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Abstract— We consider a fully complex-valued radial basis
function (RBF) network for regression application. The locally
regularised orthogonal least squares (LROLS) algorithm with
the D-optimality experimental design, originally derived for
constructing parsimonious real-valued RBF network models,
is extended to the fully complex-valued RBF network. Like its
real-valued counterpart, the proposed algorithm aims to achieve
maximised model robustness and sparsity by combining two ef-
fective and complementary approaches. The LROLS algorithm
alone is capable of producing a very parsimonious model with
excellent generalisation performance while the D-optimality
design criterion further enhances the model efficiency and
robustness. By specifying an appropriate weighting for the D-
optimality cost in the combined model selecting criterion, the
entire model construction procedure becomes automatic. An
example of identifying a complex-valued nonlinear channel is
used to illustrate the regression application of the proposed
fully complex-valued RBF network.

I. INTRODUCTION

The complex-valued radial basis function (RBF) network

of [1] has widely been used in nonlinear signal processing

applications that involve complex-valued signals. In this

complex-valued RBF network, each RBF node has a real-

valued response that can be interpreted as a conditional

probability density function. This interpretation makes such

a complex-valued RBF network particularly useful in the

equalisation application of communication channels with

complex-valued signals [2], [3], [4], [5], [6]. Because the

RBF node’s response is real-valued, this complex-valued

RBF network is essentially two separate real-valued RBF

networks. Various learning methods, such as the orthogonal

least squares (OLS) forward selection algorithm [7], [8], can

readily be adopted to this complex-valued RBF network for

regression application. In this study, we consider a different

complex-valued RBF network, where each RBF node has a

complex-valued response, and we develop an efficient con-

struction algorithm for selecting sparse fully complex-valued

RBF networks with excellent generalisation capability.

Among various learning algorithms for real-valued RBF

networks, the local regularisation assisted OLS (LROLS)

algorithm combined with the D-optimality experimental

design criterion [9] is a powerful algorithm for construct-

ing parsimonious real-valued RBF networks that generalise

well, because it combines two effective and complementary

approaches for modelling, namely, the local regularisation
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assisted OLS regression [10], [11] and the D-optimality

experimental design [12], [13]. By adopting multiple regu-

larisers, the LROLS algorithm is capable of constructing very

sparse real-valued RBF models with excellent generalisation

capability from noisy data [10], [11]. Optimal experimental

designs [12] have been used to construct smooth model

response surfaces based on the setting of the experimental

variables under well controlled experimental conditions. In

optimal design, model adequacy is evaluated by design crite-

ria that are statistical measures of goodness of experimental

designs by virtue of design efficiency and experimental

effort. For real-valued RBF models, quantitatively, model

adequacy is measured as function of the eigenvalues of the

design matrix, as it is known that the eigenvalues of the

design matrix are linked to the covariance matrix of the least

squares (LS) parameter estimate. There exist a variety of opti-

mal design criteria based on different aspects of experimental

design [12]. The D-optimality criterion is most effective in

optimising the parameter efficiency and model robustness via

the maximisation of the determinant of the design matrix.

Combining the D-optimality criterion with OLS regression

[13] leads to an enhanced construction algorithm, as the

coupling effects of the two approaches in the combined

algorithm further enhance each other. Moreover, the user only

needs to specify a weighting for the D-optimality criterion

and the model construction process is fully automatic. The

value of this weighting does not influence the model selecting

procedure critically and it can be chosen with ease from a

wide range of values [9].

We extend this combined LROLS algorithm and D-

optimality experimental design to the fully complex-valued

RBF network. An example involving the identification of

a complex-valued nonlinear channel is used to demonstrate

the effectiveness of the proposed algorithm for constructing

sparse fully complex-valued RBF network models for regres-

sion application. The paper is organised as follows. Section II

briefly outlines the proposed fully complex-valued RBF

network, while Section III details the LROLS algorithm with

D-optimality design for constructing sparse fully complex-

valued RBF networks from noisy data. In Section IV we

present the case of identifying a complex-valued nonlinear

channel, while in Section V we offer our conclusions.

II. FULLY COMPLEX-VALUED RBF NETWORK

Consider the modelling of the data set DN =
{x(k), y(k)}N

k=1, where N is the number of training data,

x(k) ∈ Cm and y(k) ∈ C are the k-th complex-valued train-

ing input vector and corresponding complex-valued desired
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response, respectively, by the RBF network of the form

ŷ(k) =

M∑
i=1

θiφi(x(k)), (1)

where ŷ(k) denotes the complex-valued model output, θi

are the complex-valued model weights, M is the number of

RBF nodes, and φi(x(k)) denote the complex-valued RBF

nodes’ response. In particular, the response of the RBF node

is specified by

φi(x) = ϕ(‖�[x]−�[ci]‖/ρi)+jϕ(‖�[x]−�[ci]‖/ρi), (2)

where �[•] and �[•] denote the real and imaginary parts,

respectively, ci ∈ Cm is the i-th complex-valued RBF centre

vector, ρ2
i > 0 is the i-th RBF variance, and ϕ(•) is the

usual real-valued basis function. Two typical basis functions

are the thin-plate-spline function

ϕ(χ/1) = χ2 log(χ) (3)

and the Gaussian function

ϕ(χ/ρ) = e−χ2/ρ2

. (4)

Define the modelling residual for x(k) ∈ DN as e(k) =
y(k)− ŷ(k). Further consider every data points as candidate

centres, namely, M = K and ci = x(i) for 1 ≤ i ≤ M .

Moreover, set every RBF variance to a given value ρ2
i = ρ2.

Then we obtain the regression model over the data set DN

y = Φθ + e (5)

where y = [y(1) y(2) · · · y(N)]T , θ = [θ1 θ2 · · · θM ]T ,

e = [e(1) e(2) · · · e(N)]T and the complex-valued regression

matrix

Φ = [φ1 φ2 · · ·φM ] (6)

with columns φi = [φi(x(1)) φi(x(2)) · · ·φi(x(N))]T . Let

an orthogonal decomposition of Φ be Φ = WA, where

A =

⎡
⎢⎢⎢⎢⎣

1 a1,2 · · · a1,M

0 1
. . .

...
...

. . .
. . . αM−1,M

0 · · · 0 1

⎤
⎥⎥⎥⎥⎦ (7)

with complex-valued αi,l, 1 ≤ i < l ≤ M , and the complex-

valued orthogonal matrix

W = [w1 w2 · · ·wM ] (8)

with columns satisfying wH
i wl = 0, if i �= l. The regression

model (5) can alternatively be expressed as

y = Wg + e, (9)

where the weight vector g = [g1 g2 · · · gM ]T defined in

the orthogonal model space satisfies the following triangular

system Aθ = g.

III. LOCALLY REGULARISED OLS ALGORITHM WITH

D-OPTIMALITY DESIGN

We first briefly describe the two components of the com-

bined LROLS algorithm and D-optimality design.

A. Locally regularised OLS algorithm

Like the real-valued LROLS algorithm [10], [11], the

complex-valued version also adopts a similar regularised

error criterion defined as

JR(g, λ) = eHe +

M∑
i=1

λi|gi|2 = eHe + gHΛg, (10)

where λ = [λ1 λ2 · · ·λM ]T is the regularisation parameter

vector and Λ = diag{λ1, λ2, · · · , λM}. Similar to the real-

valued case [11], with g set to its optimal value, i.e. ∂JR

∂g
= 0,

the criterion (10) can be expressed as (see Appendix A)

eHe + gHΛg = yHy −
M∑
i=1

(
wH

i wi + λi

) |gi|2. (11)

Normalising (11) by yHy yields

(
eHe + gHΛg

)
/yHy = 1 −

M∑
i=1

(
wH

i wi + λi

) |gi|2/yHy.

(12)

As in the case of the original OLS algorithm [7], the

regularised error reduction ratio due to wi is defined by

[rerr]i =
(
wH

i wi + λi

) |gi|2/yHy. (13)

Based on this ratio, significant regressors can be selected in

a forward regression procedure, and the selection process is

terminated at the ns-th stage when

1 −
ns∑
l=1

[rerr]l < ξ (14)

is satisfied, where ξ is a chosen tolerance. This produces a

sparse model containing ns (	 M) significant regressors.

The regularisation parameters specify the prior distribu-

tions of g. Since initially we do not know the optimal value

of g, λi should be initialised to the same small value, and

this corresponds to choose a same flat distribution for each

prior of gi [11]. Similar to the real-valued regression model

case [11], applying the evidence procedure [14] will lead to

the updating formulas for the regularisation parameters

λnew
i =

γold
i

N − γold

eHe

|gi|2 , 1 ≤ i ≤ M, (15)

where gi denotes the current optimal weight solution, and

γi =
wH

i wi

λi + wH
i wi

and γ =

M∑
i=1

γi. (16)

Usually a few iterations (typically 10 to 20) are sufficient to

find an optimal λ.

B. D-optimality experimental design

Adopting the usual concepts of experimental design, we

refer to the matrix ΦHΦ as the design matrix. The LS

estimate of θ is given by θ̂ =
(
ΦHΦ

)
−1

ΦHy. Assume

that (5) represents the true data generating process and ΦHΦ

is nonsingular. Then, the LS estimate θ̂ is unbiased and the

8 2008 International Joint Conference on Neural Networks (IJCNN 2008)



u(k) v(k)
Σ

s(k) y(k)
y(k)

n(k)

nonlinear
element 1

nonlinear
element 2

FIR
channel

Fig. 1. Baseband discrete-time model of a nonlinear channel.

covariance matrix of the estimate is determined by the design

matrix ⎧⎨
⎩

E
[
θ̂
]

= θ,

Cov
[
θ̂
]
∝

(
ΦHΦ

)
−1

.
(17)

It is well known that the model based on the pure LS estimate

tends to be unsatisfactory for an ill conditioned regression

matrix (design matrix). The condition number of the design

matrix is given by

C =
max{κi, 1 ≤ i ≤ M}
min{κi, 1 ≤ i ≤ M} , (18)

with κi, 1 ≤ i ≤ M , being the eigenvalues of ΦHΦ. Too

large a condition number will result in unstable LS parameter

estimate while a small condition number improves model

robustness. The D-optimality design criterion maximises the

determinant of the design matrix for the constructed model.

Specifically, let Φns
be a column subset of Φ representing

a constructed ns-term subset model. According to the D-

optimality criterion, the selected subset model is the one that

maximises det(ΦH
ns

Φns
). This helps to prevent the selection

of an oversized ill-posed model and the problem of high

parameter estimate variances.

It is straightforward to verify that maximising

det(ΦH
ns

Φns
) is identical to maximising det(WH

ns
Wns

) or,

equivalently, minimising − log det(WH
ns

Wns
). In fact,

det(ΦHΦ) = det(AH) det(WHW) det(A)

= det(WHW) =

M∏
i=1

wH
i wi (19)

and

− log
(
det(WHW)

)
=

M∑
i=1

− log(wH
i wi). (20)

C. Combined LROLS and D-optimality algorithm

The combined LROLS and D-optimality algorithm adopts

the following combined criterion

JRD(g, λ, β) = JR(g, λ) + β
M∑
i=1

− log(wH
i wi). (21)

TABLE I

MODELLING PERFORMANCE FOR THE NONLINEAR CHANNEL.

basis function RBF variance number of RBFs MSE for training MSE for testing mean state error

Gaussian 1.0 15 0.120016 0.129401 0.027739

thin-plate-spline NA 15 0.120895 0.128526 0.027029

In this combined algorithm, the updating of the model

weights and regularisation parameters is exactly as in the

LROLS algorithm, but the selection is according to the

combined regularised error reduction ratio defined as

[crerr]i =
(
(wH

i wi + λi)|gi|2 + β log(wH
i wi)

)
/yHy

(22)

and the selection is terminated with an ns-term model when

[crerr]l ≤ 0 for ns + 1 ≤ l ≤ M. (23)

Note that there always exists a subset model size ns such

that (23) holds [13]. The iterative model selection procedure

can now be summarised:

Initialisation. Set λi, 1 ≤ i ≤ M , to the same small positive

value (e.g. 10−6), and choose a fixed β. Set iteration I = 1.

Step 1. Given the current λ, use the procedure described in

Appendix B to select a subset model with nI terms.

Step 2. Update λ using (15) with M = nI . If λ remains

sufficiently unchanged in two successive iterations or a pre-

set maximum iteration number (e.g. 10) is reached, stop;

otherwise set I+ = 1 and go to Step 1.

The introduction of the D-optimality cost into the algo-

rithm further enhances the efficiency and robustness of the

selected subset model and, as a consequence, the combined

algorithm can often produce sparser models with equally

good generalisation properties, compared with the LROLS

algorithm alone. An additional advantage is that it simplifies

the selection procedure. Note that it is no longer necessary

to specify the tolerance ξ and the algorithm automatically

terminates when condition (23) is met. The value of weight-

ing β does not critically influence the performance of this

combined LROLS and D-optimality algorithm. This is be-

cause the LROLS algorithm alone is capable of producing

a very sparse model and the selected model terms are

most likely to have large values of wH
i wi. Using the OLS

algorithm without local regularisation, this is not necessarily

the case, as model terms with small wH
i wi can have very

large |gi|2 (over-fitted) and consequently will be chosen.

Note that with regularisation such over-fitting will not occur.

The D-optimality design also favours the model terms with

large wH
i wi and therefore the two component criteria in

2008 International Joint Conference on Neural Networks (IJCNN 2008) 9
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Fig. 2. State constellation, where circles indicate channel states while
crosses indicate Gaussian RBF model states.

the combined criterion (22) are not in conflict. Thus, the

two methods enhance each other. Consequently, the value

of β is not critical in arriving a desired sparse model, and

the suitable weighting β can be chosen with ease from a

large range of values [9]. It should also be emphasised

that the computational complexity of this algorithm is not

significantly more than that of the OLS algorithm. This is

simply because after the 1st iteration, which has a complexity

of the OLS algorithm, the model set contains only n1 (	
M) terms, and the complexity of the subsequent iteration

decreases dramatically. Typically, after a few iterations, the

model set will converge to a constant size of very small ns.
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Fig. 3. State constellation, where circles indicate channel states while
crosses indicate thin-plate-spline RBF model states.

IV. A MODELLING EXAMPLE

Modelling capabilites of the fully complex-valued RBF

network and the efficiency of the combined LROLS and

D-optimality algorithm was illustrated using an example of

modelling a complex-valued nonlinear communication chan-

nel. Fig. 1 depicts the schematic of this nonlinear channel.

The transmitted data symbols s(k) = sR(k) + jsI(k) took

values from the 4-QAM constellation defined by

S = {+1 + j,−1 + j,−1 − j, +1 − j}. (24)

The first nonlinear element, representing the nonlinear high

power amplifier in the transmitter [15], was modelled by the

static nonlinearity

u(k) = famp(s(k)) =
2s(k)

1 + |s(k)|2 e
j π

3
|s(k)|2

1+|s(k)|2 . (25)

The time-dispersive transmission medium was modelled as

a finite-duration impulse response (FIR) filter whose transfer

function was defined by

A(z) =
V (z)

U(z)
= (0.3725+j0.2172)

(
1 − (0.35 + j0.7)z−1

)

× (
1 − (0.5 + j)z−1

)
. (26)

The second static nonlinear element was a third-order

complex-valued Volterra nonlinearity specified by

ȳ(k) = fVol(v(k)) = v(k) + 0.2v2(k) − 0.1v3(k). (27)

The additive noise n(k) = nR(k) + jnI(k), where both

nR(k) and nI(k) were white Gaussian processes having a

same variance σ2
n. This nonlinear channel thus was charac-

terised by the complex-valued nonlinear model

y(k) = ȳ(k) + n(k) = f(x(k)) + n(k), (28)

where x(k) = [s(k) s(k − 1) s(k − 2)]T and f(•) denoted

the complex-valued mapping that specified this nonlinear

channel.

For this example, the input vector x(k) only took values

from the input state set defined by

X = {x̄l, 1 ≤ l ≤ Nst}, (29)

where Nst = 43 = 64 was the number of input states.

Therefore, the noise-free part of the channel output, ȳ(k),
only took values from the output state set specified by

Ȳ = {ȳl = f(x̄l), 1 ≤ l ≤ Nst}. (30)

Similarly, the model output ŷ(k) = f̂(x(k)), where f̂(•)
denoted the RBF model mapping, over the input set X was

defined by

Ŷ = {ŷl = f̂(x̄l), 1 ≤ l ≤ Nst}. (31)

The mean state error of the model ŷ(k) = f̂(x(k)) was then

defined by

Mean State Errror =
1

2Nst

Nst∑
l=1

|ȳl − ŷl|2. (32)
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-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0  8  16  24  32  40  48  56  64

R
e[

S
ta

te
 E

rr
or

]

Number of States

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0  8  16  24  32  40  48  56  64

Im
[S

ta
te

 E
rr

or
]

Number of States

Fig. 4. State errors between the channel and Gaussian RBF model.

Given σ2
n = 0.1, two sets of data {x(k), y(k)}N

k=1, each

having N = 400 points, were generated for the training

and testing purposes, respectively. The fully complex-valued

RBF networks with both the Gaussian and thin-plate-spline

basis functions were applied to the training data set using

the combined LROLS and D-optimality algorithm. For this

example, it was found that the weighting β was not critical

at all and any value in 102 to 10−6 gave the same excellent

modelling performance. For the Gaussian RBF network, the

RBF variance was set to ρ2 = 1 via cross validation. The

algorithm automatically selected 15 RBF nodes for both the

Gaussian and thin-plate-spline RBF models. Table I sum-

marises the modelling performance of the two selected RBF

models, where the mean square error (MSE) was defined by

MSE =
1

2N

N∑
k=1

|y(k) − ŷ(k)|2 (33)

with ŷ(k) denoting the model output for the input x(k). It

can be seen from Table I that the two RBF network models

had similarly good generalisation performance. Fig. 2 plots

the model output state set Ŷ for the Gaussian RBF model,

while Fig. 3 displays Ŷ of the thin-plate-spline RBF model,

in comparsion with the true channel state set Ȳ . The state

errors, defined by ȳl − ŷl, 1 ≤ l ≤ Nst, are plotted in Figs. 4

and 5, respectively, for the two RBF network models.
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Fig. 5. State errors between the channel and thin-plate-spline RBF model.

V. CONCLUSIONS

A fully complex-valued RBF network has been proposed

for regression application. The combined locally regularised

OLS algorithm and the D-optimality design, originally de-

rived for real-valued RBF networks, has been extended to

select parsimonious fully complex-valued RBF networks

with excellent generalisation capability. A modelling exam-

ple involving the identification of a nonlinear channel has

been used to illustrate the proposed approach. It has been

demonstrated that combining the local regularisation with

the D-optimality experimental design provides a state-of-

the-art procedure for constructing very sparse models with

excellent generalisation performance. The performance of the

algorithm is insensitive to the D-optimality cost weighting,

and the model construction process is fully automated.

APPENDIX A

The regularised least squares solution for g is obtained by

setting ∂JR

∂g
= 0, that is,

WHy =
(
WHW + Λ

)
g . (34)

Now

yHy − 2gHΛg = (Wg + e)H(Wg + e) − 2gHΛg

= gHWHWg+eHe+gHWHe+eHWg−2gHΛg. (35)

2008 International Joint Conference on Neural Networks (IJCNN 2008) 11



Noting (34),

gHWHe − gHΛg = gHWH(y − Wg) − gHΛg

= gH(WHy − WHWg − Λg) = 0. (36)

Similarly, eHWg − gHΛg = 0. Thus, yHy − 2gHΛg =
gHWHWg + eHe, or

eHe + gHΛg = yHy − gHWHWg − gHΛg. (37)

APPENDIX B

The complex-valued version of the modified Gram-

Schmidt orthogonalisation procedure also calculates the A

matrix row by row and orthogonalises Φ as follows: at the

l-th stage make the columns φi, l+1 ≤ i ≤ M , orthogonal to

the l-th column and repeat the operation for 1 ≤ l ≤ M − 1.

Specifically, denoting φ
(0)
i = φi, 1 ≤ i ≤ M , then for

l = 1, 2, · · · ,M − 1

wl = φ
(l−1)
l ,

al,i = wH
l φ

(l−1)
i /

(
wH

l wl

)
, l + 1 ≤ i ≤ M,

φ
(l)
i = φ

(l−1)
i − al,iwl, l + 1 ≤ i ≤ M.

⎫⎪⎬
⎪⎭ (38)

The last stage of the procedure is simply wM = φ
(M−1)
M .

The elements of g are computed by transforming y(0) = y

in a similar way:

gl = wH
l y(l−1)/

(
wH

l wl + λl

)
,

y(l) = y(l−1) − glwl,

}
1 ≤ l ≤ M. (39)

This orthogonalisation scheme can be used to derive a

simple and efficient algorithm for selecting subset models in

a forward-regression manner, just as in the real-valued case.

First define

Φ(l−1) =
[
w1 · · ·wl−1 φ

(l−1)
l · · ·φ(l−1)

M

]
. (40)

If some of the columns φ
(l−1)
l , · · · , φ(l−1)

M in Φ(l−1) have

been interchanged, this will still be referred to as Φ(l−1)

for notational convenience. The l-th stage of the selection

procedure is given as follows.

Step 1. For l ≤ i ≤ M , compute

g
(i)
l =

(
φ

(l−1)
i

)H

y(l−1)/

((
φ

(l−1)
i

)H

φ
(l−1)
i + λi

)
,

[crerr]
(i)
l =

(∣∣∣g(i)
l

∣∣∣2
((

φ
(l−1)
i

)H

φ
(l−1)
i + λi

)

+β log

((
φ

(l−1)
i

)H

φ
(l−1)
i

))
/

(
yHy

)
.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

Step 2. Find

[crerr]l = [crerr]
(il)
l = max{[crerr]

(i)
l , l ≤ i ≤ M}.

Then the il-th column of Φ(l−1) is interchanged with the l-
th column of Φ(l−1), the il-th column of A is interchanged

with the l-th column of A up to the (l − 1)-th row, and

the il-th element of λ is interchanged with the l-th element

of λ. This effectively selects the il-th candidate as the l-th
regressor in the subset model.

Step 3. Perform the orthogonalisation as indicated in (38) to

derive the l-th row of A and to transform Φ(l−1) into Φ(l).

Calculate gl and update y(l−1) into y(l) in the way shown

in (39).

The selection is terminated at the ns stage when the

criterion (23) is satisfied and this produces a subset model

containing ns significant regressors. The algorithm described

here is in its standard form. A fast implementation can be

adopted, just as shown in the real-valued case [16], to reduce

complexity.
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