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a b s t r a c t

An efficient two-level model identification method aiming at maximising a model's generalisation
capability is proposed for a large class of linear-in-the-parameters models from the observational data.
A new elastic net orthogonal forward regression (ENOFR) algorithm is employed at the lower level to
carry out simultaneous model selection and elastic net parameter estimation. The two regularisation
parameters in the elastic net are optimised using a particle swarm optimisation (PSO) algorithm at the
upper level by minimising the leave one out (LOO) mean square error (LOOMSE). There are two elements
of original contributions. Firstly an elastic net cost function is defined and applied based on orthogonal
decomposition, which facilitates the automatic model structure selection process with no need of using a
predetermined error tolerance to terminate the forward selection process. Secondly it is shown that the
LOOMSE based on the resultant ENOFR models can be analytically computed without actually splitting
the data set, and the associate computation cost is small due to the ENOFR procedure. Consequently a
fully automated procedure is achieved without resort to any other validation data set for iterative model
evaluation. Illustrative examples are included to demonstrate the effectiveness of the new approaches.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

A large class of nonlinear models including some types of
neural networks can be classified as linear models which include
statistically linear or linear-in-the-parameters models [1,2]. These
models have provable learning and convergence conditions and
are well suited to be used for adaptive learning. They are amenable
to parallel implementations, and have clear applications in many
engineering applications [3–5]. A basic principle in practical non-
linear data modelling is the parsimonious principle that ensures
the smallest possible model for the explanation of the observa-
tional data. For linear models, the forward orthogonal least
squares (OLS) algorithm efficiently constructs parsimonious mod-
els [6,7], and has been a popular tool in associative neural
networks such as fuzzy/neurofuzzy systems [8,9] and wavelet
neural networks [10,11]. The algorithm has also been utilised in
a wide range of engineering applications, e.g. aircraft gas turbine
modelling [12], fuzzy control of multi-input multi-output (MIMO)
nonlinear systems [13], power system control [14] and fault
detection [15].

The main purpose of model construction is to produce good
generalisation (capability to approximate system output for new
input data that are not used in estimation), through two important

aspects in system identification, i.e. choosing parsimonious model
structure and deriving robust model parameter estimates for a
smooth prediction surface (e.g. parameter control via regularisa-
tion). Fundamental to the evaluation of model generalisation
capability is the concept of cross-validation (CV) [16], which can
be used either in parameter estimation (e.g. tuning regularisation
parameter [17,18], forming new parameter estimates [19]), or to
derive model selection criteria based on information theoretic
principles [20], which regularises model structure in order to
produce parsimonious models, since a parsimonious model is
favoured by these criteria. The regularisation assisted OLS (ROLS)
approaches have been proposed based on minimising the leave
one out criteria for regression, classification and probability
density estimation [21]. In particular each radial basis function
(RBF) unit has a tunable centre vector as well as an adjustable
diagonal covariance matrix [21]. Specifically, at each forward
regression stage of the model construction procedure one RBF
unit's centre vector and diagonal covariance matrix are optimised
using a particle swarm (PSO) algorithm. The PSO [22,23] consti-
tutes a population based stochastic optimisation technique, which
was inspired by the social behaviour of bird flocks or fish schools.
The algorithm commences with random initialisation of a swarm
of individuals, referred to as particles, within the specific pro-
blem's search space. It then endeavours to find a globally optimum
solution by gradually adjusting the trajectory of each particle
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towards its own best location and towards the best position of the
entire swarm at each optimisation step. The PSO method is
popular owing to its simplicity in implementation, ability to
rapidly converge to a “reasonably good” solution and to “steer
clear” of local minima. It has been successfully applied to a wide
range of optimisation problems [24–28].

Regularisation methods are developed to carry out parameter
estimation and model structure selection simultaneously [29,30].
It has been shown [31,32] that the parameter regularisation is
equivalent to a maximised a posterior probability (MAP) estimate
of parameters from Bayesian viewpoint by adopting a Gaussian
prior for parameters. The regularisation [17,18] uses a penalty
function on l2 norms of the parameters. From the powerful
Bayesian learning view point, a regularisation parameter is equiva-
lent to the ratio of the related hyperparameter to the noise
parameter, lending to an iterative evidence procedure for solving
the optimal regularisation parameters [29,32]

Alternatively the model sparsity can be achieved by minimising
the l1 norm of the parameters. The l1 norm minimisation is
fundamental to the basis pursuit or least absolute shrinkage and
selection operator (LASSO) [33,34]. The least angle regression
(LAR) procedure [35] is developed for solving the problem effi-
ciently. The Bayesian interpretation for LASSO is simply by adopt-
ing an Laplacian prior for parameters. The advantage of LASSO is
that it can achieve much sparser models by forcing more para-
meters to zero, than models derived from the minimisation of the
lp norm, as most lp norms will produce small, but nonzero, values.
Unfortunately introducing nondifferentiable l1 norm in the cost
function brings difficulties of model parameter estimation and
finding an appropriate l1 regulariser.

Another disadvantage of using l1 optimisation is that a group of
correlated terms cannot be selected together, which is not desir-
able for the sake of interpretability of the model in some applica-
tions. On the other hand, the use of l2 will improve model
generalisation, but cannot be used for model selection by itself.
Combining a locally regularised orthogonal least squares (LROLS)
model selection [36] with D-optimality experimental design
enhances model robustness [31].

Recently a promising concept of the elastic net (EN) has been
proposed by minimising the l1 and l2 norms of the parameters
together [30]. The EN keeps the model sparsity of LASSO, while
strongly correlated terms tend to be in or out of the model
together. It is shown that the elastic net problem can be trans-
formed into an equivalent LASSO problem on an augmented data,
based on which the LAR procedure is applicable, referred to as
LARS-EN [30]. Note that because there are two regularisation
parameters in the elastic net, the cross validation has to be
performed over a two-dimensional space. The tenfold cross
validation was used in the choosing two regularisation parameters
by searching over a grid of l2 norm regularisation parameter
values. Then for each setting of the l2 norm regularisation para-
meter, the algorithm LARS-EN produces the entire solution path of
the elastic net, which is used to select l1 norm regularisation
parameter by tenfold CV. Clearly this may not yield the optimal
parameters if the grid search is set at a coarse level, but increasing
the grid search at a very fine level would inevitably increase the
computational cost. It would be desirable that the two regularisa-
tion parameters can be optimised simultaneously based on cross
validation as well as in an efficient manner.

In this paper we propose an efficient model identification
method aiming at maximising a model's generalisation capability.
The paper contains two elements of novel contribution. Firstly an
elastic net cost function is defined and applied based on orthogo-
nal decomposition, which facilitates the automatic model struc-
ture selection process with no need of using a predetermined error
tolerance to terminate the forward selection process. Secondly an

original derivation of analytical evaluation of LOOMSE is presented
based on the resultant ENOFR models without actually splitting
the data set. Consequently a fully automated procedure is achieved
without resort to any other validation data set for iterative model
evaluation. The algorithm has a two level structure. At the upper
level, the two regularisation parameters in the elastic net are
optimised using PSO by minimising the LOOMSE. At the lower
level are the simultaneous model selection and elastic net para-
meter estimation. Illustrative examples are included to demon-
strate the effectiveness of the new approaches.

2. Preliminaries

Consider the general nonlinear system represented by the
nonlinear model [37]:

yðkÞ ¼ f ðxðkÞÞþeðkÞ; ð1Þ

where xðkÞARm denotes the system input vector and y(k) is the
system output variable, respectively. e(k) is the systemwhite noise
and f ð�Þ is the unknown system mapping. The system model (1) is
to be identified from an observation data set DN ¼ fxðkÞ; yðkÞgNk ¼ 1
using some suitable functional which can approximate f ð�Þ with
arbitrary accuracy. One class of such functionals is the kernel
regression model of the form:

yðkÞ ¼ ŷðkÞþeðkÞ ¼ ∑
nM

i ¼ 1
θiϕiðxðkÞÞþeðkÞ; ð2Þ

where ŷðkÞ denotes the model output, θi are the model weights,
ϕiðxðkÞÞ are the regressors, and nM is the total number of candidate
regressors or model terms.

By letting ϕi ¼ ½ϕiðxð1ÞÞ⋯ϕiðxðNÞÞ�T , for 1r irnM , and defining

y¼
yð1Þ
⋮

yðNÞ

2
64

3
75; Φ¼ ½ϕ1⋯ϕnM

�;

θ¼
θ1

⋮
θnM

2
64

3
75; e¼

eð1Þ
⋮

eðNÞ

2
64

3
75; ð3Þ

the regression model (2) can be written in the matrix form

y¼Φθþe: ð4Þ

Let an orthogonal decomposition of the matrix Φ be

Φ¼WA; ð5Þ

where

A¼

1 a1;2 ⋯ a1;nM
0 1 ⋱ ⋮
⋮ ⋱ ⋱ anM �1;nM

0 ⋯ 0 1

2
6664

3
7775 ð6Þ

and

W¼ ½w1…wnM � ð7Þ

with columns satisfying wT
i wj ¼ 0, if ia j. The regression model (4)

can alternatively be expressed as

y¼Wgþe; ð8Þ

where the orthogonal weight vector g¼ ½g1⋯gnM �T satisfy the
triangular system Aθ¼ g, which can be used to determine model
parameters θ, given A and g.
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3. Automatic kernel regression model construction algorithm
using ENOFR assisted by PSO

3.1. Elastic net orthogonal forward regression

For any fixed positive λ1 and λ2, the naive elastic net (NEN)
criterion is defined as [30]

Lðλ1; λ2;θÞ ¼ ‖y�Φθ‖2þλ2‖θ‖2þλ1‖θ‖1 ð9Þ
where J�J denotes Euclidean norm, and ‖θ‖1 ¼∑nM

i ¼ 1jθij. The
naive elastic net estimator is the minimiser of

θ̂NEN ¼ arg min
θ

fLðλ1; λ2;θÞg ð10Þ

This can be transformed into an equivalent LASSO problem on an
augmented data, based on which the LAR procedure is applicable,
referred to as LARS-EN [30]. The EN has some desirable properties,
as it maintains the model sparsity of LASSO, but not as aggressive
as LASSO in excluding correlated terms in the model. This is
because these terms tend to be in or out of the model together as a
result of the l2 norm regularisation [30]. Note that there is no
analytical solution to (10) unless the model terms are orthogonal.

The key to the proposed concept of ENOFR is to consider the
following orthogonal elastic net (NEN) criterion based on (8)

Leðλ1; λ2;gÞ ¼ ‖y�Wg‖2þλ2‖g‖2þλ1‖g‖1 ð11Þ
The naive elastic net solution for g is obtained by setting the
subderivatives ∂Le=∂g¼ 0, that is,

WTy�λ1
2

signðgÞ ¼ ðWTWþλ2IÞg: ð12Þ

where I is an identity matrix of appropriate dimension and
signðgÞ ¼ ½signðg1Þ;…; signðgnM

Þ�T , where

signðsÞ
¼ 1 if s40
¼ �1 if so0
A ½�1; 1� if s¼ 0

8><
>: ð13Þ

Multiplying 2gT to both sides of (12) yields

2gTWTy�λ1‖g‖1 ¼ 2gT ðWTWþλ2IÞg: ð14Þ
Substitute (14) into (11) to yield

Leðλ1; λ2;gÞ ¼ yTy�2gTWTyþgTWTWgþλ2‖g‖2þλ1‖g‖1
¼ yTy�gTWTWg�λ2‖g‖2 ð15Þ

Normalising by yTy,

Leðλ1; λ2;gÞ=ðyTyÞ ¼ 1� ∑
nM

i ¼ 1
ðwT

i wiþλ2ÞðgðNENÞi Þ2=ðyTyÞ: ð16Þ

where the superscript (NEN) denotes the naive elastic net solution.
The elastic net error reduction ratio is defined by

½eNerr�i ¼ ðwT
i wiþλ2ÞðgðNENÞi Þ2=ðyTyÞ; i¼ 1;…;nM ð17Þ

where gðNENÞi , i¼ 1;…nM are the solution of (12), given by

gðNENÞi ¼ wT
i wi

wT
i wiþλ2

gðLSÞi � λ1=2
wT

i wiþλ2

�����
!

þ
signðgðLSÞi Þ

�����
 

ð18Þ

with gðLSÞi ¼wT
i y=w

T
i wi and

zþ ¼ z if z40
0 if zr0

(
ð19Þ

Based on this ratio, significant regressors can be selected in a
forward regression procedure. From (17) and (18) it is obvious that,
the terms that are selected into the model using the proposed
algorithm, and the associated parameter values, are affected by the
values of λ1 and λ2. Using a simple example we further analyse this
effect. A model is to be constructed by three candidate regressors

with the same magnitude, ϕ1, ϕ2, ϕ3, as shown in Fig. 1, in which
we compare three cases; (i) λ1 ¼ 0, λ2 ¼ 0; (ii) λ1a0, λ2 ¼ 0; and (iii)
λ1a0, λ2a0. The following observations can be noted about the
first two forward regression steps;

� For the first forward regression step, if λ1 ¼ 0, λ2 ¼ 0, then the
resultant model based on ½eNerr�1 for model term selection is
equivalent to selecting the model term which can produce the
largest projection by y, or the most correlated term to y.

� In all cases, ϕ1 is selected from three candidate regressors at
the first step, because it produces the highest value of ½eNerr�1.� At the first forward regression stage, the effects of any nonzero
λ1 and λ2 are that the explained output variance by the first
selected regressor is reduced in comparison with a model using
the least square parameter estimate gðLSÞ1 , because it can be seen
from (18) that the magnitude of gðNENÞ1 is reduced by scaling due
to λ2, followed by thresholding due to λ1.� After the first regression step, let the remainder of the output
vector be denoted by yð1Þ. The second forward regression step is to
select more significant regressor betweenϕ2 andϕ3 based on yð1Þ.

� For the second forward regression step, if λ1 ¼ 0, λ2 ¼ 0, then ϕ2
will be selected, because the resultant model by using ½eNerr�2 for
model term selection would be equivalent to selecting the model
term which can produce the largest projection by yð1Þ.

� It can be seen from Fig. 1 that values of λ1 and λ2 affect the
direction of yð1Þ. As a result, ϕ2 may no longer produce the largest
projection by yð1Þ, and it is possible that ϕ3 is selected as the
significant regressor in the second forward regression step, notϕ2.

The automatic model term selection property of naive elastic net is
also explained as follows. Note that for λ1 ¼ 0, ½eNerr�i becomes the
model term selective criterion, the regularised error reduction
ratio ½rerr�i, as defined in [38]. In order to produce a sparse model
containing ns ð≪nMÞ significant regressors, a chosen tolerance ξ
(0oξo1) needs to be preset, and the selection process is
terminated at the nsth stage when

1� ∑
ns

l ¼ 1
½rerr�loξ ð20Þ

is satisfied [38]. However using elastic net orthogonal forward
regression (λ140), there is no need of setting ξ. This is because
the cost function contains sparsity inducing l1 norm so that some
parameters will be zeros and ½eNerr�i can return exact zero values
during the selection process. The model selection is terminated at
the ðnsþ1Þ�th stage when ½eNerr�ns þ1 ¼ 0, producing a sparse
model containing ns ð≪nMÞ significant regressors automatically.
The naive elastic net orthogonal forward regression (ENOFR)
algorithm based on the modified Gram–Schmidt scheme is given
in Appendix A, for a given λ¼ ½λ1; λ2�T .

Finally the elastic net (EN) parameter estimate is defined by

gðENÞi ¼ gðLSÞi � λ1=2
wT

i wi

�����
!

þ
signðgðLSÞi Þ

�����
 

ð21Þ

Fig. 1. An illustration of elastic net orthogonal forward regression.
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which produces the elastic net parameter estimates for the ns
term model selected using the algorithm of Appendix A. This step
inflates gðNENÞi by the original shrinkage amount ðwT

i wiþλ2Þ= wT
i wi

and aims to overcome the double shrinkage problem of naive
elastic net estimator [30]. This means that the effect of l2 norm
regularisation to parameter estimation is undone by this step,
which is helpful to reduce bias in the naive elastic net estimator
which could be too large.

We point out that as this rescaling step happens after the
model terms selection so the existence of λ2 has an impact on
model structure compared with the case of λ2 ¼ 0, e.g. using the
previous example, a two term model could be composed by ϕ1
andϕ2 for λ2 ¼ 0, but byϕ1 andϕ3 for λ2a0. The effect of l2 norm
regularisation in selecting groups (correlated terms) was analysed
[30]. For our proposed algorithm, the analysis to the first two
regression steps can be extended to any regression steps. As a
result of combined effect of λ1 and λ2, the explained output
variance by selected regressors at earlier regression steps are
reduced in comparison with a model using the least square
parameter gðLSÞi . Effectively this would allow the model output to
be further explained by other regressors, that are correlated to
previously selected regressors, to enter the model at later stages.
Therefore the proposed algorithm has a similar effect to the
original elastic net, of keeping correlated terms in the model,
which is advantageous in that less variable models could be
produced to provide physical insights on the causal relationships
of the systems from large data sets [30].

3.2. Choosing regularisation parameters by optimising the LOOMSE
using PSO

Cross validation criteria are metrics that measure a model's
generalisation capability. To optimise the model generalisation
capability, the model selection criteria are often based on cross-
validation [16,39]. Due to its simplicity, a popular version of cross-
validation is the so-called leave one out (LOO) cross validation. It is
also known that LOO is inconsistent [40]. That is, the probability of
selecting the model with the best predictive ability does not
converge to one as the total number of data samples approaching
infinity. Some theoretical and empirical comparisons for model
selection using different cross validation schemes are discussed
[41,42].

Consider the general model selection problem from a set of K
predictors due to models produced using different setting of
regularisation parameters of λ indexed by j¼ 1;2;…;K . Denote
these predictors as ŷjðkÞ if they are identified using all N data
points. The idea of LOO is that, for any predictor, each data point in
the estimation data set DN is sequentially set aside in turn, a model
is estimated using the remaining ðN�1Þ data, and the prediction
error is calculated based on the data point that was removed. That
is, for k¼ 1;…;N, the jth model (8 j) is estimated by removing the
kth data point from the estimation set. The output of the model
based on ðN�1Þ data points (with the kth data point removed) is
denoted by ŷð�kÞ

j ðkÞ, and the LOO prediction error is calculated as

eð�kÞ
j ðkÞ ¼ yðkÞ� ŷð�kÞ

j ðkÞ ð22Þ

Finally the leave one out mean square error (LOOMSE) is obtained
by computing the average of all these prediction errors as
JðλÞ ¼ E½½eð�kÞðkÞ�2�. The regularisation parameter vector associated
with the minimal LOOMSE is chosen, i.e.

λopt ¼ arg min
λ

JðλÞ ¼ 1
N

∑
N

k ¼ 1
½eð�kÞ

j ðkÞ�2; 8 j
( )( )

ð23Þ

and the resultant model is selected.

The above illustrates the concept of the leave one out cross-
validation procedure, which seems to be computationally expen-
sive. However, if f ð�Þ is modelled using linear models via least
square method, there is an elegant way to generate LOOMSE [43],
without actually sequentially splitting the estimation data set by
using the Sherman–Morrison–Woodbury theorem [43]. In the
following we show that LOOMSE based on the proposed ENOFR
estimator can also be evaluated efficiently without actually
sequentially splitting the estimation data set.

From (12) and (21), the elastic net parameter estimator based
on a specified λ using N data points can be represented by

gðENÞ ¼H�1 WTy�λ1
2

signðgðENÞÞ
� �

ð24Þ

where H¼WTW. The model residual is

eðkÞ ¼ yðkÞ�ðgðENÞÞTwðkÞ

¼ yðkÞ� yTW�λ1
2
½signðgðENÞÞ�T

� �
H�1wðkÞ ð25Þ

If the data sample indexed at k is removed from estimation data
set, the leave one out elastic net parameter estimator obtained by
using only ðN�1Þ data points is given by

gðEN;�kÞ ¼ ½Hð�kÞ��1

� ½Wð�kÞ�Tyð�kÞ �λ1
2
signðgðEN;�kÞÞ

� �
ð26Þ

in which Hð�kÞ ¼ ½Wð�kÞ�TWð�kÞ, Wð�kÞ and yð�kÞ denote the
resultant regression matrix and output vector respectively. The
leave one out error evaluated at k is given by

eð�kÞðkÞ ¼ yðkÞ�½gðEN;�kÞ�TwðkÞ

¼ yðkÞ� ½yð�kÞ�TWð�kÞ �λ1
2
½signðgðEN;�kÞÞ�T

� �

�½Hð�kÞ��1wðkÞ ð27Þ

It can be shown that

Hð�kÞ ¼H�wðkÞwT ðkÞ ð28Þ

½yð�kÞ�TWð�kÞ ¼ yTW�yðkÞwT ðkÞ ð29Þ
Applying the matrix inversion lemma to (28), yields

½Hð�kÞ��1 ¼ ½H�wðkÞwT ðkÞ��1

¼H�1þH�1wðkÞwT ðkÞH�1

1�wT ðkÞH�1wðkÞ
ð30Þ

and

½Hð�kÞ��1wðkÞ ¼ H�1wðkÞ
1�wT ðkÞH�1wðkÞ

ð31Þ

Substituting (29) and (31) into (27), yields

eð�kÞðkÞ ¼ yðkÞ� yTW�yðkÞwT ðkÞ�λ1
2
½signðgðEN;�kÞÞ�T

� �

� H�1wðkÞ
1�wT ðkÞH�1wðkÞ

¼
yðkÞ�ðyTW�λ1

2
½signðgðEN;�kÞÞ�T ÞH�1wðkÞ

1�wT ðkÞH�1wðkÞ
ð32Þ

The leave one out mean square error (LOOMSE) can be calculated
as

JðλÞ ¼ 1
N

∑
N

k ¼ 1
½eð�kÞðkÞ�2 ð33Þ
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JðλÞ � 1
N

∑
N

k ¼ 1

eðkÞ
1�wT ðkÞH�1wðkÞ

" #2

JðλÞ ¼ 1
N

∑
N

k ¼ 1

eðkÞ
1�∑ns

i ¼ 1½wiðkÞ�2=ðwT
i wiÞ

" #2
ð34Þ

by making use of (25) and assuming that signðgðEN;�kÞÞ ¼ signðgðENÞÞ
holds for most k. This assumption is mild because only one data
sample is removed at a time, based on significant regressors
selected in a forward regression manner.

It is simple to evaluate JðλÞ as a result of the following reasons.

� Firstly the proposed elastic net cost function is based on
parameter regularisation within an orthogonal space, making
it possible to derive a closed form expression for the para-
meters of the elastic net.

� Secondly we provide the above original derivation to show that
the LOOMSE based on models using elastic net estimator can be
analytically approximately evaluated without actually splitting
the data by making use of the matrix inversion lemma and a
mild assumption.

� Thirdly as a byproduct of the orthogonalisation procedure H is
diagonal, so that the evaluation of eð�kÞðkÞ does not involve any
matrix inversion and has a very small computational cost (see
(32)).

We apply the PSO algorithm to solve (23), as shown in
Appendix B. The complete algorithm can be illustrated with
reference to the schematic diagram of Fig. 2. The algorithm has a
two layer structure. The upper level is the PSO with population
size of S (Appendix B). It learns the two optimal regularisation
parameters based on the LOOMSE values provided by the lower
level of S particles. At the lower level, each particle performs the
ENOFN algorithm over the iterations, with each iteration consist-
ing of two stages; (i) select a subset model based on the naive
elastic net parameter estimator using the MGS algorithm in
Appendix A; and (ii) determine the elastic net model parameters
for the selected model terms using (21) and then calculate the
associated LOOMSE using (32) and (33).

The computation cost of the PSO is dominated by that of the
cost function evaluation. So the total computational complexity of
the proposed two-level learning scheme is determined by the total
number of function evaluations of PSO (S � Imax), multiplying the
average computation cost of each particle, i.e, that of the elastic
forward regression. The latter is in the order of O(N), which is
further scaled by the product of candidate and final model size
ns � nM . Note that nM can be set much lower than N if the latter is
too large in order to save computation cost. The computational
cost of the proposed algorithm is much smaller than conventional
cross validation approaches of grid search over a two-dimensional
space. For example if the ten-fold cross validation is used for a very

coarse grid search of 3 by 3 on λ, its computation cost is roughly
the same as the proposed algorithm with S¼9 and Imax ¼ 9 which
is found to be appropriate from our experience. However the grid
search of 3 by 3 on λ is likely to be too coarse to produce
reasonably solutions.

4. Modeling examples

In this section we demonstrate the effectiveness of the pro-
posed algorithm using simulations. One example on multivariate
linear regression and one example nonlinear static function
approximation are presented, followed by two examples on data
from real nonlinear dynamical systems.

4.1. Multivariate linear regression

Prostate cancer example was taken from a study of prostate
cancer [30,44]. The inputs are eight clinical measures: log(cancer
volume) (lcavol), log(prostate weight) (lweight), age, the logarithm
of the amount of benign prostatic hyperplasia (lbph), seminal
vesicle invasion (svi), log(capsular penetration) (lcp), Gleason
score (gleason) and percentage Gleason score 4 or 5 (pgg45). The
response is the logarithm of prostate-specific antigen (lpsa). The
prostate cancer data were divided into two parts: a training set
with 67 observations and a test set with 30 observations. We use
the linear model with scaled inputs so that each has zero mean
and unit variance, and construct our model using the proposed
algorithm. The search space of PSO was set ½10;20� for λ1, and
½100;1000� for λ2. S¼20, Imax ¼ 20 were predetermined. The
proposed algorithm automatically selects a final model with
4 terms, produced by regularisation parameters λ1 ¼ 11:7509,
λ2 ¼ 138:7415 found by the PSO based on the LOOMSE criterion
without using another validation data set. Table 1 shows the test
mean square error against the results of different methods in [30].
Note that in [30] tenfold cross validation of the training set was
used in the grid search of the regularisation parameters, enabling
the standard deviation in the brackets to be obtained. In our
algorithm the training data set was not actually split up. The result
of our model is better than all other methods except for the
original elastic net method.

4.2. Nonlinear static function approximation

Consider using a RBF network to approximate an unknown
scalar function

f ðxÞ ¼ sin ðxÞ
x

ð35Þ

A data set of two hundred points was generated from y¼ f ðxÞþξ,
where the input x was uniformly distributed in [�10,10] and the
noise ξ was Gaussian with zero mean and standard deviation 0.2.

Fig. 2. A schematic diagram of the proposed ENOFR using PSO.

Table 1
Prostate cancer data: comparing different methods. The results of the first five
methods were quoted from [30].

Method Test mean square error Variables selected

Ordinary least squares [30] 0.586 (0.184) All
Ridge regression [30] 0.566 (0.188) All
Lasso [30] 0.499 (0.161) (1, 2, 4, 5, 8)
Naive elastic net [30] 0.566 (0.188) All
Elastic net [30] 0.381 (0.105) (1, 2, 5, 6, 8)
The proposed ENOFR 0.4563 (1, 2, 5, 4)
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The data were very noisy. The Gaussian function

ϕiðxÞ ¼ exp �ðx�ciÞ2
2τ2

 !
ð36Þ

was used as the basis function to construct a RBF model, with a
kernel width τ2 ¼ 10. All the two hundred data points were used
as the candidate RBF centre set for ci. The search space of PSO was
set ½10�7;0:1� for λ1, and ½10�7;1� for λ2. S¼5, Imax ¼ 5 were
predetermined. The proposed algorithm automatically selects a
final model with only 7 terms, produced by regularisation para-
meters λ1 ¼ 0:0465, λ2 ¼ 0:145. These were automatically deter-
mined by the PSO based on the LOOMSE criterion without using
another validation data set. Fig. 3(a) depicts ½eNerr�j values against
the forward regression process, which automatically terminated at
the 8th step when ½eNerr�8 ¼ 0. Fig. 3(b) depicts the model
prediction of the resultant 7-term model in comparison to the
noisy data used for training and the unknown true function. The
resultant 7-term model produces a mean square error of 0.0015
with respect to the true function, illustrating the excellent model
generalisation capability of the model in this particular problem.

For comparison we construct models using ENOFR algorithm
introduced in the paper, except that for selecting λ tenfold cross
validation was used, rather than LOOMSE with PSO. By setting a
grid of λ1 ¼ ½10�7;10�5;10�4;10�3;0:1� and λ2 ¼ ½10�7;10�5;

10�3;0:1;1�, 25 settings of λ are evaluated using tenfold cross
validation. We used the same kernel width τ2 ¼ 10, and for each
fold all resultant 180 training data points were used as the
candidate RBF centre set. The estimated computational cost is
roughly nine times of using LOOMSE with PSO in terms of how
many times the MGS algorithm is applied. We also assume that,
due to the reduction of 10% in training data set size for tenfold
cross validation, there is also 10% computational cost reduction.
The best λ is found to be λ1 ¼ 0:1, λ2 ¼ 0:001. For each fold, a 7-
term model was produced. With respect to the true function, the
resultant mean square error for all data points over ten models is
0.002370.0003 (mean 7 standard deviation), illustrating that
selecting λ using tenfold cross validation does not offer superior
performance to the proposed algorithm for this particular
problem.

4.3. Nonlinear dynamical system modeling

Example 1. The relationship between the fuel rack position (input
u(k)) and the engine speed (output y(k)) is modelled for a Leyland
TL11 turbocharged, direct injection diesel engine which is oper-
ated at a low engine speed. Detailed system description and
experimental setup can be found in [45]. The data set, depicted
in Fig. 4(a) and (b), contains 410 samples. The first 210 data
samples were used in training and the last 200 data samples for
model validation. The previous study has shown that the data set
can be modeled adequately using the system input vector
xðkÞ ¼ ½yðk�1Þ;uðk�1Þ;uðk�2Þ�T . The best Gaussian kernel model
provided by the locally regularised orthogonal least squares
(LROLS) algorithm with the LOO test score, consisting of 22 terms
[46] and with the mean square error (MSE) values over the
training and validation data sets of 0.000453 and 0.000490,
respectively.

We use the Gaussian radial basis function (RBF)
ϕiðxðkÞÞ ¼ expf�‖xðkÞ�ci‖2=2τ2g to construct our model using
the proposed algorithm, where τ2 ¼ 1:69 was set empirically and
is the same as that used in [46]. ci were formed using all the
training data samples. The search space of PSO was set ½10�6;0:01�
for λ1, and ½10�6;100� for λ2. S¼5, Imax ¼ 5 were predetermined.
The proposed algorithm automatically selects a final model with
26 terms where the regularisation parameters were found to be
λ1 ¼ 2:147� 10�5, λ2 ¼ 10�6 by the PSO based on the LOOMSE
criterion without using another validation data set. Fig. 4
(c) depicts log 10ð½eNerr�jÞ values against the forward regression
process, which automatically terminated at the 27th step as
½eNerr�27 ¼ 0. For this model the mean square error (MSE) values
over the training and validation data sets are 0.000447 and
0.000470, respectively. Clearly the modelling results are compar-
able to that of [46], as it has a slightly better predictive perfor-
mance than [46], but slightly larger model size.

For comparison we construct models using ENOFR, in which
tenfold cross validation was used for selecting λ, rather than using
LOOMSE with PSO. By setting a grid of λ1 ¼ ½10�7;10�5;10�4;

10�3;0:01� and λ2¼½10�7;10�5;10�3;1;100�, we evaluated 25
settings of λ using tenfold cross validation, in which 20 data points
from first 210 data samples are sequentially preset as test data
points for each fold producing ten different data partitions. We used
the same kernel width τ2 ¼ 1:69, and for each fold all resultant 190
training data points were used as the candidate RBF centre set. The
resultant best model is from λ1 ¼ 10�4, λ2 ¼ 10�7. Over ten models
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Fig. 3. The modeling results of the simple scalar function problem by the selected
model (λ1 ¼ 0:0465, λ2 ¼ 0:145); (a) 7 nonzero eNerrj values during the elastic net
orthogonal forward regression steps; and (b) model predictions of the
7-term model.
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produced from 10 different partitions, we recorded the mean square
error over estimation data set as 0:00046373:5833� 10�5 (mean
7 standard deviation) and validation data set as 0:0005007
1:4049� 10�5 (mean 7 standard deviation), and the model size
as 23.971.1 (mean 7 standard deviation). Clearly performances
are also comparable but not superior to the proposed algorithm,
because the estimated computational cost is roughly nine times of
using LOOMSE with PSO.

Example 2. The gas furnace data set (the time series J in [47])
contained 296 pairs of input–output points as depicted in Fig. 5
(a) and (b), where the input was the coded input gas feed rate and
the output represented the CO2 concentration from the gas
furnace. The Gaussian radial basis function (RBF) ϕiðxðkÞÞ ¼ exp
f�ð‖xðkÞ�ci‖2Þ=2τ2g was used, with the system input vector
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Fig. 5. Gas Furnace Data Set. (a) System input u(t); (b) system output y(t); and
(c) the logarithm of 11 nonzero eNerrj values during the elastic net orthogonal
forward regression steps for λ1 ¼ 0:0003 and λ2 ¼ 23:9928.

0 50 100 150 200 250 300 350 400
3.5

4

4.5

5

5.5

6

Sample

S
ys

te
m

 in
pu

t

0 50 100 150 200 250 300 350 400
2.5

3

3.5

4

4.5

5

Sample

S
ys

te
m

 o
ut

pu
t

5 10 15 20 25
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

Model terms

lo
g 1

0(e
N

er
r)

Fig. 4. Engine data set. (a) System input u(t); (b) system output y(t); and (c) the
logarithm of 26 nonzero eNerrj values during the elastic net orthogonal forward
regression steps for λ1 ¼ 2:147� 10�5 and λ2 ¼ 10�6.
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xðkÞ ¼ ½yðk�1Þ; yðk�2Þ; yðk�3Þ;uðk�1Þ;uðk�2Þ; uðk�3Þ�T and τ2 ¼
1000. From Fig. 5, it can be observed that the second half of the
data set was different from the first half. Therefore, we used the
even-number pairs fxðkÞ; yðkÞg for training and the odd-number
pairs of fxðkÞ; yðkÞg for testing. ci were formed using all the training
data samples. The resultant model provided by the ROLS algorithm
with the LOO test score. The search space of PSO was set ½10�6;

0:01� for λ1, and ½10�6;100� for λ2. S¼5, Imax ¼ 5 were predeter-
mined. The proposed algorithm automatically selects a final model
with 11 terms where the regularisation parameters were found to
be λ1 ¼ 0:0003, λ2 ¼ 23:9928 by the PSO based on the LOOMSE
criterion without using another validation data set. Fig. 5
(c) depicts log 10ð½eNerr�jÞ values against the forward regression
process, which automatically terminated at the 12th step as
½eNerr�12 ¼ 0. For this model the mean square error (MSE) values
over the training and validation data sets are 0.0493 and 0.0790,
respectively. For comparison a previous study [21] has experi-
mented on the regularised assisted OLS(ROLS) based on the LOO
mean square error (referred to as ROLS-LOO algorithm) [46] and
using the same common variance. The resultant model provided
by the ROLS-LOO algorithm consists of 12 terms and has the mean
square error (MSE) values over the training and validation data
sets of 0.0474 and 0.0805 respectively. Clearly the modelling
results of the proposed approaches are competitive.

Tenfold cross validation rather than LOOMSE was used to select
λ based on ENOFR without PSO. Two grids of λ1 ¼ ½10�7;10�5;

10�4;10�3;0:01� and λ2¼½10�7;10�5;10�3;1; 100� were prede-
termined to obtain 25 settings λ. Tenfold data partitions are based
on sequentially taking 14 data points from the original training
data samples as test data points, producing ten different data
partitions. We used the same kernel width τ2 ¼ 1000, and for each
fold all resultant 132 training data points were used as the
candidate RBF centre set. We obtained λ1 ¼ 10�4, λ2 ¼ 10�7. Over
ten models obtained based on different training data set partitions,
we recorded the mean square error over estimation data set as
0.04777 0.0027 (mean 7 standard deviation) and validation data
set as 0.08117 0.0025 (mean 7 standard deviation), and the
model size as 12.570.5 (mean 7 standard deviation). Note that
the modeling performance is comparable, but the computational
cost is approximately nine times of using LOOMSE with PSO.

5. Conclusions

Aiming at maximising a model's generalisation capability, this
paper has proposed an efficient two-level model identification
method for the linear-in-the-parameters models. At the lower
level is the proposed ENOFR algorithm that is able to perform
simultaneous model selection and elastic net parameter estima-
tion for a given pair of regularisation parameters. At the upper
level these regularisation parameters are optimised using a parti-
cle swarm optimisation (PSO) algorithm by minimising the leave
one out (LOO) mean square error (LOOMSE). The original con-
tributions are firstly to define an elastic net cost function based on
orthogonal decomposition, which facilitates the automatic model
structure selection process with no need of using a predetermined
error tolerance to terminate the forward selection process. Sec-
ondly we derived the LOOMSE formula based on the resultant
ENOFR models and show that its computational cost is small due
to the proposed ENOFR procedure. As a result a fully automated
procedure is achieved without resort to any other validation data
set for iterative model evaluation. Illustrative examples are
included to demonstrate the effectiveness of the new approaches.

Appendix A. The naive elastic net orthogonal forward
regression using the modified Gram–Schmidt (MGS)
orthogonalisation procedure

The modified Gram–Schmidt orthogonalisation procedure cal-
culates the A matrix row by row and orthogonalises Φ as follows:
at the lth stage make the columns ϕj, lþ1r jrnM , orthogonal to
the lth column and repeat the operation for 1r lrnM�1. Speci-
fically, denoting ϕð0Þ

j ¼ϕj, 1r jrnM , then

wl ¼ϕðl�1Þ
l ;

al;j ¼wT
l ϕ

ðl�1Þ
j =ðwT

l wlÞ; lþ1r jrnM ;

ϕðlÞ
j ¼ϕðl�1Þ

j �al;jwl; lþ1r jrnM ;

9>>>=
>>>;

l¼ 1;2;…;nM�1: ð37Þ

The last stage of the procedure is simply wnM ¼ϕðnM �1Þ
nM

. The
elements of the naive elastic net estimator for g are computed
by transforming yð0Þ ¼ y in a similar way:

gðLSÞl ¼wT
l y

ðl�1Þ=ðwT
l wlÞ;

gðNENÞl ¼ wT
l wl

wT
l wlþλ2

jgðLSÞl j� λ1=2
wT

l wlþλ2

 !
þ
signðgðLSÞl Þ;

yðlÞ ¼ yðl�1Þ �gðENÞl wl;

9>>>>>>=
>>>>>>;

1r lrnM :

ð38Þ
This orthogonalisation scheme can be used to derive a simple

and efficient algorithm for selecting subset models in a forward-
regression manner. First define

Φðl�1Þ ¼ ½w1…wl�1ϕ
ðl�1Þ
l …ϕðl�1Þ

nM
�: ð39Þ

If some of the columns ϕðl�1Þ
l ;…;ϕðl�1Þ

nM
in Φðl�1Þ have been

interchanged, this will still be referred to as Φðl�1Þ for notational
convenience. The lth stage of the selection procedure is given as
follows.

Step 1: For lr jrnM , compute

gðLS;jÞl ¼ ðϕðl�1Þ
j ÞTyðl�1Þ

=ððϕðl�1Þ
j ÞTϕðl�1Þ

j Þ;

gðNEN;jÞl ¼ ðϕðl�1Þ
j ÞTϕðl�1Þ

j

ðϕðl�1Þ
j ÞTϕðl�1Þ

j þλ2
gðLS;jÞl

��� ���
8<
:

� λ1=2

ðϕðl�1Þ
j ÞTϕðl�1Þ

j þλ2

9=
;

þ

signðgðLS;jÞl Þ

½eNerr�ðjÞl ¼ ððgðNEN;jÞl Þ2 � ððϕðl�1Þ
j ÞTϕðl�1Þ

j þλ2ÞÞ=ðyTyÞ:

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

Step 2: Find

½eNerr�l ¼ ½eNerr�ðjlÞl ¼maxf½eNerr�ðjÞl ; lr jrnMg:

Then the jlth column of Φðl�1Þ is interchanged with the lth
column of Φðl�1Þ, the jlth column of A is interchanged with the
lth column of A up to the ðl�1Þth row. This effectively selects
the jlth candidate as the lth regressor in the subset model.
Step 3: Perform the orthogonalisation as indicated in (37) to
derive the lth row of A and to transform Φðl�1Þ into ΦðlÞ.
Calculate gðNENÞl and update yðl�1Þ into yðlÞ in the way shown in
(38).

The selection is terminated at the ðnsþ1Þ stage when
½eNerr�ns þ1 ¼ 0 is satisfied and this produces a subset model contain-
ing ns significant regressors. The algorithm described here is in its
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standard form. A fast implementation can be adopted, as shown in
[48], to reduce complexity.

Appendix B. Particle swarm optimisation for choosing
regularisation parameters

In the following we propose to apply the PSO algorithm [22,23],
and aim to solve

λopt ¼ arg min
λA∏2

j ¼ 1Λj

JðλÞ; ð40Þ

where

∏
2

j ¼ 1
Λj ¼ ∏

2

j ¼ 1
½0;Λj;max� ð41Þ

defines the search space. Depending on the problem, Λj;max's are set
empirically. For our problem, it is not difficult to coarsely identify some
values above which the resultant solutions are definitely not accep-
table in terms of model predictive performance.

A swarm of particles, fλðmÞ
i gSi ¼ 1, that represent potential solu-

tions are “flying” in the search space ∏2
j ¼ 1Λj, where S is the

swarm size and index m denotes the iteration step. The algorithm
is summarised as follows.

(a) Swarm initialisation: Set the iteration index m¼0 and
randomly generate fλðmÞ

i gSi ¼ 1 in the search space ∏2
j ¼ 1Λj.

(b) Swarm evaluation: The cost of each particle λðmÞ
i is obtained

as JðλðmÞ
i Þ. Each particle λðmÞ

i remembers its best position visited so
far, denoted as pbðmÞ

i , which provides the cognitive information.
Every particle also knows the best position visited so far among
the entire swarm, denoted as gbðmÞ, which provides the social
information. The cognitive information fpbðmÞ

i gSi ¼ 1 and the social
information gbðmÞ are updated at each iteration:

For (i¼1; irS; iþþ)

If (JðλðmÞ
i Þo JðpbðmÞ

i Þ) pbðmÞ
i ¼ λðmÞ

i ;
End for;

in ¼ arg min1r irSJðpbðmÞ
i Þ;

If (JðpbðmÞ
in

Þo JðgbðmÞÞ) gbðmÞ ¼ pbðmÞ
in

;

(c) Swarm update: Each particle λðmÞ
i has a velocity, denoted as

γðmÞ
i , to direct its “flying”. The velocity and position of the ith

particle are updated in each iteration according to

γðmþ1Þ
i ¼ μ0nγ

ðmÞ
i þrandðÞnμ1nðpbðmÞ

i �λðmÞ
i ÞþrandðÞnμ2nðgbðmÞ �λðmÞ

i Þ; ð42Þ

λðmþ1Þ
i ¼ λðmÞ

i þγðmþ1Þ
i ; ð43Þ

where μ0 is the inertia weight, μ1 and μ2 are the two acceleration
coefficients. randðÞ denotes the uniform random number between
0 and 1. In order to avoid excessive roaming of particles beyond
the search space [27], a velocity space

∏
2

j ¼ 1
Υ j ¼ ∏

2

j ¼ 1
½�Υ j;max;Υ j;max� ð44Þ

is imposed on γðmþ1Þ
i so that

If (γðmþ1Þ
i jj4Υ j;max) γ

ðmþ1Þ
i jj ¼ Υ j;max;

If (γðmþ1Þ
i jjo�Υ j;max) γ

ðmþ1Þ
i jj ¼ �Υ j;max;

where γjj denotes the jth element of γ. Moreover, if the velocity as
given in Eq. (42) approaches zero, it is reinitialised proportional to
Υ j;max with a small factor ν

Ifðγðmþ1Þ
i jj ¼ ¼ 0Þγðmþ1Þ

i jj ¼ 7randðÞnνnΥ j;max; ð45Þ

(d) Termination condition check: If the maximum number of
iterations, Imax, is reached, terminate the algorithm with the
solution gbðImaxÞ; otherwise, set m¼mþ1 and go to Step (b).

Ratnaweera and co-authors [25] reported that using a time
varying acceleration coefficient (TVAC) enhances the performance
of PSO. We adopt this mechanism, in which μ1 is reduced from
2.5 to 0.5 and μ2 varies from 0.5 to 2.5 during the iterative
procedure:

μ1 ¼ ð0:5�2:5Þnm=Imaxþ2:5;

μ2 ¼ ð2:5�0:5Þnm=Imaxþ0:5: ð46Þ

The reason for good performance of this TVAC mechanism can be
explained as follows. At the initial stages, a large cognitive
component and a small social component help particles to wander
around or better exploit the search space, avoiding local minima.
In the later stages, a small cognitive component and a large social
component help particles to converge quickly to a global mini-
mum. We use μ0 ¼ randðÞ at each iteration.

The search space as given in Eq. (41) is defined by the specific
problem to be solved, and the velocity limit Υ j;max is empirically
set. An appropriate value of the small control factor ν in Eq. (45)
for avoiding zero velocity is empirically found to be ν¼ 0:1 for our
application.
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