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a b s t r a c t

A unified approach is proposed for data modelling that includes supervised regression and classification

applications as well as unsupervised probability density function estimation. The orthogonal-

least-squares regression based on the leave-one-out test criteria is formulated within this unified

data-modelling framework to construct sparse kernel models that generalise well. Examples from

regression, classification and density estimation applications are used to illustrate the effectiveness of

this generic data-modelling approach for constructing parsimonious kernel models with excellent

generalisation capability.

& 2008 Elsevier B.V. All rights reserved.

1. Introduction

The objective of modelling from data is not that the model
simply fits the training data well. Rather, the goodness of a model
is characterised by its generalisation capability, interpretability
and ease for knowledge extraction. All these desired properties
depend crucially on the ability to construct appropriate sparse
models by the modelling process, and a basic principle in practical
data modelling is the parsimonious principle of ensuring the
smallest possible model that explains the training data. Various
data modelling applications can be classified into three categories,
namely, regression [5,39,1], classification [21,3,44] and probability
density function (PDF) estimation [41,48,4]. In regression, the task
is to establish a model that links the observation data to their
target function or desired output values. The goodness of a
regression model is judged by its generalisation performance,
which can be conveniently determined by the test mean square
error (MSE) on the data not used in training the model. Like
regression, classification is also a supervised learning problem.
However, the desired output is discrete valued, e.g. binary in the

two-class classification problems, and the goodness of a classifier
is determined by its test error probability or misclassification rate.
Despite of these differences, classifier construction can be
expressed in the same framework of regression modelling. The
third class of data modelling, namely, PDF estimation, is very
different in nature from regression and classification. The task of
PDF estimation is to infer the underlying probability distribution
that generates the observations. Because the true target function,
the underlying PDF, is not available, this is an unsupervised
learning problem and can only be carried out based on often noisy
observation data. Nevertheless, this unsupervised task can be
‘‘transformed’’ into a supervised one, for example, by computing
the empirical distribution function from the observation data and
using it as the target function for the cumulative distribution
function of the PDF estimation. This contribution adopts this
unified regression framework for data modelling.

Recently considerable research efforts have been focused
on sparse kernel data modelling techniques [6,23,19,17,40,46,45,
47,50–55,20,32,38,22]. Sparse kernel modelling methods typically
use every training input data as a kernel. A sparse representation
is then sought based on various criteria by making as many kernel
weights to (near) zero values as possible. A different approach
to these sparse kernel modelling methods is the forward sele-
ction using the orthogonal-least-squares (OLS) algorithm [8,10],
developed in the late 1980s for nonlinear system modelling,
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which remains highly popular for data-modelling practicians.
Since its derivation, many enhanced variants of the OLS forward-
selection algorithm have been proposed by incorporating the new
developments from machining learning and the approach has
extended its application to all the areas of data modelling,
including regression, classification and kernel density estimation
[9,11–16,7,25–29,42,33]. This contribution continues this theme,
and it presents a unified framework for sparse kernel modelling
that include all the three classes of data-modelling applications,
namely, regression, classification and PDF estimation. Based on
this unified data-modelling framework, the OLS forward-selection
algorithm using the leave-one-out (LOO) test criteria and local
regularisation (LR) is employed to construct sparse kernel models
with excellent generalisation capability. Experimental results are
included to demonstrate the effectiveness of the OLS forward-
selection algorithm based on the LOO test criteria and regularisa-
tion within the proposed unified data-modelling framework.

2. A unified framework for data modelling

Regression, classification and PDF estimation can be unified
under a regression framework of sparse kernel data modelling
based on the appropriate modelling criteria, where the kernel
model is interpreted in a generic sense, namely, a kernel or basis is
placed on each training data sample and the model is obtained as
a linear combination of all the bases defined on the training data
set. For kernel density estimation, a kernel should also meet the
usual requirements of a density distribution, i.e. a kernel is
nonnegative and the area under the kernel is unity.

2.1. Regression

Consider the general nonlinear data generating mechanism
governed by the nonlinear model y ¼ f ðxÞ þ �, where y 2 R
denotes the system output, x ¼ ½x1 x2 � � � xm�

T 2 Rm the system
input, � is a white noise process representing for example the
observation noise, and f : Rm

! R defines the unknown system
mapping. Given a set of N training data samples, DN ¼ fxk; ykg

N
k¼1,

the task is to infer a kernel model, f̂ : Rm
! R, of the form

ŷ ¼ f̂ ðx;bN ;rÞ ¼
XN

i¼1

biKrðx;xiÞ (1)

to capture the underlying data generating mechanism, where ŷ

denotes the model output, bN ¼ ½b1 b2 � � � bN �
T is the kernel

weight vector and Krð�; �Þ is the chosen kernel function
with a kernel width r. Many types of kernel functions can be
employed and a commonly used one is the Gaussian function of
the form

Krðx; ckÞ ¼
1

ð2pr2Þ
m=2

e�kx�ckk
2=2r2

, (2)

where ck 2 R
m is the k-th kernel centre vector. For regression and

classification problems, the factor 1=ð2pr2Þ
m=2 can be combined

into kernel weights bi. The generic kernel model (1) is defined by
placing a kernel at each of the training input samples xk and
forming a linear combination of all the bases defined on the
training data set. A sparse representation is then sought by
selecting only Ns significant regressors from the full regressor set,
where Ns5N.

At a training data point ðxk; ykÞ, the kernel model (1) can be
expressed as

yk ¼ ŷk þ �k ¼
XN

i¼1

biKrðxk;xiÞ þ �k ¼ /T
ðkÞbN þ �k, (3)

where �k ¼ yk � ŷk is the modelling error at xk and /ðkÞ ¼

½Kk;1 Kk;2 � � � Kk;N�
T with Kk;i ¼ Krðxk;xiÞ. By defining U ¼

½/1 /2 � � � /N� with /k ¼ ½K1;k K2;k � � � KN;k�
T for 1pkpN, y ¼

½y1 y2 � � � yN�
T and e ¼ ½�1 �2 � � � �N �

T, the regression model (3)
over the training data set DN can be expressed in the matrix form

y ¼ UbN þ e. (4)

Note that /k is the k-th column of U, while /T
ðkÞ denotes the k-th

row of U. Let an orthogonal decomposition of the regression
matrix U be U ¼W A, where

A ¼

1 a1;2 � � � a1;N

0 1 . .
. ..

.

..

. . .
. . .

.
aN�1;N

0 � � � 0 1

2
666664

3
777775 (5)

and

W ¼ ½w1 w2 � � � wN� (6)

with orthogonal columns satisfying wT
i wj ¼ 0, if iaj. The regres-

sion model (4) can alternatively be expressed as

y ¼W gN þ e, (7)

where the weight vector gN ¼ ½g1 g2 � � � gN�
T defined in the

orthogonal model space W satisfies the triangular system
AbN ¼ gN . The space spanned by the original model bases /k,
1pkpN, is identical to the space spanned by the ortho-
gonal model bases wk, 1pkpN, and the model is equivalently
expressed by

ŷk ¼ wTðkÞgN , (8)

where wTðkÞ ¼ ½wk;1 wk;2 � � � wk;N� is the k-th row of W. A
procedure that can be used to perform the orthogonalisation is
summarised in Appendix A.

2.2. Classification

For notational simplification, we only consider the two-
class classification problem with the given training data set
DN ¼ fxk; ykg

N
k¼1, where xk 2 R

m is an m-dimensional pattern
vector and yk 2 f�1;þ1g is the class label for xk. The task is to
construct a kernel classifier of the form

ỹk ¼ sgnðŷkÞ (9)

with

ŷk ¼
XN

i¼1

biKrðxk;xiÞ, (10)

where ỹk is the estimated class label for xk and

sgnðyÞ ¼
�1; yp0;

þ1; y40:

(
(11)

Let us define the modelling error as �k ¼ yk � ŷk. Then the
classification model over the training data set DN can be expressed
in the regression model of (4), recited here y ¼ UbN þ e, or
equivalently in the orthogonal regression model of (7), rewritten
here y ¼W gN þ e, where all the relevant notations are as defined
in Section 2.1. It is clear that the kernel classifier construction can
be expressed in the same kernel regression modelling framework
of Section 2.1, and the only difference is that the target function yk

in classification applications is discrete valued. In particular, for
the two-class classification problem, yk is binary. The objective is
again to derive a sparse kernel model that posses good general-
isation capability and contains only Ns significant kernels.
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2.3. Kernel density estimation

Based on a finite data sample set DN ¼ fxkg
N
k¼1 drawn from a

density pðxÞ, where xk 2 R
m, the task is to estimate the unknown

density pðxÞ using the kernel density estimate of the form

p̂ðx;bN ;rÞ ¼
XN

k¼1

bkKrðx;xkÞ (12)

with the constraints

bkX0; 1pkpN (13)

and

bT
N1N ¼ 1, (14)

where 1N denotes the vector of ones with dimension N. The kernel
function Krð�; �Þ is chosen to be the Gaussian kernel (2) in this
study. However, many other kernel functions can also be used in
the density estimate (12). This kernel density estimation is an
unsupervised learning problem, as the desired response for the
training data points xk are unknown.

The well-known Parzen window (PW) estimate [41], denoted
as p̂ðx;bNPar

;rParÞ, is obtained by simply setting all the elements of
bNPar

to 1=N, and the kernel width rPar is typically determined via
cross-validation [39,49]. The PW estimate is remarkably simple
and accurate [41]. The PW estimate in fact can be derived as the
maximum likelihood estimator using the divergence-based
criterion [35]. The negative cross-entropy or divergence between
the true density pðxÞ and the estimate p̂ðx;bN ;rÞ, calculated over
the training data set DN , is defined as

Z
Rm

pðuÞ log p̂ðu;bN ;rÞdu �
1

N

XN

k¼1

log p̂ðxk;bN ;rÞ

¼
1

N

XN

k¼1

log
XN

n¼1

bnKrðxk;xnÞ

 !
. (15)

Minimising this divergence subject to constraints (13) and (14)
leads to bn ¼ 1=N for 1pnpN, i.e. the PW estimate. A disadvan-
tage associated with the PW estimate is its high computational
cost of the point density estimate for a future data sample, as the
PW estimate employs the full training data sample set in defining
density estimate for subsequent observation. This high test cost
has motivated the research on the sparse kernel density (SKD)
estimation techniques [55,38,53,22,12,13,18].

Following the approach of [13], the unsupervised density
learning is transformed into a supervised learning problem. The
PW estimate can be regarded as the ‘‘observation’’ of the true
density contaminated by some ‘‘observation noise’’, namely

p̂ðx;bNPar
;rParÞ ¼ pðxÞ þ �̃ðxÞ. (16)

Thus the generic kernel density estimation problem (12) can be
viewed as the following regression problem with the PW estimate
as the ‘‘desired response’’ or target function:

p̂ðx;bNPar
;rParÞ ¼

XN

k¼1

bkKrðx;xkÞ þ �ðxÞ (17)

subject to constraints (13) and (14), where �ðxÞ denotes the
modelling error at x. Define yk ¼ p̂ðxk;bNPar

;rParÞ and �k ¼ �ðxkÞ.
Then the generic kernel density estimation problem is expressed
in the same kernel regression modelling framework of (4), recited
here again y ¼ UbN þ e, subject to the nonnegative constraint (13)
and the unity constraint (14), where all the relevant notations
have been defined in Section 2.1. The regression model (4) can of
course be written equivalently in the form of (7), which is recited
here again y ¼W gN þ e. The objective is to obtain a sparse Ns-
term kernel model, satisfying the kernel weight constraints (13)

and (14) and yet having a test performance comparable to that of
the full-sample optimised PW estimate.

3. OLS algorithm

As established in the previous section, the regression, classi-
fication and PDF estimation can all be unified within the common
regression modelling framework. Therefore, the OLS forward
selection based on the LOO test criteria and LR (OLS-LOO-LR)
[14,26,13] provides an efficient algorithm to construct a sparse
kernel model that generalise well. For the regression and density
modelling, the LOO MSE criterion is an appropriate measure of
model’s generalisation capability for subset model selection
[14,13], while for classifier construction, the LOO misclassification
rate offers a proper measure of classifier’s generalisation perfor-
mance for selecting significant kernels [26]. SKD construction is
special as it is formulated as a constrained regression modelling,
where the kernel weights must meet the nonnegative and unity
constraints. We will adopt the combined approach of [13] to this
constrained regression modelling, in which the OLS-LOO-LR
algorithm determines the number of kernels in the SKD estimate
while a modified multiplicative nonnegative quadratic program-
ming (MNQP) algorithm [47,22] computes the kernel weights of
the selected SKD estimate.

3.1. Sparse kernel regression model construction

The LR aided least-squares (LS) solution for the weight
parameter vector gN is obtained by minimising the following
regularised error criterion [7]:

JRðgN ; kNÞ ¼ eTeþ gT
NKgN , (18)

where kN ¼ ½l1 l2 � � � lN�
T is the vector of regularisation para-

meters, and K ¼ diagfl1; l2; . . . ; lNg. In fact setting qJR=qgN ¼ 0
leads to the normal equation WTy ¼ ðWTWþKÞgN . Because
WTWþK is diagonal, the solution is gl ¼ wT

l y=ðwT
l wl þ llÞ for

1plpN, as is given in Appendix A. Criterion (18) is rooted in the
Bayesian learning framework. According to the Bayesian learning
theory [51,7,34], the optimal gN is obtained by maximising the
posterior probability of gN , which can be shown to be

pðgNjy;hN ;oÞ ¼
pðyjgN ;hN ;oÞpðgN jhN ;oÞ

pðyjhN ;oÞ
, (19)

where pðgN jhN ;oÞ is the prior with hN ¼ ½h1 h2 � � � hN�
T denoting

the vector of hyperparameters and o a noise parameter (the
inverse of the variance of �), pðyjgN ;hN ;oÞ is called the likelihood,
and pðyjhN ;oÞ is the evidence which does not depend on gN

explicitly. Under the assumption that � is white and has a
Gaussian distribution, the likelihood is given by

pðyjgN ;hN ;oÞ ¼
YN
i¼1

o
2p

� �N=2

e�ðo=2ÞeTe. (20)

If the Gaussian prior is chosen, i.e.

pðgNjhN ;oÞ ¼
YN
i¼1

ffiffiffiffi
hi

p
ffiffiffiffiffiffi
2p
p e�hig

2
i
=2, (21)

maximising logðpðgNjy;hN ;oÞÞ with respect to gN is equivalent to
minimising the following Bayesian cost function:

JBðgN ;hN ;oÞ ¼ oeTeþ gT
NHgN , (22)

where H ¼ diagfh1;h2; . . . ;hNg. It is obvious that criterion (18) is
equivalent to criterion (22) with the relationship

li ¼ hi=o; 1pipN. (23)
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The hyperparameters specify the prior distributions of gN . Since
initially the optimal value of gN is unknown, li should be
initialised to the same small value, and this corresponds to choose
a same flat distribution for each prior of gi in (21). The beauty of
the Bayesian learning framework is that it learns not only the
model parameters gN but also the related hyperparameters hN .
This is done by iteratively optimising gN and hN using the
evidence procedure [51,7,34]. Applying this evidence procedure
results in the following iterative updating formulas for the
regularisation parameters [7]:

lnew
i ¼

gold
i

N � gold

eTe

g2
i

; 1pipN, (24)

where gi for 1pipN denote the current estimated parameter
values, and

g ¼
XN

i¼1

gi with gi ¼
wT

i wi

li þwT
i wi

. (25)

Usually a few iterations (typically less than 10) are sufficient to
find a (near) optimal kN . The derivation of the updating formulas
(24) and (25), quoted from [7], can be found in Appendix B. The
use of multiple-regularisers or LR is known to be capable of
providing very sparse solutions [51,7].

It is highly desired to select a sparse model by directly
optimising the model generalisation capability, rather than
minimising the training MSE. The OLS-LOO-LR algorithm achieves
this objective by incrementally minimising the LOO MSE criterion,
which is a measure of the model’s generalisation performance
[39,14,29,24,36,37]. At the n-th stage of the OLS forward-selection
procedure, an n-term model is selected. It can be shown that the
LOO test error, denoted as �ðn;�kÞ

k , for the selected n-term model
is [14,29]

�ðn;�kÞ
k ¼ �ðnÞk =ZðnÞk , (26)

where �ðnÞk is the usual n-term modelling error and ZðnÞk is the
associated LOO error weighting. The LOO MSE for the model with
a size n is then defined by

Jn ¼
1

N

XN

k¼1

ð�ðn;�kÞ
k Þ

2
¼

1

N

XN

k¼1

ð�ðnÞk Þ
2=ðZðnÞk Þ

2. (27)

This LOO MSE can be computed efficiently due to the fact that the
n-term model error �ðnÞk and the associated LOO error weighting
ZðnÞk can be calculated recursively according to [14,29]

�ðnÞk ¼ �
ðn�1Þ
k �wk;ngn (28)

and

ZðnÞk ¼ Zðn�1Þ
k �

w2
k;n

wT
nwn þ ln

, (29)

respectively, where wk;n is the k-th element of wn. The derivation
of the LOO test error (26) together with the recursive formulas
(28) and (29) is detailed in Appendix C.

The subset model selection procedure is carried out as follows.
At the n-th stage of the selection procedure, a model term is
selected among the remaining n to N candidates if the resulting
n-term model produces the smallest LOO MSE Jn. The selection
procedure is terminated when

JNsþ1XJNs
, (30)

yielding an Ns-term sparse model. It has been shown in [29] that
the LOO statistic Jn has the following desired property with
respect to the model size n: There exists an ‘‘optimal’’ model size
Ns such that for npNs Jn decreases as n increases while condition
(30) holds. This property is extremely useful, as it enables the

selection procedure to be automatically terminated with
an Ns-term model, without the need for the user to specify a
separate termination criterion. The sparse regression model
selection procedure based on the OLS-LOO-LR algorithm is now
summarised.

� Initialisation: Set li ¼ 10�6 for 1pipN, and set iteration index
I ¼ 1.
� Step 1: Given the current kN and with the following initial

conditions

�ð0Þk ¼ yk and Zð0Þk ¼ 1; 1pkpN;

J0 ¼
1

N
yTy ¼

1

N

PN
k¼1

y2
k ;

8>><
>>: (31)

use the procedure described in Appendix D to select a subset
model with NI terms.
� Step 2: Update kN using (24) and (25) with N ¼ NI . If the pre-

set maximum iteration number (e.g. 10) is reached, stop;
otherwise set Iþ ¼ 1 and go to Step 1.

3.2. Sparse kernel classifier construction

The same LOO cross-validation concept [39] is adopted to
provide a measure of classifier’s generalisation capability. Denote
the test output of the LOO n-term model evaluated at the k-th data
sample of DN not used in training as ŷðn;�kÞ

k . The associated LOO
signed decision variable is defined by

sðn;�kÞ
k ¼ sgnðykÞŷ

ðn;�kÞ
k ¼ ykŷðn;�kÞ

k , (32)

where sgnðykÞ ¼ yk since yk 2 f�1;þ1g. The LOO misclassification
rate can be computed by

Jn ¼
1

N

XN

k¼1

Idðs
ðn;�kÞ
k Þ, (33)

where the indication function is defined by IdðyÞ ¼ 1 if yp0 and
IdðyÞ ¼ 0 if y40. The LOO misclassification rate Jn can be
evaluated efficiently because sðn;�kÞ

k can be calculated very fast
[26]. Specifically, the LOO n-term modelling error is expressed by
(also see Appendix C)

yk � ŷðn;�kÞ
k ¼

yk � ŷðnÞk

1�
Pn

i¼1

w2
k;i

wT
i wi þ li

, (34)

where ŷðnÞk is the n-term model output. Multiplying the both sides
of (34) with yk and applying y2

k ¼ 1 yields

1� sðn;�kÞ
k ¼

1� ykŷðnÞk

1�
Pn

i¼1

w2
k;i

wT
i wi þ li

. (35)

From (35), the LOO n-term signed decision variable is given by

sðn;�kÞ
k ¼

Pn
i¼1 ykgiwk;i �

Pn
i¼1

w2
k;i

wT
i wi þ li

1�
Pn

i¼1

w2
k;i

wT
i wi þ li

¼
cðnÞk

ZðnÞk

. (36)

The recursive formula for the LOO error weighting ZðnÞk is given in
(29), while cðnÞk can be represented using the following recursive
formula [26]

cðnÞk ¼ cðn�1Þ
k þ ykgnwk;n �

w2
k;n

wT
nwn þ ln

. (37)

The OLS-LOO-LR algorithm described in Section 3.1 can readily
be applied to select a sparse kernel classifier with some minor
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modifications. These modifications are due to the fact that the
selection criterion is the LOO misclassification rate (33) rather
than the LOO MSE (27). Moreover, extensive empirical experience
has suggested that all the regularisation parameters li, 1pipN,
can be set to a small positive constant l, and there is no need to
update them using the evidence procedure. This significantly
reduces the computational cost. The sparse kernel classifier
selection procedure based on this OLS-LOO algorithm is now
summarised.

� Setting l to a small positive number, and with the following
initial conditions

cð0Þk ¼ 0; Zð0Þk ¼ 1 for 1pkpN and J0 ¼ 1, (38)

use the procedure described in Appendix E to select a subset
model with Ns terms.

The LOO misclassification rate Jn also has the desired property
with respect to the classifier’s size n, namely, there exists an
optimal model size Ns such that for npNs Jn decreases as n

increases, while JNs
pJNsþ1. Therefore the selection procedure is

automatically terminated with a subset classifier containing only
Ns significant kernels.

3.3. SKD estimator construction

Since the density estimation can be expressed as a constrained
regression modelling, the OLS-LOO-LR algorithm detailed in
Section 3.1 can be used to select a sparse kernel model. The only
problem is that the kernel weights obtained by the OLS-LOO-LR
algorithm do not necessarily meet the nonnegative constraint (13)
and the unity constraint (14). This ‘‘deficiency’’, however, can
easily be corrected by using the modified MNQP algorithm to
update the kernel weights of the selected sparse model [13]. This
combined OLS-LOO-LR and MNQP algorithm offers an effective
means of obtaining SKD estimates with excellent generalisation
capability. The detailed OLS-LOO-LR algorithm has been descri-
bed in Section 3.1 and, therefore, we only need to discuss the
MNQP part.

After the structure determination using the OLS-LOO-LR
algorithm of Section 3.1, a sparse Ns-term subset kernel model is
obtained, where Ns5N. Let ANs

denote the subset matrix of A,
corresponding to the selected Ns-term subset model. The kernel
weight vector bNs

¼ ½b1 b2 � � � bNs
�T, computed from ANs

bNs
¼ gNs

,
may not satisfy constraints (13) and (14). Thus bNs

must be
recalculated using for example the modified version of the MNQP
algorithm [47,22]. Note that, since Ns is very small, the extra
computation involved is small. Formally, this task is defined as
follows. Find bNs

for the model

y ¼ UNs
bNs
þ e (39)

subject to the constraints

biX0; 1pipNs, (40)

bT
Ns

1Ns
¼ 1, (41)

where UNs
denotes the selected subset regression matrix. The

kernel weight vector can be obtained by solving the following
constrained nonnegative quadratic programming:

min
bNs

f12b
T
Ns

CNs
bNs
� vT

Ns
bNs
g

s.t. bT
Ns

1Ns
¼ 1 and biX0; 1pipNs, (42)

where CNs
¼ UT

Ns
UNs
¼ ½ci;j� 2 R

Ns�Ns is the related design matrix
and vNs

¼ UT
Ns

y ¼ ½v1 v2 � � � vNs
�T. Although there exists no closed-

form solution for this optimisation problem, the solution can
readily be obtained iteratively using a modified version of the
MNQP algorithm [47].

Since the elements of CNs
and vNs

are strictly positive, the
auxiliary function [47] for the above problem is given by

1

2

XNs

i¼1

XNs

j¼1

ci;j

bhtij ðb
htþ1i
i Þ

2

bhtii

�
XNs

i¼1

vib
htþ1i
i (43)

and the Lagrangian associated with this auxiliary problem can be
formed as [22]

L ¼
1

2

XNs

i¼1

XNs

j¼1

ci;j

bhtij ðb
htþ1i
i Þ

2

bhtii

�
XNs

i¼1

vib
htþ1i
i

� hhti
XNs

i¼1

bhtþ1i
i � 1

 !
, (44)

where the superindex hti denotes the iteration index and h is the
Lagrangian multiplier. Setting

qL

qbhtþ1i
i

¼ 0 and
qL
qhhti

¼ 0 (45)

leads to the following updating equations:

rhtii ¼ bhtii

XNs

j¼1

ci;jb
hti
j

0
@

1
A
�1

; 1pipNs, (46)

hhti ¼
XNs

i¼1

rhtii

 !�1

1�
XNs

i¼1

rhtii vi

 !
, (47)

bhtþ1i
i ¼ rhtii ðvi þ hhtiÞ. (48)

It is easy to check that, if bhtiNs
meets the constraints (40) and (41),

bhtþ1i
Ns

updated according to (46)–(48) also satisfies (40) and (41).
The initial condition can be set as bh0ii ¼ 1=Ns, 1pipNs. Alter-
native, bh0iNs

can be chosen as follows. First, if the kernel weight
vector obtained by the OLS-LOO-LR algorithm contains negative
elements, these elements are replaced by a small positive number.
The resulting kernel weight vector is then normalised and used as
bh0iNs

. During the iterative procedure, some of the kernel weights
may be driven to (near) zero [47,22]. The corresponding kernels
can then be removed from the kernel model, leading to a further
reduction in the subset model size.

4. Empirical data-modelling results

Several examples, taken from regression, classification and
density estimation applications, were used to demonstrate the
effectiveness of the proposed unified regression modelling
approach. For each data-modelling example, the full regression
model set was formed by placing a Gaussian kernel (2) on
each training data sample, and a sparse kernel model was then
selected using the OLS-LOO-LR/OLS-LOO algorithm. For SKD
estimation, additionally, the modified MNQP algorithm described
in Section 3.3 was applied to update the kernel weight vector.
The appropriate value for the kernel width r was found empiri-
cally via cross-validation. The obtained model’s generalisation
performance was evaluated based on a separate test data set not
used for training. Comparison with some existing sparse kernel
modelling techniques was made, in terms of the model generali-
sation performance, model sparsity and the complexity of model
construction process.
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4.1. Regression applications

Engine data set: This example constructed a model represent-
ing the relationship between the fuel rack position (input uk) and
the engine speed (output yk) for a Leyland TL11 turbocharged,
direct injection diesel engine operated at low engine speed. It is
known that at low engine speed, the relationship between the
input and output is nonlinear [2]. Detailed system description and
experimental setup can be found in [2]. The data set, depicted in
Fig. 1, contained 410 samples. The first 210 data points were used
in modelling and the last 200 points in model validation. The
previous results [2] have shown that this data set can be modelled
adequately as

yk ¼ f ðxkÞ þ ek, (49)

where f ð�Þ describes the unknown system to be identified, ek

denotes the system noise, and

xk ¼ ½yk�1 uk�1 uk�2�
T. (50)

The optimal value of the kernel variance for the Gaussian kernel
was found empirically to be r2 ¼ 1:69. As each xk in the training
data set was considered as a candidate kernel centre, there
were N ¼ 210 candidate kernel regressors in the full regression
model (4).

Both the OLS-LOO-LR algorithm and the support vector
machine (SVM) algorithm with the e-insensitive cost function
[23] were applied to this data set, and the two sparse Gaussian
kernel models obtained are compared in Table 1. The model

output ŷk and modelling error �k ¼ yk � ŷk generated by the
22-term kernel model obtained using the OLS-LOO-LR algorithm
are depicted in Fig. 2. The modelling performance of the 92-term
kernel model constructed by the SVM algorithm, not shown here,
are very similar to those shown in Fig. 2. It can be seen that the
two sparse regression modelling techniques achieved the same
excellent generalisation performance but the OLS-LOO-LR method
obtained a much sparser model than the SVM method. It should
be emphasised that the model size is critically important for this
particular example, as the main purpose of identifying a model for
this engine system is to use it for designing a controller. A large
model will make the controller design a very complex task and,
moreover, the resulting controller will be difficult to implement in
the real system. It is also worth emphasising that the OLS-LOO-LR
algorithm has considerably computational advantages over the
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Fig. 1. Engine data set (a) input uk and (b) output yk .

Table 1
Comparison of modelling accuracy for the engine data set.

Algorithm Model size Training MSE Test MSE

OLS-LOO-LR 22 0.000453 0.000490

SVM 92 0.000447 0.000498
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Fig. 2. Modelling performance for the engine data set: (a) model prediction ŷk

(dashed) superimposed on system output yk (solid) and (b) model prediction error

�k ¼ yk � ŷk . The 22-term model was constructed by the proposed OLS-LOO-LR

algorithm.
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SVM algorithm. Both the algorithms require to determine the
kernel width r. However, the SVM method has two more learning
parameters, namely the error-band and trade-off parameters [23],
that require tuning. Therefore, the OLS-LOO-LR algorithm is easier
to tune and computationally more efficient than the SVM
algorithm.

Boston housing data set: This was a regression benchmark data
set, available at the UCI repository [30]. The data set comprised
506 data points with 14 variables. The task was to predict the
median house value from the remaining 13 attributes. From the
data set, 456 data points were randomly selected for training and
the remaining 50 data points were used to form the test set.
Because a Gaussian kernel was placed at each training data
sample, there were N ¼ 456 candidate regressors in the full regre-
ssion model (4). The kernel width for the OLS-LOO-LR algorithm
was determined via a grid-search-based cross-validation. The
SVM algorithm [23] was also used to construct the regression
model for this data set, as a comparison. The three learning
parameters of the SVM algorithm, the kernel width, error-band
and trade-off parameters, were also tuned via cross-validation.
Average results were given over 100 repetitions, and the two
sparse Gaussian kernel models obtained by the OLS-LOO-LR and
SVM algorithms, respectively, are compared in Table 2.

For the particular computational platform used in the experi-
ment, the recorded average run time for the OLS-LOO-LR
algorithm when the kernel width was fixed was 200 times faster
than the SVM algorithm when the kernel width, error-band and
trade-off parameters were chosen. One could argue that by
adopting fast implementation of the SVM algorithm significant
reduction in run time can be achieved but it would still be less
efficient than the OLS-LOO-LR algorithm. It can be seen from
Table 2 that the OLS-LOO-LR algorithm achieved better modelling
accuracy with a much sparser model than the SVM algorithm. The
test MSE of the SVM algorithm was poor. This was probably
because the three learning parameters, namely the kernel width,
error-band and trade-off parameters, were not tuned to the
optimal values. For this regression problem of input dimension 13
and data size N � 500, the grid search required by the SVM
algorithm to tune the three learning parameters was expensive
and the optimal values of the three learning parameters were hard
to find, compared with for example the previous smaller engine
data set.

4.2. Classification applications

Diabetes data: This two-class classification benchmark data set
was originated in the UCI repository [30] and the data set used in
the experiment was obtained from [31]. The feature space
dimension was m ¼ 8. There were 100 realisations of the data
set, each having 468 training patterns and 300 test patterns. Seven
existing state-of-the-art radial basis function (RBF) and kernel
classifiers were compared in [31,43]. The results given in [31]
were reproduced in Table 3. For the first five methods studied in

[31], the nonlinear RBF network with 15 optimised Gaussian units
was used. For the SVM algorithm with Gaussian kernel, no average
model size was given in [31] but it could safely be assumed that it
was larger than, said, 100. The kernel Fisher discriminant was the
nonsparse optimal classifier using all the N ¼ 468 training data
samples as kernels. The OLS-LOO algorithm was applied to
construct sparse Gaussian kernel classifiers for this data set, and
the results averaged over the 100 realisations are also listed in
Table 3. It can be seen that the proposed OLS-LOO method
compared favourably with the existing benchmark RBF and kernel
classifier construction algorithms, both in terms of classification
accuracy and model size.

Breast cancer data: This classification benchmark data set was
also originated in the UCI repository [30] and the actual data set
used in the experiment was obtained from [31]. The feature input
space dimension was m ¼ 9. There were 100 realisations of this
data set, each containing 200 training patterns and 77 test
patterns. In [31,43], seven existing state-of-the-art RBF and kernel
classifier construction algorithms were compared and the perfor-
mance averaged over all the 100 realisations were given. For the
first five methods studied in [31], the RBF network with five
optimised nonlinear Gaussian units was used. The kernel Fisher
discriminant was the optimal nonsparse method that placed a
Gaussian kernel on every training data sample. For the SVM
method with the Gaussian kernel, again no average model size
was given in [31] but it was certainly larger than, said, 30. The
OLS-LOO algorithm was applied to all the 100 realisations of the
data set to construct sparse Gaussian kernel classifiers and
the results obtained are given in Table 4, in comparison with the
benchmark results quoted from [31,43]. From Table 4, it can be
seen that the OLS-LOO algorithm compared favourably with these
existing state-of-the-art RBF and kernel modelling methods, both
in terms of classification accuracy and model size.

4.3. Density estimation applications

Synthetic two-dimensional classification data: This was a two-
class classification problem in a two-dimensional feature space
[44]. The training data set contained 250 samples with 125 points
for each class, and the test data set had 1000 points with
500 samples for each class. The optimal Bayes test error rate based
on the true underlying probability distribution for this example
was known to be 8%. We first estimated the two conditional
density functions p̂ðx;bN ;rjC0Þ and p̂ðx;bN ;rjC1Þ from the training
data, and then applied the Bayes decision rule

if p̂ðx;bN ;rjC0ÞXp̂ðx;bN ;rjC1Þ; x belongs to class 0;

else; x belongs to class 1

)
(51)

to the test data set and calculated the corresponding error rate.
Table 5 lists the results obtained by the three kernel density
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Table 2
Comparison of modelling accuracy for the Boston housing data set.

Algorithm OLS-LOO-LR SVM

Model size 58:6� 11:3 243:2� 5:3

Training MSE 12:9690� 2:6628 6:7986� 0:4444

Test MSE 17:4157� 4:6670 23:1750� 9:0459

The results were averaged over 100 realisations and quoted as the mean�

standard deviation.

Table 3
Average classification test error rate in % over the 100 realisations of the diabetes

data set.

Algorithm Test error rate Model size

RBF-network 24:29� 1:88 15

AdaBoost RBF-network 26:47� 2:29 15

LP-Reg-AdaBoost 24:11� 1:90 15

QP-Reg-AdaBoost 25:39� 2:20 15

AdaBoost-Reg 23:79� 1:80 15

SVM 23:53� 1:73 Not available

Kernel Fisher discriminant 23:21� 1:63 468

OLS-LOO 23:00� 1:70 6:0� 1:0

The first seven results were quoted from [31].
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estimates, the PW estimator, the proposed SKD estimator based
on the combined OLS-LOO-LR and MNQP algorithm, and our
previous SKD estimator [12], where the value of the kernel width
r for each kernel density estimate was determined via cross-
validation.

The algorithm of [12], although also based on the OLS-LOO-LR
regression framework, is very different from the current combined
OLS-LOO-LR and MNQP algorithm. In particular, it transfers the
kernels into the corresponding cumulative distribution functions
and uses the empirical distribution function calculated on the
training data set as the target function of the unknown cumulative
distribution function. Moreover, in the work of [12], the unity
constraint is met by normalising the kernel weight vector of the
final selected model, which is nonoptimal, and the nonnegative
constraint is ensured by adding a test to the OLS forward-selection
procedure, which imposes considerable computational cost. It can
be seen from Table 5 that the proposed SKD estimation method
yielded the very sparse conditional density estimates and
achieved the optimal Bayes classification performance. This

clearly demonstrated the accuracy of the density estimates. Note
that the computational complexity of the proposed SKD estimator
was much smaller than the SKD estimator of [12]. Fig. 3(a) and (b)
depict the decision boundaries of the classifier (51) for the PW
estimate and the SKD estimate obtained by the combined OLS-
LOO-LR and MNQP algorithm, respectively.

Six-dimensional density estimation: The underlying density to
be estimated was given by

pðxÞ ¼
1

3

X3

i¼1

1

ð2pÞ6=2

1

det1=2
jCij

e�ð1=2Þðx�liÞ
TC�1

i ðx�liÞ (52)

with

l1 ¼ ½1:0 1:0 1:0 1:0 1:0 1:0�T,

C1 ¼ diagf1:0;2:0;1:0;2:0;1:0;2:0g, (53)

l2 ¼ ½�1:0 � 1:0 � 1:0 � 1:0 � 1:0 � 1:0�T,

C2 ¼ diagf2:0;1:0;2:0;1:0;2:0;1:0g, (54)

l3 ¼ ½0:0 0:0 0:0 0:0 0:0 0:0�T,

C3 ¼ diagf2:0;1:0;2:0;1:0;2:0;1:0g. (55)

A training data set of N ¼ 600 randomly drawn samples was used
to construct kernel density estimates, and a separate test data set
of Ntest ¼ 10;000 samples was used to calculate the L1 test error
for the resulting estimate according to

L1 ¼
1

Ntest

XNtest

k¼1

jpðxkÞ � p̂ðxk;bN ;rÞj. (56)

The experiment was repeated Nrun ¼ 100 different random runs.
The optimal kernel width was found to be r ¼ 0:65 for the PW
estimate and r ¼ 1:2 for both the previous SKD algorithm [12] and
the combined OLS-LOO-LR and MNQP algorithm, respectively, via
cross-validation. The results obtained by the three density
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Table 4
Average classification test error rate in % over the 100 realisations of the breast

cancer data set.

Algorithm Test error rate Model size

RBF-network 27:64� 4:71 5

AdaBoost RBF-network 30:36� 4:73 5

LP-Reg-AdaBoost 26:79� 6:08 5

QP-Reg-AdaBoost 25:91� 4:61 5

AdaBoost-Reg 26:51� 4:47 5

SVM 26:04� 4:74 Not available

Kernel Fisher discriminant 24:77� 4:63 200

OLS-LOO 25:74� 5:00 6:0� 2:0

The first seven results were quoted from [31].

Table 5
Performance comparison for the synthetic two-class two-dimensional classification data set.

Method p̂ð�jC0Þ r p̂ð�jC1Þ r Test error rate (%)

Parzen window estimate 125 kernels 0.24 125 kernels 0.23 8.0

OLS-LOO-LR/MNQP 6 kernels 0.28 5 kernels 0.28 8.0

Previous SKD estimate of [12] 5 kernels 0.20 4 kernels 0.20 8.3
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Fig. 3. (a) Decision boundary of the Parzen window estimate and (b) decision boundary of the sparse kernel density estimate obtained by the combined OLS-LOO-LR and

MNQP algorithm, for the synthetic two-class two-dimensional classification example, where circles represent the class-1 training data and crosses the class-0 training data.
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estimators are summarised in Table 6. It can be seen that the
proposed combined OLS-LOO-LR and MNQP algorithm yielded
sparser kernel density estimates with better test performance.

5. Conclusions

A regression framework has been proposed for sparse kernel
modelling, which unifies the supervised regression and classifica-
tion learning problems as well as the unsupervised PDF learning
problem. An OLS algorithm has been developed for selecting
sparse kernel models that generalise well, based on the LOO test
criteria and coupled with local regularisation. For sparse kernel
density estimation, a combined approach of the OLS-LOO-LR
algorithm and multiplicative nonnegative quadratic programming
(MNQP) has been proposed, with the OLS-LOO-LR algorithm
selecting a sparse kernel density estimate while the MNQP
algorithm computing the kernel weights of the selected model
to meet the constraints for density estimate. Empirical data-
modelling results involving regression, classification and density
estimation have been presented to demonstrate the effectiveness
of the proposed unified data-modelling framework based on the
OLS-LOO-LR algorithm, and the results shown have confirmed
that this unified sparse kernel regression framework offers a
state-of-the-art for data-modelling applications.

Appendix A

The modified Gram–Schmidt orthogonalisation procedure [8]
calculates the A matrix row by row and orthogonalises U as
follows: At the l-th stage make the columns /j, lþ 1pjpN,
orthogonal to the l-th column and repeat the operation for
1plpN � 1. Specifically, denoting /½0�j ¼ /j, 1pjpN, then for
l ¼ 1;2; . . . ;N � 1,

wl ¼ /½l�1�
l ;

al;j ¼ wT
l /
½l�1�
j =ðwT

l wlÞ; lþ 1pjpN;

/½l�j ¼ /½l�1�
j � al;jwl; lþ 1pjpN:

9>>>=
>>>;

(57)

The last stage of the procedure is simply wN ¼ /½N�1�
N . The elements

of gN are computed by transforming y½0� ¼ y in a similar way

gl ¼ wT
l y½l�1�=ðwT

l wl þ llÞ;

y½l� ¼ y½l�1� � glwl;

)
1plpN, (58)

where ll, 1plpN, are the regularisation parameters.

Appendix B

It can be shown that the log evidence for hN and o is [34]

logðpðyjhN ;oÞÞ �
XN

i¼1

1

2
logðhiÞ �

N

2
logðpÞ þ N

2
logðoÞ

�
XN

i¼1

1

2
hig

2
i �

1

2
oeTe�

1

2
logðdetðBÞÞ, (59)

where gN is set to the maximum a posterior probability solution,
and the Hessian matrix B is diagonal and is given by

B ¼ HþoWTW

¼ diagfh1 þowT
1w1;h2 þowT

2w2; . . . ;hN þowT
NwNg. (60)

Setting q logðpðyjhN ;oÞÞ=qo ¼ 0 yields the recalculation formula
for o

oeTe ¼ N �
XN

i¼1

owT
i wi

hi þowT
i wi

. (61)

Setting q logðpðyjhN ;oÞÞ=qhi ¼ 0 yields the recalculation formula
for hi

hi ¼
owT

i wi

g2
i ðhi þowT

i wiÞ
. (62)

Note li ¼ hi=o and define

g ¼
XN

i¼1

gi (63)

with

gi ¼
owT

i wi

hi þowT
i wi

¼
wT

i wi

li þwT
i wi

. (64)

Then the recalculation formula for li is

li ¼
gi

N � g
eTe

g2
i

; 1pipN. (65)

Appendix C

Consider the full N-term model first. The regularised LS
solution for the parameter vector is

gN ¼ ðW
TWþKÞ�1WTy ¼ B̃�1WTy, (66)

where B̃ ¼WTWþK. The modelling error at the k-th training data
sample is given by

�k ¼ �
ðNÞ
k ¼ yk � gT

NwðkÞ ¼ yk � yTWB̃�1wðkÞ. (67)

Let the k-th data sample be deleted from the training set DN , and
the resulting LOO training set is used to estimate the model
parameter vector. The corresponding regularised LS solution is
defined by

gðN;�kÞ
N ¼ ðB̃ðN;�kÞ

Þ
�1
ðWðN;�kÞ

Þ
TyðN;�kÞ, (68)

where B̃ðN;�kÞ
¼ ðWðN;�kÞ

Þ
TWðN;�kÞ

þK, WðN;�kÞ and yðN;�kÞ denote the
resulting LOO regression matrix and LOO desired output vector,
respectively. The model output for this LOO model evaluated at
the k-th data sample not used in training is given by

ŷðN;�kÞ
k ¼ ðgðN;�kÞ

N Þ
TwðkÞ. (69)

By definition, it can be shown that

B̃ðN;�kÞ
¼ B̃�wðkÞwTðkÞ, (70)

ðyðN;�kÞÞ
TWðN;�kÞ

¼ yTW� ykwTðkÞ. (71)

The LOO test error evaluated at the k-th data sample not used for
training, denoted as �ðN;�kÞ

k ¼ yk � ŷðN;�kÞ
k , is given by

�ðN;�kÞ
k ¼ yk � ðg

ðN;�kÞ
N Þ

TwðkÞ

¼ yk � ðy
ðN;�kÞÞ

TWðN;�kÞ
ðB̃ðN;�kÞ

Þ
�1wðkÞ. (72)
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Table 6
Performance comparison for the six-dimensional three-Gaussian mixture.

Method L1 test error Kernel number

Parzen window estimate ð3:5195� 0:1616Þ � 10�5 600� 0

SKD estimate of [12] ð4:4781� 1:2292Þ � 10�5 14:9� 2:1

OLS-LOO-LR/MNQP ð3:1134� 0:5335Þ � 10�5 9:4� 1:9
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Applying the matrix inversion lemma to (70) yields

ðB̃ðN;�kÞ
Þ
�1
¼ B̃�1

þ
B̃�1wðkÞwTðkÞB̃�1

1�wTðkÞB̃�1wðkÞ
(73)

and

ðB̃ðN;�kÞ
Þ
�1wðkÞ ¼

B̃�1wðkÞ

1�wTðkÞB̃�1wðkÞ
. (74)

Substituting (71) and (74) into (72) results in

�ðN;�kÞ
k ¼ yk �

ðyTW� ykwTðkÞÞB̃�1wðkÞ

1�wTðkÞB̃�1wðkÞ

¼
yk � yTWB̃�1wðkÞ

1�wTðkÞB̃�1wðkÞ
¼

yk � ŷðNÞk

1�wTðkÞB̃�1wðkÞ

¼
�ðNÞk

1�wTðkÞB̃�1wðkÞ
¼
�ðNÞk

ZðNÞk

, (75)

where the N-term model output ŷðNÞk ¼ gT
NwðkÞ ¼ yTWB̃�1wðkÞ, the

N-term modelling error

�ðNÞk ¼ yk �
XN

i¼1

wk;igi (76)

and the associated LOO error weighting

ZðNÞk ¼ 1�wTðkÞðWTWþKÞ�1wðkÞ

¼ 1�
XN

i¼1

w2
k;i

wT
i wi þ li

. (77)

Now consider the subset model consisting of n model columns.
Denote the corresponding n-column regression matrix as

WðnÞ
¼ ½w1 w2 � � � wn� (78)

and the k-th row of WðnÞ as

ðwðnÞðkÞÞT ¼ ½wk;1 wk;2 � � � wk;n�. (79)

Further denote the n-term modelling error at the k-th data sample
as �ðnÞk and the associated LOO error weighting as ZðnÞk . Substituting
WðnÞ for W and wðnÞðkÞ for wðkÞ, respectively, in the above
derivation leads naturally to

�ðnÞk ¼ yk �
Xn

i¼1

wk;igi ¼ yk �
Xn�1

i¼1

wk;igi

 !
�wk;ngn

¼ �ðn�1Þ
k �wk;ngn (80)

and

ZðnÞk ¼ 1�
Xn

i¼1

w2
k;i

wT
i wi þ li

¼ 1�
Xn�1

i¼1

w2
k;i

wT
i wi þ li

 !
�

w2
k;n

wT
nwn þ li

¼ Zðn�1Þ
k �

w2
k;n

wT
nwn þ li

(81)

as well as the LOO test error of the n-term model evaluated at the
k-th data sample not used for training

�ðn;�kÞ
k ¼ yk � ŷðn;�kÞ

k ¼
yk � ŷðnÞk

1�
Pn

i¼1

w2
k;i

wT
i wi þ li

¼
�ðnÞk

ZðnÞk

, (82)

where ŷðnÞk ¼
Pn

i¼1 wk;igi is the n-term model output.

Appendix D

At the beginning of the l-th stage of the OLS forward-selection
procedure, the l� 1 regressors have been selected and the
regression matrix is expressed as

U½l�1�
¼ ½w1 � � � wl�1 /½l�1�

l � � � /½l�1�
N �. (83)

Let a very small positive number Tz be given, which specifies the
zero threshold and is used to automatically avoiding any ill-
conditioning or singular problem. With the initial conditions as
specified in (31), the l-th stage of the selection procedure is given
as follows.

Step 1: For lpjpN:

� Test—Conditioning number check. If ð/½l�1�
j Þ

T/½l�1�
j oTz, the j-th

candidate is not considered.
� Compute

gfjgl ¼
ð/½l�1�

j Þ
Ty½l�1�

ðð/½l�1�
j Þ

T/½l�1�
j þ ljÞ

, (84)

�ðlÞfjgk ¼ y½l�1�
k �f½l�1�

j ðkÞgfjgl ;

ZðlÞfjgk ¼ Zðl�1Þ
k �

ðf½l�1�
j ðkÞÞ2

ð/½l�1�
j Þ

T/½l�1�
j þ lj

;

9>>>=
>>>;

1pkpN, (85)

Jfjgl ¼
1

N

XN

k¼1

�ðlÞfjgk

ZðlÞfjgk

 !2

, (86)

where y½l�1�
k and f½l�1�

j ðkÞ are the k-th elements of y½l�1� and
/½l�1�

j , respectively. Let the index set Jl be

Jl ¼ flpjpN and j passes Testg. (87)

Step 2: Find

Jl ¼ Jfjlg

l ¼ minfJfjgl ; j 2Jlg. (88)

Then the jl-th column of U½l�1� is interchanged with the l-th
column of U½l�1�, the jl-th column of A is interchanged with
the l-th column of A up to the ðl� 1Þ-th row, and the jl-th element
of kN is interchanged with the l-th element of kN . This effectively
selects the jl-th candidate as the l-th regressor in the subset
model.

Step 3: The selection procedure is terminated with a
ðl� 1Þ-term model, if JlXJl�1. Otherwise, perform the ortho-
gonalisation as indicated in (57) to derive the l-th row of
A and to transform U½l�1� into U½l�; let gl ¼ gfjlg

l and update y½l�1�

into y½l� in the way shown in (58); update the LOO error
weightings

ZðlÞk ¼ Zðl�1Þ
k �

w2
k;l

wT
l wl þ ll

; 1pkpN (89)

and go to Step 1.

Appendix E

The OLS-LOO algorithm for selecting a subset kernel classifier
is basically the same one described in Appendix D, except for
some minor modifications. These required modifications are
explicitly given here. The initial condition is now defined by
(38), and all li are fixed to the constant l. In Step 1, the calculation
of the candidates’ LOO MSE (85) and (86) is replaced by the
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following candidates’ LOO misclassification rate

cðlÞfjgk ¼ cðl�1Þ
k þ ykgfjgl f½l�1�

j ðkÞ

�
ðf½l�1�

j ðkÞÞ2

ð/½l�1�
j Þ

T/½l�1�
j þ l

;

ZðlÞfjgk ¼ Zðl�1Þ
k �

ðf½l�1�
j ðkÞÞ2

ð/½l�1�
j Þ

T/½l�1�
j þ l

;

sðl;�kÞfjg
k ¼

cðlÞfjgk

ZðlÞfjgk

;

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

1pkpN, (90)

Jfjgl ¼
1

N

XN

k¼1

Idðs
ðl;�kÞfjg
k Þ. (91)

In Step 3, in addition to update Zðl�1Þ
k according to (89), cðl�1Þ

k are
also updated according to

cðlÞk ¼ cðl�1Þ
k þ ykglwk;l �

w2
k;l

wT
l wl þ l

; 1pkpN. (92)
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