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a b s t r a c t

For the multiple-input multiple-output (MIMO) downlink employing high-order quadrature amplitude
modulation signaling and with nonlinear high power amplifiers (HPAs) at base station transmitter, the
existing precoding designs relying on the linear MIMO channel can no longer work. We propose an effi-
cient and accurate predistorter design to enable transmit precoding for nonlinear MIMO downlink.
Specifically, we obtain the closed-form least squares estimates of the nonlinear HPA’s amplitude and
phase response using two B-spline neural networks during training. The estimated HPA’s phase response
automatically yields the estimate of the predistorter’s phase response. Based on the B-spline neural net-
work estimate of the HPA’s amplitude response, we construct a B-spline neural network model for the
predistorter amplitude response, and we adopt a particle swarm optimization (PSO) algorithm to solve
this highly nonlinear optimization problem. Using our accurate predistorter estimate to pre-
compensate for the nonlinear distortions of the transmit HPAs, a standard full-digital transmit precoding
design can readily be adopted to combat the MIMO channel interference. A simulation study is conducted
to demonstrate the effectiveness of our proposed PSO assisted predistorter design.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction (HPA) operates within its linear dynamic range. But practical HPAs
Two of the three cornerstones or usage scenarios in the fifth
generation (5G) mobile network are enhanced mobile broadband
(eMBB) and massive machine type communications (mMTC) [1].
Multiple-input multiple-output (MIMO) technology has been rec-
ognized as a promising component for implementing 5G by both
academia and industry, owing to its capability of significantly
increasing the reliability and/or bandwidth efficiency of communi-
cation systems [2–11]. In particular, the spatial-domain non-
orthogonal multiple access (NOMA) with the aid of MIMO technol-
ogy plays a critical role in supporting the massive increase in con-
nected devices with the limited frequency-time resources.

In the literature, most existing MIMO system designs including
all the best known linear MIMO transceiver designs [12–23] and
nonlinear MIMO transceiver designs [24–28], adopt the linear
MIMO channel. However, it is well known that the linear MIMO
channel is only valid when the transmitter high power amplifier
exhibit nonlinear saturation characteristics [29–33], and whether
the linear channel assumption holds depends on the transmit sig-
nal’s peak-to-average power ratio (PAPR) as well as the average
transmit power. For the modulation constellations with unity
PAPR, such as phase shift keying, HPA does not cause amplitude
distortion and the phase shift of the HPA’s output is constant for
all the symbol points. In such scenarios, a linear MIMO channel
is valid. In order to meet the demand of massive increase in
throughput for supporting eMBB, high-order quadrature amplitude
modulation (QAM) signaling [34] has to be adopted, which exhibits
high PAPR and imposes high average transmit power. Conse-
quently, the nonlinear distortion of the transmitter HPA becomes
serious, and the assumption of linear MIMO channel no longer
holds. In such situations, the existing MIMO system designs based
on the linear MIMO channel do not work. Moreover, the classical
means of avoiding the nonlinearity of transmitter HPA, namely,
output back-off (OBO), may not be applicable. This is because for
high PAPR signaling, the OBO must be very severe to be effective
but such a large OBO cannot meet the required link power
budge,that is, it cannot meet the high average transmit power
requirement for high-order QAM signaling.
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Recently, we have proposed an effective nonlinear multiuser
detection design for NOMA multiuser nonlinear MIMO uplink
employing high-order QAM signaling and with nonlinear transmit
HPAs at mobile users (MUs) [35]. However, there exists no nonlin-
ear MIMO downlink design in the open literature. Against this
background, in this work, we focus our attention on nonlinear
MIMO downlink employing high-order QAM signaling and with
nonlinear transmit HPAs at base station (BS), and we propose a
novel and efficient predistorter design to pre-compensate the non-
linear transmit HPAs so that the standard transmit precoding can
still be used for nonlinear MIMO downlink.

In downlink, the BS transmitter has sufficient resource to imple-
ment a predistorter for pre-compensating the nonlinear distortions
of transmit HPAs. In the literature, there exist various predistorter
designs [36–43]. However, none of these predistorters are specifi-
cally designed forNOMA multiuser MIMO downlink applications.
In this paper, we propose a very efficient and accurate predistorter
design based on B-spline neural network forNOMA multiuser non-
linear MIMO downlink. More specifically, we estimate the HPA’s
amplitude response and phase response using two B-spline neural
network models in training, and the two B-spline models’ param-
eter vectors can readily be obtained in the closed-form least
squares (LS) solutions. This yields very accurate B-spline neural
network based estimates of the HPA’s amplitude response and
phase response. Since the predistorter’s phase response should
cancel the HPA’s phase response, the estimated predistorter’s
phase response is the negative of the B-spline HPA phase response
estimate. We then design another B-spline neural network model
for the predistorter’s amplitude response relying on the B-spline
HPA amplitude response estimate already obtained. This is a highly
nonlinear optimization problem. Although it can be solved with a
gradient based algorithm, we propose to solve this nonlinear
design with particle swarm optimization (PSO) [44–51] in order
to obtain a much more accurate predistorter estimate. Unlike the
most recent B-spline predistorter design of [42] which requires
to find the amplitude of the predistorter output for every transmit-
ted signal point using the iterative root finding procedure during
data transmission and hence it is unsuitable for MIMO downlink
application, our proposed PSO assisted B-spline neural network
based predistorter design constructs an accurate B-spline model
of the predistorter prior to data transmission and it offers the first
practical B-spline parameterized predistorter for nonlinear MIMO
transmitter. With this accurate predistorter estimate to compen-
sate for the HPA’s nonlinear distortion, the BS can employ a stan-
dard full-digital precoding design, such as zero-forcing (ZF)
precoding design, to pre-remove the MIMO downlink channel
interference.

The remaining of the paper is organized as follows. Section 2
presents our application background, namely, nonlinear MIMO
downlink, while Section 3 details our novel PSO assisted B-spline
neural network based predistorter design. An achievable perfor-
mance of our novel predistorter assisted nonlinear MIMO down-
link is extensively evaluated in Section 4. Our conclusions are
drawn in Section 5.

2. Nonlinear MIMO downlink

This section present our application background, specifically,
theNOMA multiuser nonlinear MIMO downlink communication
system.

2.1. MIMO downlink channel

We consider the MIMO downlink shown in Fig. 1, where the BS
is equipped with L antennas to support M (6 L) single-antenna
MUs using the same frequency-time resource block. Denote the
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transmit signal vector from the BS’s antenna array as
w tð Þ ¼ w1 tð Þw2 tð Þ � � �wL tð Þ½ �T and its baseband equivalent sampled

version as w kð Þ ¼ w1 kð Þw2 kð Þ � � �wL kð Þ½ �T. Further collect the
received signals at the M MUs as the vector
y tð Þ ¼ y1 tð Þy2 tð Þ � � � yM tð Þ½ �T, and denote its baseband equivalent

sampled version as y kð Þ ¼ y1 kð Þy2 kð Þ � � � yM kð Þ½ �T. Then the MIMO
downlink channel can be represented by the following well-
known baseband MIMO channel model

y kð Þ ¼ h1h2 � � �hM½ �Tw kð Þ þ n kð Þ ¼ HTw kð Þ þ n kð Þ: ð1Þ
Here n kð Þ 2 CM � CN 0M;r2

nIM
� �

is the downlink additive white
Gaussian noise (AWGN) vector with the M-dimensional zero mean
vector 0M and the covariance matrix r2

nIM in which IM is the M �M
identity matrix, and H ¼ h1h2 � � �hM½ � in which

hi ¼ h1;1h1;2 � � �h1;L½ �T;1 6 i 6 M; ð2Þ
is the downlink channel vector linking the L BS antennas to the mth
MU. The channel coefficient hm;l 2 C for the channel linking the lth
BS antenna to the mth MU, where 1 6 l 6 L and 1 6 m 6 M, is
drawn from the complex-value Gaussian distribution CN 0;1ð Þ.

2.2. Transmit precoding

The M MUs rely on the BS to perform the transmit precding
(TPC) to pre-compensate the MIMO channel interference so that
the mth MU’s received signal ym kð Þ is a sufficient statistic for esti-
mating its data symbol sm kð Þ. Under the condition that the HPAs
are operating within their linear dynamic ranges and hence the
predistorters are not required, the baseband MIMO channel model
(1) can be equivalently expressed as the following commonly
known form

y kð Þ ¼ HTx kð Þ þ n kð Þ; ð3Þ
where x kð Þ 2 CL is the digital transmit precoder output vector.
Specifically, the BS can employ the standard full digital TPC tech-
nique based on the well-known ZF design which is capable of com-
pletely removing the MIMO downlink channel interference. Given
the MIMO downlink channel matrix H, the full-digital ZF TPC is
defined as

x kð Þ ¼
ffiffiffi
k

p
PZFs kð Þ; ð4Þ

where the full-digital ZF TPC matrix PZF 2 CL�M is given by

PZF ¼ H� HTH�
� ��1

; ð5Þ

and the normalization factor k is given by

k ¼ 1

Estr PZFP
H
ZF

n o ; ð6Þ

in which Es is the average power of each MU’s data and tr �f g is the
matrix trace operator. We will discuss why needs the normalization
factor (6) later.

Obviously, the knowledge of the downlink channel matrix HT is
required at the BS to compute the TPC matrix. In the networks
based on frequency division duplexing (FDD) protocol, the BS
needs to transmit the training signal to the M MUs for them to
acquire their respective channel vectors hm;1 6 m 6 M. After

obtaining the estimated bhm;1 6 m 6 M, the MUs quantize the
channel estimates and feed back the quantized channel estimates

to the BS. The estimated channel matrix bHT that the BS has is there-
fore inherently erroneous due to quantization and delay errors. In
the so-called time division duplexing (TDD) network, the uplink
channel and downlink channel are reciprocal. Hence, the BS can



Fig. 1. MIMO downlink with nonlinear transmit HPAs where BS employs L antennas to support M single-antenna mobile users based on spatial-domain non-orthogonal
multiple access.
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estimate the uplink channel matrix and exploit the reciprocal

property to obtain downlink channel estimate bHT. Owing to the
mismatch in the uplink and downlink radio frequency (RF) chains,
the reciprocal property cannot be exact and hence, the downlink

channel estimate bHT is also erroneous.
Therefore, the BS does not have the perfect downlink channel

matrix. To model the channel estimation error, we express the
channel estimatebhm;l ¼ hm;l þ e;1 6 m 6 M;1 6 l 6 L; ð7Þ
where both the real and imaginary parts of e, denoted as R eð Þ and
I eð Þ, are the uniformly distributed random variables in �re;re½ �.
The case of re ¼ 0 corresponds to the perfect channel knowledge.

The BS uses the erroneous channel estimate bHT to calculate the
TPC matrix.

2.3. Nonlinear high power amplifier

However, for the high PAPR signaling, such as the high-order
QAM considered in this paper, the commonly used HPA at trans-
mitter exhibits serious nonlinear saturation distortion. Conse-
quently, the linear MIMO channel model (3) is no longer valid.
More specifically, the transmitted signal vector w kð Þ is no longer
linearly proportional to the precoder output vector x kð Þ. Rather,
owing to the HPAs’ nonlinearity,w kð Þ is a nonlinear transformation
of x kð Þ. As a result, the TPC matrix distorted by the nonlinearity of
HPA becomes incapable of compensating for the MIMO channel
interference. To model nonlinear HPA, note that a complex-
valued number x 2 C can be represented either in rectangular form
of x ¼ R xð Þ þ jI xð Þ, or in polar form of x ¼ rx exp j/xð Þ, in which rx is
the magnitude of x and /x the phase of x. Without loss of general-
ity, omit the antenna index l in the discussion. HPA employed in
wireless systems is typically the solid state NEC GaAs power ampli-
fier [32,33], which exhibits nonlinear saturation characteristics. In
the equivalent baseband discrete-time domain, a HPA output sig-
nal w kð Þ from a BS antenna can be expressed as

w kð Þ ¼ N v kð Þð Þ ¼ A rv kð Þð Þ exp j ! rv kð Þð Þ þ /v kð Þð Þð Þ; ð8Þ
where N �ð Þ denotes the HPA’s nonlinear mapping and v kð Þ is the
input to the HPA. Hence the complex-valued HPA’s mapping N �ð Þ
is defined by its amplitude response A rð Þ and phase response ! rð Þ,
given respectively by [32,33]

A rð Þ ¼ gar

1þ gar
Asat

� �2ba� � 1
2ba

; ð9Þ

! rð Þ ¼ a/rq1

1þ r
b/

� �q2 degree½ �; ð10Þ
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where r denotes the amplitude of the input to the HPA, ga is the
small signal’s gain, ba is the smoothness factor and Asat is the satu-
ration level, while the parameters of the phase response, a/;b/; q1

and q2, are adjusted to match the specific amplifier’s characteristics
[32,33]. The operating status of the HPA is specified by the OBO,
which is defined as the ratio of the maximum output power Pmax

of the HPA to the average output power Paop of the HPA output sig-
nal, given by

OBO ¼ 10 � log10
Pmax

Paop
dB½ �: ð11Þ

The smaller OBO is, the deeper the HPA is into the nonlinear sat-
uration region.

With the HPA’s parameters as specified in the standards [32,33],
which are

ga ¼ 19; ba ¼ 0:81; Asat ¼ 1:4; a/ ¼ �48000; b/ ¼ 0:123; q1

¼ 3:8; q2 ¼ 3:7: ð12Þ
Fig. 2 depicts its amplitude response and phase response.

Clearly, the output saturation amplitude is Asat ¼ 1:4, which occurs
theoretically at the saturation input amplitude rsat ¼ 1:4, that is,
A rð Þ ¼ 1:4 for r P rsat. Consider the case that the HPA is designed
to operate in a large OBO value of 5 dB for transmitting 64QAM
data. Then the average 64QAM symbol amplitude is approximately
0.06, while the peak 64QAM symbol amplitude is approximately
0.09. The corresponding average amplitude of the HPA’s output is
approximately 0.8 and the peak amplitude of the HPA’s output is
approximately 1.0. Even under such a large OBO, the nonlinear dis-
tortions of the HPA is noticeable.

For the MIMO downlink, the TPC must be applied to overcome
the MIMO channel interference. Consequently, the nonlinear dis-
tortion of HPAs is even more serious. This is because the precoded
signal xl kð Þ is a linear combination of the M high-order QAM data
sm kð Þ for 1 6 m 6 M, and thus the PAPR of xl kð Þ is much higher than
each MU’s data sm kð Þ. This further amplifies the nonlinear distor-
tion of HPA.
3. Proposed predistorter design

3.1. Ideal predistorter response

Nonlinearity of the HPA renders the precoding ineffective. It is
therefore vital to design the predistorter that can pre-
compensate the nonlinear distortions of the HPA. Let theideal
complex-valued predistorter’s nonlinear mapping be X �ð Þ. Further
denotethis ideal predistorter’s amplitude response and phase
response as B �ð Þ and W �ð Þ, respectively. Then given the input x,
the output of the predistorter v is given by [41,42]



Fig. 2. Nonlinear HPA with the parameters given by (12): (a) amplitude response, and (b) phase response.
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v ¼ X xð Þ ¼ B rxð Þ exp j W B rxð Þð Þ þ /xð Þð Þ: ð13Þ
The ideal or perfect predistorter should satisfy the following condi-
tions [41,42]:

A B rxð Þð Þ ¼ rx; rx 6 rsat;

rsat; rx > rsat;

	
ð14Þ

W B rxð Þð Þ þ! B rxð Þð Þ ¼ 0: ð15Þ
Note that the input to the HPA is the output of the predistorter, and
the predistorter can only achieve the linearization for 0 6 rx 6 rsat.

With this predistorter to compensate for the HPA’s nonlinear
distortion, the BS can employ a standard full-digital precoding
design, such as the ZF precoding of (4)–(6), to pre-remove the
MIMO downlink channel interference. Specifically, denote the out-
put vector of the L idealized predistorters as

v kð Þ ¼ X x kð Þð Þ ¼ X x1 kð Þð ÞX x2 kð Þð Þ � � �X xL kð Þð Þ½ �T; ð16Þ
and the output vector of the L HPAs as

w kð Þ ¼ N v kð Þð Þ ¼ N v1 kð Þð ÞN v2 kð Þð Þ � � �N vL kð Þð Þ½ �T: ð17Þ
Then MIMO channel model (1) can be re-expressed as

y kð Þ ¼ 1ffiffi
k

p HTN X
ffiffiffi
k

p
PZFs kð Þ

� �� �
þ 1ffiffi

k
p n kð Þ

¼ 1ffiffi
k

p HTN X
ffiffiffi
k

p
PZFs kð Þ

� �� �
þ n

�
kð Þ;

ð18Þ

where the AWGN n
�
kð Þ � CN 0M ;

r2
n
k IM

� �
. Observing from the ideal

amplitude response (14) of the combined HPA and predistorter, it
can be concluded that if the precoded data points xl kð Þ have the
magnitudes rx kð Þ 6 rsat, the predistorter completely linearizes the
HPA, and the nonlinear MIMO model (18) is equivalent to the liner
MIMO model (3).

Remark 1. It is necessary to apply the scaling or normalization
factor in the precoding operation (4). Otherwise the magnitudes
rx kð Þ of many precoded data points xl kð Þ will become larger than
rsat, which leads to high bit error rate (BER) floor even with the
idealized predistorters. A consequence of this scaling is that the BS
transmitter needs to send

ffiffiffi
k

p
to the M MU receivers, and each MU

needs to ‘un-scale’ its received signal by 1ffiffi
k

p as can be seen in (18).
3.2. B-spline neural network based predistorter

The schematic diagram of the proposed predistorter design is

depicted in Fig. 3, where bB �ð Þ is an estimate of the predistorter’s

true amplitude response B �ð Þ, solved from bA bB rð Þ
� �

¼ r, in which
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bA �ð Þ denotes an estimate of the HPA’s true amplitude response

A �ð Þ, while b! �ð Þ denotes an estimate of the HPA’s true phase
response ! �ð Þ. Since B-spline neural network is an effective means
of nonlinear modeling [42,43,52–56], we adopt the B-spline mod-
eling approach for estimating the HPA’s true amplitude response
A �ð Þ and true phase response ! �ð Þ as well as the predistorter’s true
amplitude response B �ð Þ.

3.2.1. B-spline neural network
To model a generic real-value nonlinearity f rð Þ in the univariate

of r, we use a B-spline neural network model with piecewise poly-
nomial degree of Pd and N basis functions. This B-spline model is
parametrized by the knot sequence specified by N þ Pd þ 1ð Þ knot
values, R0;R1; � � � ;RNþPd


 �
, with

R0 < R1 < � � � < RPd�2 < RPd�1 ¼ Rmin < RPd < � � �
< RN < RNþ1 ¼ Rmax < RNþ2 < � � � < RNþPd :

ð19Þ

At each end, there are Pd � 1 external knots that are outside the
input region Rmin;Rmax½ � and one boundary knot. Hence the number
of internal knots is given by N þ 1� Pd. Given the set of predeter-
mined knots (19), the set of the N B-spline basis functions

Bi rð Þ ¼ B
Pdð Þ
i rð Þ;1 6 i 6 N; ð20Þ

are formed using the De Boor recursion [57], which recursively
computes

B
0ð Þ
l rð Þ ¼ 1; ifRl�1 6 r < Rl;

0; otherwise;

	
ð21Þ

for 1 6 l 6 N þ Pd, as well as

B
pð Þ
l rð Þ ¼ r � Rl�1

Rpþl�1 � Rl�1
B

p�1ð Þ
l rð Þ þ Rpþl � r

Rpþl � Rl
B

p�1ð Þ
lþ1 rð Þ; ð22Þ

for l ¼ 1; � � � ;N þ Pd � p and p ¼ 1; � � � ; Pd. The estimate of f rð Þ is
readily expressed as the linear combiner of the N B-spline basis
functions

bf rð Þ ¼
XN
i¼1

Bi rð Þai; ð23Þ

where ai for 1 6 i 6 N are the B-spline neural network’s weight
parameters. An illustration of the De Boor recursion or the B-
spline neural network structure is depicted in Fig. 4.

Remark 2. The polynomial degree Pd ¼ 4 and the number of B-
spline bases N ¼ 10 are sufficient for accurately modeling an
arbitrary nonlinear function f rð Þ. The computational complexity of

the B-spline neural network is on the order of P2
d , which is the same



Fig. 3. Schematic of proposed predistorter structure.
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as the polynomial model with the polynomial degree Pd [43]. The
B-spline estimator (23) has the well-known optimal robustness
property [52–54].Optimality of the B-spline model in terms of
numerical stability is due to the convexity of its model bases, i.e.,
they are all positive and sum up to one. This optimal robustness
property ensures that given the same level of structural (compu-
tational) complexity, the B-spline estimator will outperform any
other non-robust linear-combining-nonlinear-bases estimator,
such as the polynomial estimator, in modeling an unknown
nonlinear function, in terms of estimation accuracy, particularly
when the training input data are noisy.

We now demonstrate this optimality of the B-spline model.
Assume that the real-valued true system is represented by the
polynomial model of degree Pd as

y ¼
XPd
i¼0

aixi;

which can also be represented by the following B-spline model
exactly

y ¼
XN
i¼1

biBi xð Þ;

where y; x 2 R. Because the identification data are noisy, the esti-
mated model coefficients are perturbed from their true values ai

to bai ¼ ai þ ei for the polynomial model, and from their true values
Fig. 4. Visualisation of the B-spline neural network architecture for Pd ¼ 4 and
N ¼ 5, where Rmin ¼ R3 and Rmax ¼ R6.
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bi to bbi ¼ bi þ ei for the B-spline model. Assume that all the estima-
tion noises ei are bounded, namely, jeij < emax. The upper bound of
jy� byj for the B-spline model can be worked out to be

jy� byj ¼ j
XN
i¼1

biBi xð Þ �
XN
i¼1

bbiBi xð Þj < emaxj
XN
i¼1

Bi xð Þj ¼ emax:

Observe that the upper bound of the B-spline model output pertur-
bation only depends on the upper bound of the perturbation noise,
and it does not depend on the input value x, the number of basis
functions N or the polynomial degree Pd. This confirms that the B-
spline model has the maximum numerical robustness, and this
optimality of the B-spline model is due to the convexity of its model
bases, that is, they are all positive and sum up to one. By contrast,
the upper bound of jy� byj for the polynomial model can be worked
out to be

jy� byj ¼ j
XPd
i¼0

aixi �
XPd
i¼0

baixij < emaxj
XPd
i¼0

xij:

Observe that the upper bound of the polynomial model output per-
turbation depends not only on the upper bound of the perturbation
noise but also on the input value x and the polynomial degree Pd.
The higher the polynomial degree Pd, the more serious the polyno-
mial model may be perturbed, a well-known drawback of using
polynomial modeling.

We further illustrate this optimality of the B-spline model using
a simple example. Fig. 5(a) plots a quadratic polynomial function
y ¼ 0:001x2 � 0:02xþ 0:1 defined over x 2 0;20½ � in solid line.
Based on the knot sequence of �5;�4;0;20;24;25f g, this function
is modeled as a quadratic B-spline model of
y ¼ 0:14B1 xð Þ � 0:10B2 xð Þ þ 0:14B3 xð Þ, which is depicted in
Fig. 5(b) in solid line. We now draw three noises ei;1 6 i 6 3, from
a uniformly distributed random number (UDRN) in
�0:0001;0:0001½ �, and add them to the three parameters in the
two models, respectively, to simulate the effects of the noise in
identification. Fig. 5(a) and (b) depict the ten sets of the perturbed
functions in dashed line generated by perturbing the two models,
respectively. It can be clearly seen from Fig. 5(a) that the
polynomial model is seriously perturbed, but there is no noticeable
change at all in Fig. 5(b) for the quadratic B-spline model. To
further demonstrate the maximum robustness of the B-spline
model, we next draw three perturbation noises from a UDRN in
�0:001;0:001½ �, and add them to the three parameters of the B-
spline model. Again, the B-spline model is hardly affected, as can
be seen from Fig. 5(c). We then draw three perturbation noises
from a UDRN in �0:01;0:01½ � to add to the three B-spline
parameters, and the results obtained are shown in Fig. 5(d). By
comparing Fig. 5(a) and (d), it can be seen that despite of the fact
that the strength of the perturbation noise added to the B-spline
model coefficients is 100 times larger than that added to the
polynomial model coefficients, the B-spline model is much less
seriously perturbed than the polynomial model.



Fig. 5. (a) The polynomial model with three perturbation noises drawn from a uniformly distributed random number (UDRN) in �0:0001;0:0001½ �, (b) the B-spline model
with three perturbation noises drawn from a UDRN in �0:0001;0:0001½ �, (c) the B-spline model with three perturbation noises drawn from a UDRN in �0:001;0:001½ �, and (d)
the B-spline model with three perturbation noises drawn from a UDRN in �0:01;0:01½ �..

S. Chen, Soon Xin Ng, E. Khalaf et al. Neurocomputing 458 (2021) 336–348
3.2.2. Estimation of nonlinear HPA
In order to design a predistorter, we first need to estimate the

HPA’s nonlinearity, i.e., its amplitude response A �ð Þ and phase
response ! �ð Þ. We adopt two B-spline neural networks for this task,
one for estimating A �ð Þ and the other for ! �ð Þ. More specifically, we
model the HPA’s true amplitude response A rð Þ and true phase
response ! rð Þ by the following two B-spline neural networks

bA rð Þ ¼
XN
i¼1

Bi rð Þai; ð24Þ

b! rð Þ ¼
XN
i¼1

Bi rð Þbi: ð25Þ

Hence, the estimation task is turned into the problem of estimating
the two B-spline neural networks’ parameter vectors

a ¼ a1a2 � � �aN½ �T 2 RN and b ¼ b1b2 � � � bN½ �T 2 RN .

Given the K training data samples x kð Þ;w kð Þf gKk¼1, where
K > N; x kð Þ and w kð Þ are the input and output of the HPA, respec-
tively, we can obtain the closed-form LS estimates of a and b.
341
Specifically, first converting the complex-valued training dataset

x kð Þ;w kð Þf gKk¼1 into the two real-valued ones, namely,

rx kð Þ; rw kð Þf gKk¼1 and rx kð Þ;/w kð Þ � /x kð Þf gKk¼1. We introduce the
respective desired output vectors for the models (24) and (25) as

dA ¼ rw 1ð Þrw 2ð Þ � � � rw Kð Þ½ �T; ð26Þ
d! ¼ /w 1ð Þ � /x 1ð Þð Þ /w 2ð Þ � /x 2ð Þð Þ � � � /w Kð Þ � /x Kð Þð Þ½ �T; ð27Þ
as well as the regression matrix

B ¼

B1 rx 1ð Þð Þ B2 rx 1ð Þð Þ � � � BN rx 1ð Þð Þ
B1 rx 2ð Þð Þ B2 rx 2ð Þð Þ � � � BN rx 2ð Þð Þ

..

. ..
. ..

. ..
.

B1 rx Kð Þð Þ B2 rx Kð Þð Þ � � � BN rx Kð Þð Þ

266664
377775: ð28Þ

Then the LS estimates of a and b are readily given respectively by

ba ¼ BTB
� ��1

BTdA; ð29Þbb ¼ BTB
� ��1

BTd!: ð30Þ
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3.2.3. Designing predistorter using Gauss–Newton algorithm

Given the estimated HPA’s phase response b! rð Þ of (25), the esti-
mated predistorter’s phase response is readily determined accord-

ing to (15) as bW rvð Þ ¼ �b! rvð Þ, which is also illustrated in Fig. 3. On
the other hand, the problem of estimating the predistorter’s ampli-
tude response can also be turned into one of estimating the param-

eter vector h ¼ h1h2 � � � hN½ �T 2 RN for the following B-spline neural
network

bB rð Þ ¼
XN
i¼1

Bi rð Þhi: ð31Þ

However, this is a nonlinear estimation problem, and an iterative
gradient descent optimization procedure has to be applied. More
specifically, given the set of the N input magnitude samples

rx kð Þf gKk¼1 and the estimated HPA’s amplitude response of (24),
define the errors e kð Þ

e kð Þ ¼ rx kð Þ � bA bB rx kð Þð Þ
� �

¼ rx kð Þ �
XN
i¼1

Bi
bB rx kð Þð Þ
� �bai

¼ rx kð Þ �
XN
i¼1

Bi

XN
l¼1

Bl rx kð Þð Þhl
 !bai;

ð32Þ

for 1 6 k 6 K . We minimize the following cost function to deter-
mine h

J hð Þ ¼ 1
2

XK
k¼1

e2 kð Þ: ð33Þ

Denote rv kð Þ ¼ bB rx kð Þð Þ ¼PN
l¼1Bl rx kð Þð Þhl. Clearly, we must have

rv kð Þ ¼ bB rx kð Þð Þ P 0, and hence we actually compute rv kð Þ as

rv kð Þ ¼ max
PN

l¼1Bl rx kð Þð Þhl;0
n o

. The gradient of the cost function

(33) OJ hð Þ ¼ @J
@h1

@J
@h2

� � � @J
@hN

h iT
is given by

@J hð Þ
@hi

¼
XK
k¼1

e kð Þ @e kð Þ
@hi

¼ �
XK
k¼1

e kð Þ dbA rv kð Þð Þ
drv

@rv kð Þ
@hi

;

¼ �
XK
k¼1

e kð Þ
XN
l¼1

dBl rv kð Þð Þ
drv

bal

 !
Bi rx kð Þð Þ;1 6 i 6 N;

ð34Þ

in which the derivatives of the B-spline basis functions can also be
computed recursively according to the following De Boor recursion
[57]

dBl rð Þ
dr

¼ dB Pdð Þ
l rð Þ
dr

¼ Pd

RPdþl�1 � Rl�1
B

Pd�1ð Þ
l rð Þ

� Pd

RPdþl � Rl
B

Pd�1ð Þ
lþ1 rð Þ;1 6 l 6 N: ð35Þ

By denoting the iteration step index with the superscript sð Þ and
given the initial estimate h 0ð Þ, the Gauss–Newton algorithm to esti-
mate h is given by the iteration formula

h sð Þ ¼ h s�1ð Þ � l OJ h s�1ð Þ� �
OJ h s�1ð Þ� �� �T� ��1

OJ h s�1ð Þ� �
; ð36Þ

where l > 0 is the step size.
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3.2.4. Designing predistorter using PSO algorithm
Since the cost function (33) is highly nonlinear, gradient-based

estimators, such as the Gauss–Newton algorithm, require good ini-
tial parameter estimate to avoid local minima. Therefore, it is pre-
ferred to apply an efficient global optimization algorithm to solve
this problem. Here we use the PSO [45,46] to design the predis-
torter amplitude response. Recall that given the cost function J hð Þ
of (33) based on a block of training data rx kð Þf gKk¼1, the predistorter
design problem is to solve the following optimization problem

hopt ¼ argmin
h2H

J hð Þ; ð37Þ

where the search space is specified by

H ¼
YN
i¼1

himin
; himax

� 
: ð38Þ

When applying the PSO algorithm [45,46] to solve this optimiza-

tion, a swarm of particles h lð Þ
m

n oS

m¼1
are ‘flying’ in the search space

to find a solution, where S is the size of the swarm and
l 2 1;2; � � � ; Lmaxf g denotes the lth movement of the swarm with
Lmax being the maximum number of searches. Each particle position
hm ¼ hm;1 � � � hm;N½ �T has a velocity vm ¼ vm;1 � � �vm;N½ �T to direct its
search, and vm 2 V with the velocity space defined by

V ¼
YN
i¼1

�v imax ; v imax½ �; ð39Þ

where v imax ¼ 1
2 himax � himin

� �
.

The PSO search is started by initializing the particles h 0ð Þ
m


 �S
m¼1

randomly withinH and setting the velocity for each candidate par-

ticle to zero, namely, v 0ð Þ
m ¼ 0N

n oS

m¼1
. The so-called cognitive infor-

mation pb lð Þ
m and the social information gb lð Þ record the best

position visited by the particle m and the best position visited by
the entire swarm, respectively, during the l movements. The cost

function values associated with pb lð Þ
m and gb lð Þ are J pb lð Þ

m

� �
and

J gb lð Þ
� �

, respectively. The velocities and positions of the swam

are updated according to

v lð Þ
m ¼ Iw � v l�1ð Þ

m þ rand 0;1ð Þ � c1 � pb l�1ð Þ
m � h l�1ð Þ

m

� �
þrand 0;1ð Þ � c2 � gb l�1ð Þ � h l�1ð Þ

m

� �
;

ð40Þ

h lð Þ
m ¼ h l�1ð Þ

m þ v lð Þ
m ; ð41Þ

for 1 6 m 6 S, where Iw is the inertia weight, rand a; bð Þ denotes the
random number uniformly distributed in a; b½ �; c1 and c2 are the two
acceleration coefficients. Experimental results given in [46] show
that a better performance can be achieved by using Iw ¼ rand 0;1ð Þ
rather than a constant inertia weight. The time varying acceleration
coefficients [45] are adopted, in which

c1 ¼ 2:5� 2:5� 0:5ð Þ l
Lmax

;

c2 ¼ 0:5þ 2:5� 0:5ð Þ l
Lmax

:

(
ð42Þ

The velocity v lð Þ
m and position h lð Þ

m , derived in (40) and (41), respec-
tively, are projected inside the velocity space V and the search space

H. Furthermore, if v lð Þ
m ¼ 0N , it is re-initialized to a non-zero value

inside V . Algorithm1 summarizes this PSO algorithm.



Fi
an
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Algorithm 1: Particle swarm optimization algorithm
1:
g. 6. Co
d true
Swarm Initialization

2:
 Give swarm size S and number of search iterations Lmax.

3:
Randomly initialize h
0ð Þ
m

n oS

m¼1
in H, and set

v 0ð Þ
m ¼ 0N

n oS

m¼1
.

4:

Compute J h

0ð Þ
m

� �n oS

m¼1
, set pb 0ð Þ

m ¼ h
0ð Þ
m

n oS

m¼1
, and

determine � �

gb 0ð Þ ¼ arg min

16m6S
J h

0ð Þ
m :
5:
 Swarm Evolution

6:
 For l ¼ 1;2; � � � ; Lmax
7:
 For m ¼ 1;2; � � � ; S

8:
 Compute v lð Þ

m according to (40).

9:
 For i ¼ 1;2; � � � ;N

10:
 If v lð Þ

m;i ¼ 0: v lð Þ
m;i ¼ �0:5v imax rand 0;1ð Þ.
11:
 If v lð Þ
m;i > v imax : v

lð Þ
m;i ¼ v imax .
12:
 If v lð Þ
m;i < �v imax : v

lð Þ
m;i ¼ �v imax .
13:
 End for

14:
 Compute h

lð Þ
m according to (41).
15:
 For i ¼ 1;2; � � � ;N

16:
 If h lð Þ

m;i > himax : h
lð Þ
m;i ¼ himax .
17:
 If h lð Þ
m;i < himin

: h lð Þ
m;i ¼ himin
18:
 End For � �

19:
 Compute J h

lð Þ
m , and set pb lð Þ

m ¼ pb l�1ð Þ
m .� � � �
20:
 If J pb lð Þ
m > J h

lð Þ
m : pb lð Þ

m ¼ h
lð Þ
m .� � � �
21:
 If J gb l�1ð Þ
> J pb lð Þ

m : gb l�1ð Þ ¼ pb lð Þ
m .
22:
 End for

23:
 gb lð Þ ¼ gb l�1ð Þ.

24:
 End for

25:
 Termination

26:
 Solution is hopt ¼ gb Lmaxð Þ.
4. Performance evaluation

A simulation study is carried out to investigate the achievable
performance of the proposed PSO assisted B-spline neural network
mparison of the true HPA and its B-spline estimate as well as comparison of the
HPA: (a) amplitude response, and (b) phase response. The B-spline predistorte
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based predistorter. In the simulated nonlinear MIMO downlink, the
BS employs L ¼ 5 transmit antennas to support M ¼ 3 single-
antenna MUs using the same single frequency-time resource block.
The 64QAM signaling is adopted, and the transmit HPA’s parame-
ters are specified by (12). Both the Gauss–Newton algorithm and
the PSO algorithm are compared in designing the B-spline predis-
torter to demonstrate the superior performance of the latter. The

system’s signal-to-noise ratio (SNR) is defined as SNR ¼ r2
s

r2
n
, where

r2
s is the average symbol energy of the 64QAM symbols. The ZF

TPC matrix is calculated according to the channel estimate (7),
which takes into account the channel estimation error. The BER
performance is averaged over 100 MIMO channel realizations.

4.1. Predistorter performance

4.1.1. Estimating HPA
Consider the HPA specified by (12), whose amplitude response

and phase response are depicted in Fig. 2. To identify this HPA,
400 training input and output data samples are generated. The
amplitudes of the inputs to the HPA are randomly drawn from
0:01;1:35½ �. The B-spline model with polynomial degree Pd ¼ 4
and N ¼ 10 basis functions is adopted. The knot sequence is spec-
ified by

� 2� 10�5;�10�5;�10�6;10�5;0:05;0:1;0:3;0:5;0:7;

1:1;1:3;1:4;1:5;1:6;103:

Clearly, the input magnitude r > 0 and the HPA saturated at the
input magnitude rsat ¼ 1:4. Therefore, we set the two boundary
knots to Rmin ¼ 10�5 and Rmax ¼ 1:4.

The B-spline estimated amplitude response and phase response

model parameter vectors, ba and bb, are readily obtained by the
closed-form LS solutions (29) and (30). The B-spline estimated
HPA amplitude response and phase response are depicted in
Fig. 6, in comparison with the true HPA amplitude response and
phase response. It can be seen from Fig. 6(a) and (b) that the
response of the B-spline neural network estimate closely match
the response of the true HPA, except for near zero input amplitude
where there is a very small but noticeable phase response error.

4.1.2. Estimating predistorter by Gauss–Newton algorithm

Based on the obtained B-spline estimate bA rð Þ of the HPA ampli-
tude response, we can design the B-spline predistorter amplitude
response model using the Gauss–Newton algorithm. The initial
parameter vector h is set to 0N in this case. The estimated predis-
torter amplitude response is illustrated in Fig. 6(a). In Fig. 6, we
ideal combined predistorter and true HPA and the combined estimated predistorter
r estimate is obtained using the Gauss–Newton algorithm.



Fig. 7. Comparison of the true HPA and its B-spline estimate as well as comparison of the ideal combined predistorter and true HPA and the combined estimated predistorter
and true HPA: (a) amplitude response, and (b) phase response. The B-spline predistorter estimate is obtained using the particle swarm optimization algorithm.

Fig. 8. Comparison of the average bit error rate performance over 100 MIMO channel realizations obtained by the nonlinear transmit scheme utilizing the estimated
predistorter and the classical linear ZF transmit precoding scheme, respectively, given the two OBO values of 3 dB and 5 dB and with perfect CSI: (a) MUm ¼ 1, (b) MUm ¼ 2,
and (c) MU m ¼ 3.
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also display the amplitude response and phase response of the
combined predistorter estimate and the true HPA, in comparison
with the ideal response of the combined predistorter and the true
HPA, which are specified by (14) and (15). Observe from Fig. 6(a)
that for small input amplitude and very large input amplitude,
the combined predistorter estimate and the true HPA deviates
noticeably from the ideal one. Also there exists a large combined
phase response error at very small input amplitude, as can be
clearly seen from Fig. 6(b). Clearly, this estimated predistorter’s
amplitude response by the Gauss–Newton algorithm is insuffi-
ciently accurate. Better initial parameter vector are required for
the Gauss–Newton algorithm to converge to an accurate solution.
4.1.3. Estimating predistorter by PSO algorithm
Next, we apply the PSO algorithm to design the B-spline predis-

torter amplitude response model based on the obtained B-spline

estimate bA rð Þ of the HPA amplitude response. The population size
is set to S ¼ 50, and the maximum number of swam movements is
Fig. 9. Impact of the channel estimation error bound re on the achievable average bit
predistorter over 100 MIMO channel realizations, given OBO ¼ 3 dB: (a) MU m ¼ 1, (b)
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Lmax ¼ 100, while all the position lower bounds and upper bounds
are set to himin

¼ �1:0 and himax ¼ 1:0, respectively. The amplitude
response and phase response of the combined predistorter esti-
mate and the true HPA are shown in Fig. 7(a) and (b), respectively.
Observe that the estimated combined amplitude and phase
response closely match to the ideal ones. Clearly, the PSO algo-
rithm is much better than the Gauss–Newton algorithm for solving
this nonlinear optimization problem. More specifically, the esti-
mated B-spline neural network based predistorter by the PSO algo-
rithm is capable of accurately pre-compensating for the HPA’s
nonlinear distortion.

Remark 3. The PSO algorithm is ideal for estimating the B-spline
predistorter which has only N ¼ 10 parameters. Two algorithmic
parameters, the population size S and the maximum number of
swam movements Lmax, need to be set. Extensive empirical results
suggest that Lmax ¼ 100 is sufficient and setting S to a few times of
N is adequate. The PSO algorithm converges very fast. Although we
set Lmax ¼ 100, the algorithm actually converges in far less than
error rate performance of the nonlinear transmit scheme utilizing the estimated
MU m ¼ 2, and (c) MU m ¼ 3.



S. Chen, Soon Xin Ng, E. Khalaf et al. Neurocomputing 458 (2021) 336–348
100 iterations. The predistorter design is an offline problem, since
it does not depend on the channel. Specifically, it is designed before
communication and fixed. The BS has sufficient computation
capacity to implement the PSO algorithm to design the predistorter
before performing the downlink TPC transmission.
4.2. Bit error rate performance

To further demonstrate the effectiveness of the proposed PSO
assisted B-spline neural network based predistorter design, we
apply the estimated B-spline predistorter obtained in Section 4.1.3
in the nonlinear MIMO downlink to investigate the achievable BER
performance. First, we consider the idealistic case of perfect CSI,
namely, the channel estimation error bound re ¼ 0. Fig. 8 com-
pares the achievable BER performance of our nonlinear transmit
design with that of the classical linear transmit precoding scheme.
To the best knowledge of the authors, there exists no other nonlin-
ear transmit design in the literature forthe NOMA multiuser non-
Fig. 10. Impact of the channel estimation error bound re on the achievable average bi
predistorter over 100 MIMO channel realizations, given OBO ¼ 5 dB: (a) MU m ¼ 1, (b)
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linear MIMO downlinkconsidered in this research. Therefore, we
only compare our proposed nonlinear transmit scheme with the
linear transmit scheme. As expect, the linear ZF transmit precoding
scheme cannot compensate for the HPAs’ nonlinear distortions
and, consequently, a very high BER floor occurs. By effectively
compensating for the HPAs’ nonlinear distortions with our PSO
assisted B-spline neural network based predistorter, our nonlinear
transmit design dramatically improving the achievable BER
performance.

Next we investigate the impact of the channel estimation error
on the achievable BER performance of our proposed nonlinear
transmit scheme. Given OBO ¼ 3 dB, Fig. 9 depicts the BER perfor-
mance under different levels of estimation error, ranging from low
channel estimation error of re ¼ 0:02 to high channel estimation
error of re ¼ 0:05. With very low channel estimation error of
re ¼ 0:01, the BER curve is almost indistinguishable form the ide-
alistic case of perfect CSI. On the other hand, with very high chan-
nel estimation error of re ¼ 0:06, the BER floor increases to around
10�3. For graphic clarification, we do not plot these two BER curves.
t error rate performance of the nonlinear transmit scheme utilizing the estimated
MU m ¼ 2, and (c) MU m ¼ 3.
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Similarly, given OBO ¼ 5 dB, Fig. 10 shows the impact of channel
estimation error on the achievable BER performance. It can be seen
that our proposed nonlinear transmit design relying on the esti-
mated B-spline predistorter is reasonably robust to the channel
estimation error.
5. Conclusions

In this paper, we have proposed an efficient and highly accurate
predistorter design to enable a novel nonlinear transmit scheme
forthe NOMA multiuser nonlinear MIMO downlink with high-
order QAM signaling and nonlinear transmit HPAs at the BS. Our
main contribution has been to design a novel PSO assisted B-
spline neural network based predistorter. This nonlinear predis-
torter can be pre-constructed in training before communication
session, which provides an effective and accurate means of pre-
compensating for the nonlinear distortions of transmit HPAs dur-
ing communication session. With the nonlinear distortions of
transmit HPAs been taking care of by this novel predistorter, the
standard linear transmit precoding, such as the ZF precoding, can
readily been employed to combat the multiuser MIMO channel
interference. Our proposed nonlinear transmit design has been
the first effective scheme for theNOMA multiuser nonlinear MIMO
downlink. A simulation investigation has been conducted to
demonstrate its effectiveness. The results obtained have also
shown that our proposed nonlinear transmit design is reasonably
robust to the channel estimation error.
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