveform. The specifications
of these two-class data sets are listed in Table 1. Each data set
contains 100 realisations, while each realisation consists of N training
patterns and Ntest test patterns, respectively.

The Gaussian RBF kernel ϕiðxÞ ¼ expð�ð‖x�ci‖2Þ=2s2Þ was
employed in all the experiments. A common kernel width s was
predetermined to derive individual models for all the 100 realisa-
tions of each data set. For each realisation of each data set, the full
training data set was used as the RBF centre set fcigNi ¼ 1 to form the
Table 1
Summary of the data sets [35].

Data set Feature space
dimension n

Training data
size N

Test data
size Ntest

Number of
realisations

Banana 2 400 4900 100
Breast Cancer 9 200 77 100
Diabetes 8 468 300 100
German 20 700 300 100
Heart 13 170 100 100
Flare Solar 9 666 400 100
Titanic 3 150 2051 100
Waveform 21 400 4600 100



Table 4
Average misclassification rate in % and model size over 100 realizations of the
Diabetes test data set. The first six results are quoted from [33].

Method Misclassification rate Model size

RBF 24.371.9 15
Adaboost with RBF 26.572.3 15
AdaBoost-Reg 23.871.8 15
LP-Reg-AdaBoost 24.171.9 15
QP-Reg-AdaBoost 25.472.2 15
SVM with RBF kernel 23.571.7 Not available
Prefiltering with LOO [34] 23.371.7 7.771.5
Proposed algorithm 23.471.7 771.2

Table 5
Average misclassification rate in % and model size over 100 realizations of the
German test data set. The first six results are quoted from [33].

Method Misclassification rate Model size

RBF 24.772.4 8
Adaboost with RBF 27.572.5 8
AdaBoost-Reg 24.372.1 8
LP-Reg-AdaBoost 24.872.2 8
QP-Reg-AdaBoost 25.372.1 8
SVM with RBF kernel 23.672.1 Not available
Prefiltering with LOO [34] 24.372.2 12.871.3
Proposed algorithm 24.272.2 11.871.4

Table 6
Average misclassification rate in % and model size over 100 realizations of the Heart
test data set. The first six results are quoted from [33].

Method Misclassification rate Model size

RBF 17.673.3 4
Adaboost with RBF 20.373.4 4
AdaBoost-Reg 16.573.5 4
LP-Reg-AdaBoost 17.573.5 4
QP-Reg-AdaBoost 17.273.4 4
SVM with RBF kernel 16.073.3 Not available
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candidate regressor set, namely, we set L¼N. For each experimental
data set listed in Table 1, 100 models were constructed over the 100
training data sets and the generalisation performance was evalu-
ated using the average misclassification rate of the corresponding
models over the 100 test data sets. The test performance and the
average model sizes achieved by the proposed two stage classifier
construction algorithm are summarised in Tables 2–9, respectively,
for the eight experiment data sets, in comparisonwith the results of
the six existing state-of-the-arts classification algorithms quoted
from [33] as well as our recent work [34].

The test results listed in Tables 2–9 show that the proposed
approach can construct parsimonious classifiers with competi-
tive test classification accuracy for all the data sets experimented.
Although our model sizes are not generally smaller than the first five
methods, we point out that the first five methods quoted from [33]
used various sophisticated non-linear optimisation algorithms to
optimise the non-linear Gaussian RBF network with a fixed number
of RBF units, where the model size for each experiment data set
was predetermined using cross validation based on their RBF-based
model (the first method). In other words, the first five methods
cannot perform model structure selection automatically by the
algorithms. Like our proposed method, the SVM classifier quoted in
[33] is also based on the linear-in-the-parameters model structure
with the full training data set used as the RBF centre set, and
is capable of performing model structure selection automatically. For
the SVM classifier, however, no average model size was given in [33].
Our extensive experience with the SVM method suggests that the
SVM approach is generally not very sparse, and the average SVM
model size was likely to be over 100 for each of these experiment
data sets. Thus, our proposed method achieves a much sparser
classifier than the SVM method. We further point out that the
proposed algorithm is very robust in that a common value s was
used for all 100 realisations of each data set and we also found that
the performance remained good over a wide range of the s values,
which indicates that our proposed method is insensitive to the kernel
width s. Hence, for practical use, the proposed method is a very good
choice for classifiers with noisy data, especially if robust and superior
Table 2
Average misclassification rate in % and model size over 100 realizations of the
Banana test data set. The first six results are quoted from [33].

Method Misclassification rate Model size

RBF 10.870.6 18
Adaboost with RBF 12.370.7 18
AdaBoost-Reg 10.970.4 18
LP-Reg-AdaBoost 10.770.4 18
QP-Reg-AdaBoost 10.970.5 18
SVM with RBF kernel 11.570.7 Not available
Prefiltering with LOO [34] 10.770.5 28.771.4
Proposed algorithm 10.770.5 27.671.6

Table 3
Average misclassification rate in % and model size over 100 realizations of the
Breast Cancer test data set. The first six results are quoted from [33].

Method Misclassification rate Model size

RBF 27.674.7 5
Adaboost with RBF 30.474.7 5
AdaBoost-Reg 26.574.5 5
LP-Reg-AdaBoost 26.876.1 5
QP-Reg-AdaBoost 25.974.6 5
SVM with RBF kernel 26.074.7 Not available
Prefiltering with LOO [34] 25.074.2 26.472
Proposed algorithm 25.170.4 24.771.9

Prefiltering with LOO [34] 15.973.0 8.871.0
Proposed algorithm 16.073.0 8.871.0

Table 7
Average misclassification rate in % and model size over 100 realizations of the Flare
Solar test data set. The first six results are quoted from [33].

Method Misclassification rate Model size

RBF 34.472.0 4
Adaboost with RBF 35.771.8 4
AdaBoost-Reg 34.272.2 4
LP-Reg-AdaBoost 34.772.0 4
QP-Reg-AdaBoost 36.271.8 4
SVM with RBF kernel 32.471.8 Not available
Prefiltering with LOO [34] 33.271.7 6.770.8
Proposed algorithm 33.471.6 770.6
classification performance is sought, with additional benefits of low
computational cost and tuning effort.
5. Conclusions

We have proposed an efficient two stage construction algorithm
for linear-in-the-parameters two-class classifiers when robust and
accurate classification is required over noisy data. The first stage of
our approach constructs a prefiltered signal that is then used as the
desired output for the second stage construction of a sparse linear-in-
the-parameters classifier. The prefiltering stage is performed by a



Table 8
Average misclassification rate in % and model size over 100 realizations of the
Titanic test data set. The first six results are quoted from [33].

Method Misclassification rate Model size

RBF 23.371.3 4
Adaboost with RBF 22.671.2 4
AdaBoost-Reg 22.671.2 4
LP-Reg-AdaBoost 24.074.4 4
QP-Reg-AdaBoost 22.771.1 4
SVM with RBF kernel 22.471.0 Not available
Prefiltering with LOO [34] 22.371.0 11.171.0
Proposed algorithm 22.371.0 11.171.1

Table 9
Average misclassification rate in % and model size over 100 realizations of the
Waveform test data set. The first six results are quoted from [33].

Method Misclassification rate Model size

RBF 10.771.1 10
Adaboost with RBF 10.870.6 10
AdaBoost-Reg 9.870.8 10
LP-Reg-AdaBoost 10.571.0 10
QP-Reg-AdaBoost 10.170.5 10
SVM with RBF kernel 9.970.4 Not available
Prefiltering with LOO [34] 9.870.4 34.171.9
Proposed algorithm 9.870.4 31.972
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novel two-level algorithm to maximise the model's generalisation
capability. Using SVD, a new elastic net model identification algorithm
is employed at the lower level, and the two regularisation parameters
are found by a particle swarm optimisation algorithm to maximise
Bayesian evidence at the upper level. Our original contributions are
firstly to define an elastic net cost function based on left singular
vectors, which facilitates: (i) the closed-form of elastic net solution
based on a small number of singular vectors and (ii) efficient evalu-
ation of Bayesian evidence using PSO. As a result, a fully automated
procedure is achieved without resorting to any other validation data
set for iterative model evaluation. Secondly, using mathematical
analysis we provide insights as how “Occam's razor” is embodied in
this approach. The second stage of sparse classifier construction is
based on the well tested and highly efficient orthogonal forward
regression with D-optimality algorithm. Eight benchmark examples
are included to demonstrate the competitiveness of our new approach.
Acknowledgement

The authors gratefully acknowledge that part of this work
was supported by the UK EPSRC.
Appendix A. The OFR with D-optimality using the modified
Gram–Schmidt orthogonalisation procedure

The modified Gram–Schmidt orthogonalisation procedure cal-
culates A row by row and orthogonalises Φ as follows: at the lth
stage make the columns ϕj, lþ 1≤j≤L, orthogonal to the lth
column and repeat the operation for 1≤l≤L�1. Specifically, denot-
ing ϕð0Þ

j ¼ ϕj, 1≤j≤L, then

wl ¼ϕðl�1Þ
l ;

al;j ¼wT
l ϕ

ðl�1Þ
j =ðwT

l wlÞ; lþ 1≤j≤L;

ϕðlÞ
j ¼ ϕðl�1Þ

j �al;jwl; lþ 1≤j≤L;

9>>>=
>>>; l¼ 1;2;…; L�1: ð37Þ
The last stage of the procedure is simply wL ¼ϕðL�1Þ
L . The elements

of γ are computed by transforming yð0Þpre ¼ ypre in a similar way

γl ¼wT
l y

ðl�1Þ=ðwT
l wlÞ;

yðlÞpre ¼ yðl�1Þ
pre �γlwl;

9>>>=
>>>;1≤l≤L: ð38Þ

This orthogonalisation scheme can be used to derive a simple
and efficient algorithm for selecting subset models in a forward-
regression manner [8]. First define

Φðl�1Þ ¼ ½w1…wl�1ϕ
ðl�1Þ
l …ϕðl�1Þ

L �: ð39Þ
If some of the columns ϕðl�1Þ

l ;…;ϕðl�1Þ
L in Φðl�1Þ have been inter-

changed, this will still be referred to as Φðl�1Þ for notational
convenience. The lth stage of the selection procedure is given as
follows:
Step 1.
 For l≤j≤L, compute

γðjÞl ¼ ðϕðl�1Þ
j ÞTyðl�1Þ=ððϕðl�1Þ

j ÞTϕðl�1Þ
j Þ;

½cerr�ðjÞl ¼ ððγðjÞl Þ2ðϕðl�1Þ
j ÞTϕðl�1Þ

j þ β log ððϕðl�1Þ
j ÞTϕðl�1Þ

j ÞÞ=ðyTpreypreÞ:

9>>>=
>>>;
Step 2.
 Find

½cerr�l ¼ ½cerr�ðjlÞl ¼maxf½cerr�ðjÞl ; l≤j≤Lg:
Then the jlth column of Φðl�1Þ is interchanged with the lth
column of Φðl�1Þ, the jlth column of A is interchanged with
the lth column of A up to the ðl�1Þth row. This effectively
selects the jlth candidate as the lth regressor in the
subset model.
Step 3.
 Perform the orthogonalisation as indicated in (37) to
derive the lth row of A and to transform Φðl�1Þ into ΦðlÞ.
Calculate γl and update yðl�1Þ

pre into yðlÞpre in the way shown in
(38).
The selection is terminated at the ns stage when the condition
(22) is met, and this produces a subset model containing ns

significant regressors. The algorithm described here is in its
standard form, a fast implementation can be adopted to reduce
the computational cost [36].
Appendix B. Derivation of CðhÞ
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By using
R
pðgjh; ρÞ dg ¼ 1, we have
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Appendix C. Evaluating Bayesian evidence

The evidence is obtained by working out the following integral:

Ξðh; ρÞ ¼ ρ

2π
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By variable substitution
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Finally, we arrive the following formula for the evidence:

Ξðh; ρÞ ¼ ρ

2π

� �N=2
ð ~C ðρ;hÞÞns exp � ρN

2

� �

� ∏
ns

i ¼ 1
exp

b2i1
4a2

 !
erfc

bi1
2a

� �
þ exp

b2i2
4a2

 !
erfc

bi2
2a

� � !
;

ð46Þ
where
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Appendix D. Proof of Lemma 1

Consider

rðzÞ ¼ expðz2ÞerfcðzÞ: ð48Þ
Using the identity ðd=dzÞerfcðzÞ ¼ �ð2= ffiffiffi

π
p Þexpð�z2Þ and the

inequality [37]

erfcðzÞ≤ 2ffiffiffi
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z2 þ 4=π

p ; ð49Þ
we have
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π

p
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π
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π
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þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π
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ð50Þ
Letting tan ϑ¼ ffiffiffi

π
p

z=2, we have

d
dz

rðzÞ≤ 4ffiffiffi
π

p sin ϑ

1þ sin ϑ
� 2ffiffiffi

π
p ≤0: ð51Þ

This concludes the proof.
Appendix E. PSO optimiser for Bayesian evidence
maximisation

Referring to the flowchart of Fig. 2, the PSO algorithm consists
of the following steps:

(a) Swarm initialisation. Set the iteration index m¼0 and
randomly generate the initial population of the particles,

fωðmÞ
i gSi ¼ 1, in the search space (35).
(b) Swarm evaluation. The fitness value of each particle ωðmÞ

i is
obtained as JðωðmÞ

i Þ. Each particle ωðmÞ
i remembers its best position

visited so far in terms of the fitness value, and this best position is
denoted as pbðmÞ

i , which represents the cognitive information of
the ith particle. Every particle also knows the best position visited
so far among the entire swarm, denoted as gbðmÞ, which pro-
vides the swarm's social information. The cognitive information
fpbðmÞ

i gSi ¼ 1 and the social information gbðmÞ are updated at each
iteration:
For ði¼ 1; i≤S; iþþÞ
If ðJðωðmÞ

i Þ4 JðpbðmÞ
i ÞÞ pbðmÞ

i ¼ωðmÞ
i ;

End for

in ¼ arg max1 ≤i ≤S JðpbðmÞ
i Þ;

If ðJðωðmÞ
in

Þ4 JðgbðmÞÞÞ gbðmÞ ¼ωðmÞ
in

;

(c) Swarm update. The velocity of the i particle is updated
at each iteration according to

γðmþ1Þ
i ¼ μInγ

ðmÞ
i þ μ1nrandðÞnðpbðmÞ

i �ωðmÞ
i Þ

þμ2nrandðÞnðgbðmÞ�ωðmÞ
i Þ; ð52Þ

where randðÞ denotes the uniformly distributed random number in
½0;1�, and μI is known as the inertia weight, while μ1 and μ2 are the
two acceleration coefficients. The generated velocity γðmþ1Þ

i is then
checked to make sure it is within the velocity space defined by
(36) using the following operation:

If ðγðmþ1Þ
i jj4ϒ j;maxÞ γðmþ1Þ

i jj ¼ ϒ j;max;

If ðγðmþ1Þ
i jjo�ϒ j;maxÞ γðmþ1Þ

i jj ¼�ϒ j;max; ð53Þ

where γjj denotes the jth element of γ. Moreover, if the velocity
generated in (52) approaches zero, it is reinitialised proportional
to ϒ j;max with a small factor ν

If ðγðmþ1Þ
i jj ¼ ¼ 0Þ γðmþ1Þ

i jj ¼ 7randðÞnνnϒ j;max: ð54Þ
The position of the ith particle is then updated according to

ωðmþ1Þ
i ¼ωðmÞ

i þ γðmþ1Þ
i : ð55Þ
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Similarly, if a particle ωðmþ1Þ
i moves to outside the search space, it

should be projected back to the boundary of the search space, or
alternatively it can be moved back inside the search space to a
random position.

(d) Termination condition check. If the maximum number of
iterations, Imax, is reached, terminate the algorithm with the
solution gbðImaxÞ; otherwise, set m¼mþ 1 and go to step (b).

Three common choices of the inertia weight are μI ¼ 0, setting
μI to a small positive constant, or μI ¼ randðÞ. We use μI ¼ randðÞ
at each iteration. An appropriate value of the small control factor ν
in (54) for avoiding zero velocity is empirically found to be ν¼ 0:1
for our application. The two acceleration coefficients μ1 and μ2 can
empirically be set to some appropriate constant values. However,
the time varying acceleration coefficient (TVAC) mechanism [27],
in which μ1 is reduced from 2.5 to 0.5 and μ2 is increased from
0.5 to 2.5 during the iterative procedure according to

μ1 ¼ ð0:5�2:5Þnm=Imax þ 2:5;

μ2 ¼ ð2:5�0:5Þnm=Imax þ 0:5; ð56Þ
usually works well. The reason for good performance of this TVAC
mechanism can be explained as follows. At the initial stages,
a large cognitive component and a small social component help
particles to wander around for better exploiting the search space,
hence avoiding local solutions. In the later stages, a small cognitive
component and a large social component help particles to
converge quickly to a global solution.
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