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Abstract— We propose a complex-valued symmetric radial
basis function (CV-SRBF) network for nonlinear beamforming
in multiple-antenna aided communication systems that employ
the complex-valued quadrature phase shift keying modulation
scheme. The proposed CV-SRBF classifier explicitly exploits the
inherent symmetry property of the underlying data generating
mechanism, and this significantly enhances the detection accu-
racy. An orthogonal forward selection (OFS) algorithm based
on the multi-class (four-class) Fisher ratio of class separability
measure (FRCSM) is derived for constructing parsimonious
CV-SRBF classifiers from noisy training data. Effectiveness of
the proposed approach is illustrated using simulation, and the
results obtained demonstrate that the sparse CV-SRBF classifier
constructed by the multi-class FRCSM-based OFS achieves
excellent beamforming detection bit error rate performance.

I. INTRODUCTION

The complex-valued radial basis function (CV-RBF) net-
work [1] has widely been used in nonlinear signal processing
applications that involve complex-valued signals. In this
CV-RBF network, each radial basis function (RBF) node
has a real-valued response that can be interpreted as a
conditional probability density function. This interpretation
makes such a CV-RBF network particularly useful in the
equalisation application of communication channels with
complex-valued signals [2], [3], [4], [5], [6]. This CV-
RBF modelling method, however, constitutes a black-box
approach that seeks a sparse model representation extracted
from the training data. Adopting black-box modelling is
appropriate, if no a priori information exists regarding the
underlying data generating mechanism. However, a funda-
mental principle in practical data modelling is that if there
exists a priori information concerning the system to be
modelled it should be incorporated in the modelling process.
The use of available prior knowledge in data modelling often
leads to an improved performance. For real-valued signal
processing applications, it has been recognised that many
real-life phenomena exhibit inherent symmetry and these
properties are hard to infer accurately from noisy data with
the aid of black-box real-valued RBF (RV-RBF) or kernel
models. However, by imposing appropriate symmetry on
the model’s structure, exploiting the symmetry properties
becomes easier and this leads to substantial improvements
in the achievable modelling performance. For example, in
regression-type applications, how to exploit odd or even
symmetry of the underlying system explicitly in both the
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RV-RBF network and least squares support vector machine
has been demonstrated [7], [8], while in classification-type
applications, a novel real-valued symmetric RBF (RV-SRBF)
network has been proposed for communication signal detec-
tion [9], [10], [11], which explicitly utilising odd symmetry
of the underlying optimal Bayesian detection solution.

This contribution continues this theme and extends this
grey-box approach to complex-valued RBF modelling. In-
stead of simple odd or even symmetry typically found in
real-valued signal processing problems, symmetry properties
inherent in many complex-valued signal processing prob-
lems are more complicated, and this is demonstrated using
the application to nonlinear beamforming assisted detection
for multiple-antenna aided wireless systems that employ
the complex-valued quadrature phase shift keying (QPSK)
modulation scheme. This naturally leads to our proposed
complex-valued symmetric RBF (CV-SRBF) network, which
is more general than the CV-RBF of [1], as here both the
RBF nodes’ response and RBF weights are complex-valued.
A novel training algorithm for this CV-SRBF network is
derived using the orthogonal-forward-selection (OFS) pro-
cedure based on the multi-class (four-class) Fisher ratio of
class separability measure (FRCSM), which can be viewed
as an extension of the OFS based on the two-class FRCSM
[12], [13], [14], originally derived for real-valued two-class
classification problems. The effectiveness of the proposed
CV-SRBF network and the efficiency of the OFS based
on the multi-class FRCSM are demonstrated in nonlinear
beamforming for multiple-antenna assisted QPSK wireless
systems. Although we apply the proposed CV-SRBF classi-
fier in the context of multiple-antenna aided QPSK beam-
forming systems, it is equally applicable to other four-class
classification problems with similar symmetric properties.

II. COMPLEX-VALUED RBF NETWORK

First let us recall the CV-RBF network introduced in [1]

y(k) =

M∑
i=1

θiφi(x(k)), (1)

where y(k) ∈ C is the complex-valued output for the input
x(k) ∈ CL, θi denotes the i-th complex-valued RBF weight,
and the i-th RBF node’s response function is given by

φi(x) = ϕ(‖x − ci‖/ρi). (2)

Here ci ∈ CL is the i-th RBF centre, ρ2
i > 0 is the i-th RBF

variance, and ϕ(•) is the usual real-valued basis function. A
typical such basis function is the Gaussian function

ϕ(‖x − c‖/ρ) = e−‖x−c‖2/2ρ2

. (3)
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Fig. 1. Beamforming based on multiple-antenna receiver to support
multiple users, where S is the number of users and L is the number of
antenna array elements.

Note that the real-valued node’s response (2) has an intrinsic
physical interpretation of realising a conditional density
function of the underlying data generating machanism [2].
To illustrate this property, let us consider the nonlinear beam-
forming for multiple-antenna aided QPSK wireless systems.

A. Nonlinear QPSK beamforming

The system supports S users using the same carrier
frequency ω. The receiver is equipped with a linear antenna
array consisting of L uniformly spaced elements, in order to
achieve user separation in the angular domain [15], [16], as
shown in Fig. 1. Assume that the channel is non-dispersive
which does not induce intersymbol interference. Then the
received signal vector x(k) = [x1(k) x2(k) · · ·xL(k)]T at
received is expressed as [17], [18]

x(k) = Pb(k) + n(k) = x̄(k) + n(k), (4)

where P is the L×S complex-valued system’s channel ma-
trix, n(k) = [n1(k) n2(k) · · ·nL(k)]T , nl(k) is the complex-
valued Gaussian white noise associated with the l-th channel
having E[|nl(k)|2] = 2σ2

n, b(k) = [b1(k) b2(k) · · · bS(k)]T ,
bi(k) denotes the k-th transmitted symbol of user i and bi(k)
takes the values from the QPSK symbol set

B4 =
{

b[1] = +1 + j, b[2] = −1 + j,

b[3] = −1 − j, b[4] = +1 − j
}

. (5)

The system’s channel matrix is defined by

P = [A1s1 A2s2 · · ·ASsS ] , (6)

where Ai is the i-th non-dispersive channel tap coefficient,

si =
[
ejωt1(ηi) ejωt2(ηi) · · · ejωtL(ηi)

]T

(7)

is the steering vector of source i, with ηi and tl(ηi) denoting
the angle of arrival and the relative time delay at array
element l for user i, respectively.

Classically, a linear beamforming receiver is adopted to
detect the desired user signal [17], [18]. The output of the

linear beamformer for user i is defined by yLin,i(k) =
w

H
i x(k), where wi = [w1,i w2,i · · ·wL,i]

T denotes the
complex-valued i-th linear beamformer’s weight vector. The
decision regarding the transmitted symbol bi(k) is given by
b̂i(k) = sgn(yLin,i(k)) with

sgn(y) =

⎧⎪⎪⎨
⎪⎪⎩

b[1] = +1 + j, yR ≥ 0 and yI ≥ 0,
b[2] = −1 + j, yR < 0 and yI ≥ 0,
b[3] = −1 − j, yR < 0 and yI < 0,
b[4] = +1 − j, yR ≥ 0 and yI < 0,

(8)

where yR = �[y] and yI = �[y] denote the real and
imaginary parts of y, respectively. The optimal weight vector
designed for the linear beamformer is known as the minimum
bit error rate (L-MBER) solution [19], [20]. However, if one
is willing to extend the beamforming process to nonlinear,
substantial improvement in the achievable system’s bit error
rate (BER) performance and significant enhancement in
the user capacity can be achieved at a cost of increased
computational complexity [21].

Let us denote the Nb = 4S legitimate combinations of
b(k) as bq, 1 ≤ q ≤ Nb. The noiseless channel output

x̄(k) only takes values from the vector state set X �
= {x̄q =

Pbq, 1 ≤ q ≤ Nb}, which can be divided into the four
subsets conditioned on the value of bi(k) as follows

X [m,i] �
= {x̄[m,i]

q ∈ X , 1 ≤ q ≤ Nsb : bi(k) = b[m]}, (9)

where the size of X [m,i] is Nsb = Nb/4. Denote the
conditional probabilities of receiving x(k) given bi(k) =
b[m] as p[m,i](x(k)) = p(x(k)|bi(k) = b[m]). According to
Bayes’ decision theory [22], the optimal detection strategy
is

b̂i(k) = b[m∗] (10)

where
m∗ = arg max

1≤m≤4
p[m,i](x(k)). (11)

Define the complex-valued Bayesian decision variable [2]

yBay,i(k)
�
= b[1] · p[1,i](x(k)) + b[2] · p[2,i](x(k))

+b[3] · p[3,i](x(k)) + b[4] · p[4,i](x(k)). (12)

The Bayesian detection rule (10) and (11) is equivalent
to b̂i(k) = sgn(yBay,i(k)). The conditional probability
p[m,i](x(k)) can be expressed as

p[m,i](x(k)) =

Nsb∑
q=1

βqe
−

‖x(k)−x̄

[m,i]
q ‖2

2σ2
n (13)

where x̄
[m,i]
q ∈ X [m,i], and βq is proportional to the a priori

probability of x̄
[m,i]
q . Since all the x̄

[m,i]
q are equiprobable,

βq = β = 1
Nsb(2πσ2

n)L . It can be seen that the Bayesian
decision variable (12) takes the structure of the CV-RBF
network (1) with a Gaussian RBF basis function.

More is known, however, for the underlying data gener-
ating mechanism. The state subsets X [m,i], 1 ≤ m ≤ 4,
are distributed symmetrically with respect to each other as
summarised in the following lemma.
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Lemma. The four subsets X [m,i], 1 ≤ m ≤ 4, satisfy

X [2,i] = +j · X [1,i],
X [3,i] = −1 · X [1,i],
X [4,i] = −j · X [1,i].

⎫⎬
⎭ (14)

Proof: Consider any x̄
[1,i]
q = Pb

[1,i]
q ∈ X [1,i], where the

i-th element of b
[1,i]
q is b[1] = +1 + j. Noting j · b[1] =

b[2], j · x̄[1,i]
q = P(j · b[1,i]

q ) ∈ X [2,i]. This proves the first
relationship. The proofs of the other two relationships are
similar. Given this symmetry, the Bayesian solution (12) can
alternatively be expressed as

yBay,i(k) =

Nsb∑
q=1

βq

{
b[1] · e−

‖x(k)−x̄

[1,i]
q ‖2

2σ2
n

+b[2] · e−
‖x(k)−j·x̄

[1,i]
q ‖2

2σ2
n

+b[3] · e−
‖x(k)+x̄

[1,i]
q ‖2

2σ2
n + b[4] · e−

‖x(k)+j·x̄
[1,i]
q ‖2

2σ2
n

}
, (15)

where x̄
[1,i]
q ∈ X [1,i].

B. The proposed CV-SRBF network

In the light of the above symmetric property, we generalise
the CV-RBF network (1) with the real-valued node’s response
(2) into the proposed CV-SRBF network by adopting the
following complex-valued symmetric node

φi(x)
�
= b[1] · ϕ(‖x − ci‖/ρi) + b[2] · ϕ(‖x − j · ci‖/ρi)

+b[3] · ϕ(‖x + ci‖/ρi) + b[4] · ϕ(‖x + j · ci‖/ρi). (16)

This CV-SRBF network explicitly incorporates the symmet-
ric property of the underlying data generating mechanism,
namely, the Bayesian solution (15). However, the proposed
CV-SRBF network (1) with the node’s response (16) is also
more general than the Bayesian detection solution, because it
has complex-valued weights while in the Bayesian solution
all the weights are equal to a real positive constant. We
now turn to the problem of how to construct such a CV-
SRBF classifier, when given a block of training data DK =
{x(k), d(k) = bi(k)}K

k=1.
Consider every training data point x(i) as a candidate RBF

centre. Hence we have M = K in the CV-SRBF model of
(1) and ci = x(i) for 1 ≤ i ≤ K, and the all the RBF
variances are set to a same constant ρ2. Let us now define
ε(i) = d(i)− y(i) as the modelling residual sequence. Then
the model (1) defined over the training data set DK can be
written in matrix form as

d = Φθ + ε (17)

where d = [d(1) d(2) · · · d(K)]T , ε = [ε(1) ε(2) · · · ε(K)]T ,
θ = [θ1 θ2 · · · θM ]T , and

Φ = [φ1 φ2 · · ·φM ] ∈ CK×M (18)

is the complex-valued regression matrix with the column
vectors φi = [φi(x(1)) φi(x(2)) · · ·φi(x(K))]T , 1 ≤ i ≤

M . Let an orthogonal decomposition of Φ be Φ = ΩA,
where

A =

⎡
⎢⎢⎢⎢⎣

1 α1,2 · · · α1,M

0 1
. . .

...
...

. . .
. . . αM−1,M

0 · · · 0 1

⎤
⎥⎥⎥⎥⎦ (19)

with complex-valued αi,l, 1 ≤ i < l ≤ M , and the complex-
valued orthogonal matrix

Ω = [ω1 ω2 · · ·ωM ]

=

⎡
⎢⎢⎢⎣

ω1,1 ω1,2 · · · ω1,M

ω2,1 ω2,2 · · · ω2,M

...
...

...
...

ωK,1 ωK,2 · · · ωK,M

⎤
⎥⎥⎥⎦ (20)

with orthogonal columns that satisfy ωH
i ωl = 0, if i 	= l.

The model (17) can alternatively be expressed as

d = Ωγ + ε, (21)

where γ = [γ1 γ2 · · · γM ]T = Aθ is the complex-valued
weight vector defined in the space spanned by Ω.

III. MULTI-CLASS FISHER RATIO BASED OFS

First divide the training feature vectors X = {x(k)}K
k=1

into the MC classes (MC = 4 in our case)

X
[i] �

= {x(k) ∈ X : d(k) = b[i]}, 1 ≤ i ≤ MC . (22)

Assume that the number of samples in X
[i] is K [i]. Obviously

MC∑
i=1

K [i] = K. (23)

Define the mean and variance of samples belonging to class
X

[i] in the direction of basis ωl as mi,l and σ2
i,l, respectively,

which can be calculated according to

mi,l =
1

K [i]

K∑
k=1

δ
(
d(k) − b[i]

)
ωk,l (24)

σ2
i,l =

1

K [i]

K∑
k=1

δ
(
d(k) − b[i]

)
(ωk,l − mi,l)

2
, (25)

where the indicator function

δ(x) =

{
1, x = 0 + j0,
0, x 	= 0 + j0.

(26)

Denote the Fisher ratio of the class separation between
classes X

[i] and X
[q] in the direction of basis ωl as Fi,q,l.

Recall that Fisher ratio is defined as the ratio of the interclass
difference to the intraclass spread [22], namely,

Fi,q,l =
(mi,l − mq,l)

2(
σ2

i,l + σ2
q,l

) . (27)

Fisher ratio provides a good class separability measure
because its maximisation leads to the interclass difference
being maximised and the intraclass spread being minimised.
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Define the average Fisher ratio of the class separation in
the direction of basis ωl as

Fl =
2

(MC − 1)MC

MC−1∑
i=1

MC∑
q=i+1

Fi,q,l. (28)

Based on this average Fisher ratio, significant RBF nodes
can be selected in an OFS procedure, just as in the case of
two-class problems [12], [13]. Specifically, at the l-th stage
of the OFS procedure, a node is chosen as the l-th term in
the selected CV-SRBF classifier if it produces the largest Fl

among the candidates terms, ωi, l ≤ i ≤ M . The procedure
is terminated with a sparse Mspa-term classifier when

FMspa∑Mspa

l=1 Fl

< ξ, (29)

where the threshold ξ determines the size of the selected
classifier. The detailed construction procedure, implemented
with a complex-valued version of the Gram-Schmidt orthog-
onalisation [23], is summarised below.

1) At the l-th step where l ≥ 1, for 1 ≤ q ≤ M , q 	=
q1, · · · , q 	= ql−1, compute

α
(q)
i,l =

{
ωH

i φ
q

ωH
i
ωi

, 1 ≤ i < l,

1, i = l,

ω
(q)
l =

{
φq, l = 1,

φq −
∑l−1

i=1 α
(q)
i,l ωi, l > 1,

and further for 1 ≤ i ≤ MC compute

m
(q)
i,l =

1

K [i]

K∑
k=1

δ(d(k) − b[i])ω
(q)
k,l ,

(
σ

(q)
i,l

)2

=
1

K [i]

K∑
k=1

δ(d(k) − b[i])
(
ω

(q)
k,l − m

(q)
i,l

)2

,

where ω
(q)
k,l is the k-th element of ω

(q)
l . Then calculate

F
(q)
i,p,l =

(
m

(q)
i,l − m

(q)
p,l

)2

((
σ

(q)
i,l

)2

+
(
σ

(q)
p,l

)2
) , 1 ≤ i < p ≤ MC ,

F
(q)
l =

2

(MC − 1)MC

MC−1∑
i=1

MC∑
p=i+1

F
(q)
i,p,l.

2) Find

ql = arg[max{F (q)
l , l ≤ q ≤ M, q 	= q1, · · · , q 	= ql−1}],

and select Fl = F
(ql)
l , αi,l = α

(ql)
i,l for 1 ≤ i ≤ l and

ωl = ω
(ql)
l .

3) The procedure is monitored and terminated at the index
value l = Mspa, when for example the condition (29)
is satisfied. Otherwise, set l = l + 1, and go to step 1.

A simple and yet effective mechanism can be built into the
selection procedure to automatically avoid any numerical ill-
conditioning. If a candidate ω

(q)
l has too low energy, i.e.

TABLE I

LOCATIONS OF USERS IN TERMS OF ANGLE OF ARRIVAL (AOA) FOR THE

TWO-ELEMENT ANTENNA ARRAY HAVING HALF WAVELENGTH SPACING

TO SUPPORT THREE QPSK USERS.

user i 1 2 3
AOA ηi 15

◦ −60
◦

45
◦

(
ω

(q)
l

)H

ω
(q)
l is near zero, it will not be considered. The

least squares solution for the weight γl is simply

γl =
ωH

l d

ωH
l ωl

. (30)

In general, a desired value for the threshold ξ has to be
determined via cross validation. However, in our specific
application to nonlinear beamforming, the number of subset
states Nsb is known. Thus, we can simply terminate the
selection procedure when Mspa = Nsb, without need to
employ costly cross validation. The RBF variance ρ2 is
not provided by the construction algorithm, and it may be
estimated based on cross validation.

IV. SIMULATION STUDY

Example 1. The example consisted of a two-element antenna
array with half wavelength spacing to support three QPSK
users. Table I lists the angular locations of the three users
with respect to the antenna array. The simulated channel
conditions were Ai = 1 + j0, 1 ≤ i ≤ 3. All the three
users had an equal signal power. Fig. 2 portrays the BER
performance of both the theoretical L-MBER beamformer
and the Bayesian detector for the desired user 1. For each
signal to noise ratio (SNR) value, K = 200 training samples
DK = {x(k), b1(k)}K

k=1 were used to construct the CV-
SRBF classifier employing the four-class FRCSM-based OFS
algorithm. The RBF variance, determined empirically via
cross validation, was in the range of 0.2 to 2.0 depending
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Fig. 2. User-one bit error rate performance in the context of three
beamforming detectors for the system of Table I. The CV-SRBF classifier,
constructed from 200 noisy training samples using the four-class FRCSM-
based OFS, has Mspa = 16 symmetric RBF nodes. The RBF variance ρ2

is in the range of 0.2 to 2.0, depending on the SNR value.
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Fig. 3. The influence of the RBF variance on the bit error rate performance
of the user-one CV-SRBF classifier for the system of Table I, where SNR=

16 dB, the training data length K = 200 and the model size Mspa = 16.
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Fig. 4. User-three bit error rate performance in the context of three
beamforming detectors for the system of Table I. The CV-SRBF classifier,
constructed from 200 noisy training samples using the four-class FRCSM-
based OFS, has Mspa = 16 symmetric RBF nodes. The RBF variance ρ2

is in the range of 1.6 to 2.0, depending on the SNR value.

on the SNR value. As the size of the Bayesian detector
was Nsb = 16, we terminated the classifier construction
at Mspa = 16. The BER performance of the 16-term CV-
SRBF detector is also depicted in Fig. 2. It was surprising to
see that the CV-SRBF classifier outperformed the Bayesian
detector in this case. A possible explanation is that the
Bayesian solution is derived under the assumption of white
Gaussian channel noise but in the simulation the noise
was slightly colourred. Note that the weights of the CV-
SRBF network are complex-valued while the weights of the
Bayesian beamforming solution are real-valued. Therefore, a
16-term CV-SRBF classifier has a larger model size than the
16-term Bayesian solution. This larger modelling capacity
might enable the CV-SRBF classifier to better exploit the
statistics of the noise realisation in the simulation. The
influence of the RBF variance to the BER performance of
the CV-SRBF network constructed by the four-class FRCSM-

TABLE II

LOCATIONS OF USERS IN TERMS OF ANGLE OF ARRIVAL (AOA) FOR THE

THREE-ELEMENT ANTENNA ARRAY HAVING HALF WAVELENGTH

SPACING TO SUPPORT FOUR QPSK USERS.

user i 1 2 3 4
AOA ηi 15

◦ −20
◦

45
◦ −70

◦

based OFS was next investigated. Given the SNR value of
16 dB and the number of training samples K = 200, the
BER performance of the 16-terms CV-SRBF classifier as
a function of ρ2 is plotted in Fig. 3. The Experiment was
repeated for user three, and the BER performance of the three
beamformers for detecting user three are shown in Fig. 4,
where the training data length for the CV-SRBF network
was again K = 200.

Example 2. The system consisted of a three-element antenna
array having half wavelength spacing to support four QPSK
users, and the angular locations of the four users are sum-
marised in Table II. The simulated channel conditions were
Ai = 1 + j0, 1 ≤ i ≤ 4, and all the four users had an
equal signal power. Fig. 5 compares the BER performance
of three beamformers for user one. For this example, the size
of the Bayesian detector was Nsb = 64. The training data
length was K = 600 and the 64-term CV-SRBF classifier
was constructed using the four-class FRCSM-based OFS.
The RBF variance used was in the range of 0.6 to 2.0,
depending of the SNR value. Fig. 6 illustrates the influence
of the RBF variance to the BER performance of the 64-term
CV-SRBF classifier for user one, given the SNR value of
6 dB. Beamforming for user four was also investigated, and
the BER performance of the three user-four beamformers are
compared in Fig. 7, where the training data length for the
CV-SRBF network was again K = 600.
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Fig. 5. User-one bit error rate performance in the context of three
beamforming detectors for the system of Table II. The CV-SRBF classifier,
constructed from 600 noisy training samples using the four-class FRCSM-
based OFS, has Mspa = 64 symmetric RBF nodes. The RBF variance ρ2

is in the range of 0.6 to 2.0, depending on the SNR value.
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Fig. 6. The influence of the RBF variance on the bit error rate performance
of the user-one CV-SRBF classifier for the system of Table II, where SNR=

6 dB, the training data length K = 600 and the model size Mspa = 64.

V. CONCLUSIONS

A complex-valued symmetric RBF classifier has been
proposed for nonlinear detection for multiple antenna aided
wireless systems that employ the complex-valued QPSK
modulation scheme. The proposed model explicitly incor-
porates the known symmetric property of the underlying
data generating mechanism, which substantially enhances the
classifier’s generalisation capability for nonlinear beamform-
ing application. The orthogonal forward selection procedure
based on the multi-class (four-class) Fisher ratio of class
separability measure has been derived for constructing sparse
CV-SRBF detectors from noisy training data. The proposed
approach is fast and results in excellent test error rate
performance, as is demonstrated by the simulation results.
Although we have presented this sparse CV-SRBF classifier
in the context of nonlinear detection in wireless communi-
cation systems, it is generically applicable to any four-class
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Fig. 7. User-four bit error rate performance in the context of three
beamforming detectors for the system of Table II. The CV-SRBF classifier,
constructed from 600 noisy training samples using the four-class FRCSM-
based OFS, has Mspa = 64 symmetric RBF nodes. The RBF variance ρ2

is in the range of 0.2 to 4.0, depending on the SNR value.

classification problem exhibiting a similar symmetry.
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