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Abstract

We consider the probabilistic neural network (PNN) that is a mixture of Gaussian basis functions having different variances. Such a
Gaussian heteroscedastic PNN is more economic, in terms of the number of kernel functions required, than the Gaussian mixture PNN of a
common variance. The expectation-maximisation (EM) algorithm, although a powerful technique for constructing maximum likelihood
(ML) homoscedastic PNNs, often encounters numerical difficulties when training heteroscedastic PNNs. We combine a robust statistical
technique known as the Jack-knife with the EM algorithm to provide a robust ML training algorithm. An artificial-data case, the two-
dimensional XOR problem, and a real-data case, success or failure prediction of UK private construction companies, are used to evaluate the
performance of this robust learning algorithm.q 1998 Elsevier Science Ltd. All rights reserved.
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windows; Gaussian basis functions

1. Introduction

The key to applying the optimal Bayes strategy for
pattern classification is the estimation of the class con-
ditional probability density functions (PDFs), and a classical
PDF estimator is the Parzen window estimator (Parzen,
1962). PNNs implement the Parzen window estimator
using mixtures of Gaussian kernels. As in a Parzen window
estimator, the original PNN proposed by Specht (1988,
1990) uses all the training pattern samples as centres or
mean vectors of kernel functions, leaving only mixing coef-
ficients and a common variance or covariance matrix to be
estimated from training data. In practice, it is desirable to
employ a smaller set of kernel functions without sacrificing
classification accuracy. A careful learning of kernel mean
vectors is then required. Streit and Luginbuhl (1994) applied
the EM algorithm (Dempster et al., 1977) to derive an opti-
mal ML training algorithm for Gaussian mixture PNNs of
common covariance matrices (termed homoscedastic
PNNs). In this study, we will assume that a Gaussian kernel
has a variance parameter, instead of a covariance matrix.
That is, we use uncorrelated Gaussian kernel functions.

If each Gaussian basis function is allowed to have a dif-
ferent variance, a much more parsimonious PNN can be
used to adequately approximate the underlying conditional
PDFs of training data. When extending the ML training
algorithm (Streit and Luginbuhl, 1994) to this class of
heteroscedastic PNNs, however, numerical difficulties fre-
quently occurs. We analyse the root of this numerical prob-
lem, and propose to use a robust statistical method called the
Jack-knife (Efron and Gong, 1983; Miller, 1974) to over-
come this problem. The Jack-knife is a statistical technique
which is capable of removing the effect of outliers to a
statistical estimate, and it has widely been used for robust
estimation and modelling in econometric problems
(Chatfield, 1987; Efron and Tibshirani, 1993). We incorpo-
rate the Jack-knife technique with the EM algorithm to
derive a robust ML training method for heteroscedastic
PNNs.

To demonstrate the effectiveness of this robust learning
algorithm, we use it to train heteroscedastic PNNs for the
XOR problem and a real-data problem. The latter is to
classify successful and failed companies in the UK private
construction industry. This is a complex real-world prob-
lem, which requires nonlinear decision boundaries to
achieve adequate performance (Yang et al., 1997). Our
study confirms that the ML training algorithm (Streit and
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Luginbuhl, 1994) may fall to work for heteroscedastic PNNs
owing to numerical difficulties and our robust ML training
algorithm does not suffer the same problem. The results also
confirm that a much smaller heteroscedastic PNN is
required to achieve the same level of accuracy, compared
with using a homoscedastic PNN.

2. The heteroscedastic PNN

Let x [ Rd be a d-dimensional pattern vector and its
associated class bej [ {1,…,K}, where K is the number
of possible classes. A classifier maps a given patternx to its
class indexg(x), whereg:Rd → {1,…,K}. If the a priori
probability of classj is a j and the conditional PDF of
classj is f j, for 1# j # K, the Bayes classifier that minimises
the misclassification error (Devijer and Kittler, 1982) is
given by

gBayes(x) ¼ arg( max
1#j#K

{aj fj(x)} ): (1)

The PNN is a four-layer feedforward neural network that is
capable of realizing or approximating this optimal classifier.
In order to realize the Bayes decision (Eq. (1)), the class
conditional PDFs must be estimated, and the PNN do so
using mixtures of Gaussian kernel functions or Parzen
windows.

The first layer of the PNN is the input layer which accepts
input patterns. The nodes in the second layer are divided
into K groups, one for each class. The generic second-layer
node, theith kernel in thejth group, is defined as a Gaussian
basis function

pi, j(x) ¼
1

(2pj2
i, j)d=2exp ¹

kx ¹ ci, jk
2

2j2
i, j

 !
, (2)

where ci,j [ Rd is the centre or mean vector andj2
i, j a

positive variance parameter. A node in the second layer is
also called a pattern unit. Let the number of pattern units for
class j be Mj. Then the total number of the second-layer
nodes is

M ¼
∑K
j ¼ 1

Mj : (3)

The third layer hasK nodes, and each node estimates a class
conditional PDFf j using a mixture of Gaussian kernels

fj(x) ¼
∑Mj

i ¼ 1
bi, jpi, j(x), 1 # j # K, (4)

where the positive mixing coefficientsb i,j satisfy

∑Mj

i ¼ 1
bi, j ¼ 1, 1 # j # K: (5)

The fourth layer of the PNN makes the decision according to
Eq. (1).

The PNN defined above is heteroscedastic as each Gaus-
sian kernel has its own different variance. Such a PNN is
more difficult to train than the homoscedastic PNN. The
latter, however, may require a larger set of basis functions
to adequately approximate PDFs because the same variance
is used in every basis function. For the heteroscedastic PNN,
the centresci,j and variancesj2

i, j as well as the a priori
probabilitiesa j and mixing coefficientsb i,j need to be esti-
mated from the training data set. The class a priori prob-
abilitiesa j are problem dependent, and it may not always be
feasible to estimatea j purely from the training data since
the training set may contain little meaningful information
regarding the class a priori probabilities (Streit and Lugin-
buhl, 1994). We, therefore, assume that every class is
equiprobable

aj ¼
1
K

, 1 # j # K: (6)

3. The EM algorithm for training PNNs

The EM algorithm (Dempster et al., 1977) is a powerful
iterative procedure for solving diverse estimation problems.
Each iteration of the algorithm consists of an expectation
process (the E-step) followed by a maximisation process
(the M-step). Each E-step computes the expected value of
some ‘unobserved’ data using the current parameter esti-
mate and the observed data. Each M-step uses the data
from the E-step as though they were actually measured
data to form a likelihood function and determines an ML
estimate of the parameter. The EM algorithm is guaranteed
to converge to an ML estimate (Wu, 1983; Xu and Jordan,
1996), and the convergence rate of the EM algorithm
is usually quite fast. Another advantage of the EM
algorithm is that it is not necessary to compute gradients
or Hessians. Streit and Luginbuhl (1994) applied the EM
algorithm to train the homoscedastic PNN. Extension of
their ML learning algorithm to the heteroscedastic PNN is
straightforward.

Let the training data set be partitioned into theK labelled
subsets

{ xn} N
n¼ 1 ¼ {{ xn, j}

Nj

n¼ 1} K
j ¼ 1, (7)

where∑K
j ¼ 1

Nj ¼ N (8)

is the total number of training samples andNj the number of
training samples for classj. Under Eq. (6), the log posterior
likelihood function of the training set is

logLf ¼
∑K
j ¼ 1

∑Nj

n¼ 1
logfj(xn, j), (9)

subject to Eq. (5), wheref j is defined in Eq. (4). The
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appropriate Lagrangian is

L ¼ logLf þ
∑K
j ¼ 1

lj(
∑Mj

i ¼ 1
bi, j ¹ 1), (10)

wherel j are the Lagrange multipliers. Setting

]L
]cm, i

¼ 0

]L
]j2

m, i

¼ 0

]L
]li

¼ 0

]L
]bm, i

¼ 0

9>>>>>>>>>>>>>=>>>>>>>>>>>>>;
(11)

gives rise to

cm, i ¼

∑
Ni
n¼ 1wm, i(xn, i)xn, i∑

Ni
n¼ 1wm, i(xn, i)

, (12)

j2
m, i ¼

∑
Ni
n¼ 1wm, i(xn, i)kxn, i ¹ cm, ik

2

d
∑

Ni
n¼ 1wm, i(xn, i)

, (13)

and

bm, i ¼
1
Ni

∑Ni

n¼ 1
wm, i(xn, i), (14)

where

wm, i(xn, i) ¼
bm, ipm, i(xn, i)∑
Mi
l ¼ 1bl, ipl, i(xn, i)

: (15)

Let bm;i l(k), j2
m, i j

ðkÞ, andcm,il (k) be the previous values ofbm;i ,
j2

m, i and cm,i, respectively. Each iteration of the EM algo-
rithm can then be summarised as follows:

Step 1. Compute the weights for 1# m# Mi, 1 # n # Ni

and 1# i # K

w(k)
m, i(xn, i) ¼

bm, i l
(k)p(k)

m, i(xn, i)∑
Mi
l ¼ 1bl, i l

(k)p(k)
l, i (xn, i)

, (16)

where

p(k)
l, i (xn, i) ¼

1

(2pj2
l, i l

(k))d=2
exp ¹

kxn, i ¹ cl, i l
(k)k2

2j2
l, i l

(k)

 !
: (17)

Step 2. Update the parameters for 1# m # Mi and 1# i #
K

cm, i l
(kþ 1)

¼

∑
Ni
n¼ 1w(k)

m, i(xn, i)xn, i∑
Ni
n¼ 1w(k)

m, i(xn, i)
, (18)

j2
m, i l

(kþ 1)
¼

∑
Ni
n¼ 1w(k)

m, i(xn, i)kxn, i ¹ cm, i l
(k)k2

d
∑

Ni
n¼ 1w(k)

m, i(xn, i)
, (19)

bm, i l
(kþ 1)

¼
1
Ni

∑Ni

n¼ 1
w(k)

m, i(xn, i): (20)

4. Analysis of numerical difficulties

In theory, the above EM algorithm should achieve an ML
estimate of the parameters {bm,i, cm,i, j2

m, i}. In practice,
however, the algorithm frequently fails owing to numerical
difficulties. The root of this numerical problem can be
traced. From Eqs. (12) and (13), it can be seen that the
EM algorithm places a kernel on the weighted expectation
of a group of training samples and calculates the variance as
the weighted Euclidean distance between the mean vector
and the samples. Consider the case where a sparsely distrib-
uted area exists with just one sample. We have found out
that a kernel will approach this sample with a variance
approaching approximately zero. This inevitably causes
numerical difficulties and is the root of the problem. Notice
that this problem does not exist for the homoscedastic PNN
as a single variance is computed based on all the samples.

To explain the problem more clearly, rewrite Eq. (13) in
the following expanded form

j2
m, i ¼

1

d
∑

Ni
n¼ 1wm, i(xn, i)

∑Ni

n¼ 1

bm, i
1

(2pj2
m, i)d=2exp ¹

kxn, i ¹ cm, ik
2

2j2
m, i

 !
kxn, i ¹ cm, ik

2

∑
Mi
l ¼ 1bl, ipl, i(xn, i)

0BBBB@
1CCCCA:

ð21Þ

Clearlyd
∑

Ni
n¼ 1wm, i(xn, i) and

∑
Mi
l ¼ 1bl, ipl, i(xn, i) are positive

and finite. Define

y¼
kxn, i ¹ cm, ik

2

2j2
m, i

: (22)

If a samplexn,i is far away fromcm,i, its contribution to the
variance in the limit case is approximately

lim
y→`

hexp( ¹ y)y¼ 0, (23)

whereh is some positive scalar. Thus, if the mean vectorcm,i

approaches an isolated samplexq,i, the variancej2
m, i will

approximately be

j2
m, i ~ kxq, i ¹ cm, ik

2 → 0 ascm, i → xq, i : (24)

This situation occurs not just when the data space has a few
outliers. Typically, when a sufficient number of kernel func-
tions are used, some mean vectors will approach edges or
sparsely distributed areas of the data space with variances
getting very small, which eventually causes the algorithm to
collapse. In Section 7, examples will be used to illustrate
this situation.

5. The Jack-knife method

The Jack-knife is a robust statistical method that is widely
used in statistical analysis for bias reduction and interval
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estimation (Efron and Gong, 1983; Miller, 1974). Typical
applications of the Jack-knife include point and interval
estimations in econometric modelling (Chatfield, 1987;
Efron and Tibshirani, 1993), and unbiased estimation of
the misclassification rate in discriminant analysis (Lachen-
bruch, 1967). More recently, the Jack-knife has also been
applied to compare the outputs of neural network models
with those of discriminant analysis models (Tam and Kiang,
1993). In this study, we apply the Jack-knife to improve the
robustness of the EM algorithm.

Basically, the Jack-knife procedure partitions a sample
space intoQ subsets and observes the influence of each
subset on the estimating process. Letv̂all be an estimator
based on all theN samples andv̂¹ j be an estimator
derived with thejth subset deleted from the sample pool,
where 1# j # Q. TheQ pseudo-values are first computed as

ṽj ¼ Qv̂all ¹ (Q¹ 1)v̂¹ j , 1 # j # Q: (25)

The Jack-knife estimate ofv is derived by averaging all of
theseQ pseudo-values

ṽ ¼
1
Q

∑Q
j ¼ 1

ṽj : (26)

If the estimator̂vall has a bias of the form

E[v̂all] ¹ v ¼
a
N

þ O
1

N2

� �
, (27)

the Jack-knife estimator (Eq. (26)) has the property of elim-
inating the order 1/N term from the bias (Miller, 1974).
Another desired property of the Jack-knife technique is
that it can remove the effect of a few outliers within a
data space, giving rise to a robust estimate (Chatfield,
1987; Efron and Gong, 1983; Efron and Tibshirani, 1993).

6. The robust ML training algorithm

We incorporate the Jack-knife technique with the EM
algorithm to provide an unbiased and robust ML training
algorithm for heteroscedastic PNNs. The modification of the
algorithm is straightforward. The step 1 in the EM algorithm
remains unchanged, except thatbl, i l

(k), j2
l, i l

(k) andcl,il (k) are
replaced by their Jack-knife estimatesb̃l, i l

(k), j̃2
l, i l

(k) and
c̃l, i l

(k). The updating Eqs. (18)–(20) in the step 2 are mod-
ified as

cm, i l
(kþ 1)

¼

∑
Ni
n¼ 1w(k)

m, i(xn, i)xn, i∑
Ni
n¼ 1w(k)

m, i(xn, i)
, (28)

cm, i l
(kþ 1)
¹ j ¼

∑
Ni
n¼ 1,nÞjw

(k)
m, i(xn, i)xn, i∑

Ni
n¼ 1,nÞjw

(k)
m, i(xn, i)

, 1 # j # Ni , (29)

c̃m, i l
(kþ 1)

¼ Nicm, i l
(kþ 1)

¹
Ni ¹ 1

Ni

∑Ni

j ¼ 1
cm, i l

(kþ 1)
¹ j ; (30)

j2
m, i l

(kþ 1)
¼

∑
Ni
n¼ 1w(k)

m, i(xn, i)kxn, i ¹ c̃m, i l
(k)k2

d
∑

Ni
n¼ 1w(k)

m, i(xn, i)
, (31)

j2
m, i l

(kþ 1)
¹ j ¼

∑
Ni
n¼ 1,nÞjw

(k)
m, i(xn, i)kxn, i ¹ c̃m, i l

(k)k2

d
∑

Ni
n¼ 1,nÞjw

(k)
m, i(xn, i)

, 1 # j # Ni ,

(32)

j̃m, i l
(kþ 1)

¼ Nij
2
m, i l

(kþ 1)
¹

Ni ¹ 1
Ni

∑Ni

j ¼ 1
j2

m, i l
(kþ 1)
¹ j , (33)

bm, i l
(kþ 1)

¼
1
Ni

∑Ni

n¼ 1
w(k)

m, i(xn, i), (34)

bm, i l
(kþ 1)
¹ j ¼

1
Ni ¹ 1

∑Ni

n¼ 1,nÞj

w(k)
m, i(xn, i), 1 # j # Ni , (35)

b̃m, i l
(kþ 1)

¼ Nibm, i l
(kþ 1)

¹
Ni ¹ 1

Ni

∑Ni

j ¼ 1
bm, i l

(kþ 1)
¹ j : (36)

If the sample set {xn, i}
Ni
n¼ 1 is large, deleting one sample at a

time may requires too much computation and, instead, a
subset can be removed at a time.

Since the root of the numerical problem appears to lie in
the computation of variances, the Jack-knife technique
could be applied only to the variance updating, and this
would limit the increase in computational complexity to a
minimum. However, we have noticed that using the Jack-
knife technique only on the variance updating, although
alleviating numerical difficulties to some degree, is not as
robust as applying the Jack-knife technique to update all the
parameters. The computations of mixing coefficients,
variances and mean vectors are apparently interlinked.

7. The experiments

An artificial-data case, the XOR problem, and a real-data
case, the prediction of the UK private construction industry,
were used in our experiments. Four PNNs were used in the
comparative study:

1. the original PNN;
2. the homoscedastic PNN trained by the ML learning algo-

rithm;
3. the heteroscedastic PNN trained by the ML learning

algorithm;
4. the robust heteroscedastic PNN trained by the robust ML

learning algorithm.

The original PNN adopted in this study was homosce-
dastic and was trained by splitting the training data set
into two parts, one part used as the mean vectors of pattern
units and the other, called the validation set, used for search-
ing an optimal value of the common variance. The variance
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started from a small value and was gradually increased. The
classification performance on the validation set was
observed for each trial value of the variance, and learning
was terminated when a minimum misclassification rate was
achieved. The mixing coefficients in the original PNN were
fixed tob i,j ¼ 1/Mj for 1 # i # Mj and 1# j # K.

7.1. The two-dimensional XOR problem

The two classes in this two-dimensional XOR problem
were defined as:

Class one

(0:0 , x , 0:5 and 0:5 , y , 1:0)

or

(0:5 , x , 1:0 and 0:0 , y , 0:5)

8>><>>: (37)

Class two

(0:0 , x , 0:5 and 0:0 , y , 0:5)

or

(0:5 , x , 1:0 and 0:5 , y , 1:0)

8>><>>: (38)

7.1.1. Case A
The training data set, depicted in Fig. 1, contained 61

patterns. Among the training data, 30 class-one patterns
were randomly generated inside the set defined by Eq.
(37), 30 class-two patterns were randomly generated inside
a subset of class two, defined by

(0:3 , x , 0:5 and 0:3 , y , 0:5) or (0:5 , x , 1:0

and 0:5 , y , 1:0),

and an extra class-two pattern was inserted at (0.03, 0.03) to
serve as an outlier (pointed by the arrow in Fig. 1). The open
and filled circles in Fig. 1 denote class-one and class-two
patterns, respectively. The open and filled triangles are the
positions of the pattern units after training for the two class
PDFs, respectively. A separate testing data set of 60 pat-
terns, 30 for each class, was randomly generated using Eqs.
(37) and (38). The percentage of correct classification on the
testing set using the original PNN was 96.77%, and the
classification accuracies of the other three PNNs with dif-
ferent sizes on the testing set are listed in Table 1.

The homoscedastic PNN in this case never achieved the
accuracy of the original PNN. From Fig. 1(a), it can be seen
that some mean vectors of the homoscedastic PNN were
merged together. The two heteroscedastic PNNs had better
layouts of the pattern units. The heteroscedastic PNN, how-
ever, failed when the number of pattern units was increased
to six or more. The reason for the heteroscedastic PNN to
collapse was that a mean vector approached the outlier
inserted at the edge of the data space with a variance getting
too small. Fig. 2(a) depicts the learning trajectory of this
mean vector where the radii of the dotted circles denote the
square roots of the related variance values. Fig. 2(b) shows

that for the robust heteroscedastic PNN, although the same
pattern unit was still approaching the outlier, its variance did
not become too small.

7.1.2. Case B
A different training set of 60 patterns was randomly gen-

erated using Eqs. (37) and (38). The testing set was identical
to the case A. The percentage of correct classification on the
testing set using the original PNN was 96.67%. Table 2
summarises the testing results for the other three PNNs,
and Fig. 3 shows the layouts of pattern units for these
three PNNs. Again, the performance of the homoscedastic
PNN was the poorest and the robust heteroscedastic PNN
the best. For this case, the heteroscedastic PNN collapsed
when the number of pattern units was increased to 10 or

Fig. 1. The distribution of training patterns (W andX) and the layout of the
pattern units (K andO) for the XOR problem (case A). The number of
pattern units is six, and the arrow points to the outlier. (a) Homoscedastic
PNN; (b) heteroscedastic PNN; (c) robust heteroscedastic PNN.
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more. The root of this numerical problem was a variance
approaching zero, as illustrated in Fig. 4. The robust hetero-
scedastic PNN did not suffer from the same problem.

7.2. The company prediction problem

The objective of company prediction is to build a model
based on historical financial data of companies for forecast-
ing an issuing company’s future. In this study, we focus on
the UK private construction industry. The raw data set
contained annual financial statements of 2408 UK private

construction companies from 1989 to 1994. Among this set
of data, there were 2244 successful companies and 164
failed companies. Based on these raw data, eight key finan-
cial ratios were computed from each year’s financial state-
ment of a company (Yang et al., 1997) to provide a pattern.

Table 1
The percentage of correct classification for the XOR problem (case A)

Pattern units Homoscedastic PNN Heteroscedastic PNN Robust heteroscedastic PNN

4 89.03% 95.16% 88.71%
6 87.42% Fail 96.77%
8 89.03% Fail 98.39%
10 89.03% Fail 100%

Fig. 2. The learning trajectory (triangles linked by line) of the mean vector
which approaches an isolated pattern. Radii of dotted circles are the corre-
sponding standard deviations. (a) Heteroscedastic PNN; (b) robust hetero-
scedastic PNN. In (a), the arrow points to the position just before the
algorithm collapsed. In (b), the arrow points to the final position.

Fig. 3. The distribution of training patterns (W andX) and the layout of the
pattern units (K andO) for the XOR problem (case B). The number of
pattern units is 10, and the arrow points to where the numerical problem
occurred. (a) Homoscedastic PNN; (b) heteroscedastic PNN; (c) robust
heteroscedastic PNN.
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The pattern space was, thus, eight-dimensional. All the
failed companies and those successful companies matching
the failed companies in size and accounting years were
pooled together. Overall, there were 171 (96 successful
and 75 failed) patterns for training and 1262 (1144 success-
ful and 118 failed) patterns for testing.

The original PNN was first applied to this real-data prob-
lem and the percentage of correct classification on the test-
ing data set was 71.52%. Table 3 lists the classification
accuracies on the testing set for the other three PNNs.
Again, the homoscedastic PNN had the poorest per-
formance, and the heteroscedastic PNN failed when the
number of pattern units was increased to 10, whilst the
robust heteroscedastic PNN did not suffer from this numer-
ical problem. Table 4 summarises the classification errors
for the three PNNs with four, six and eight pattern units,
where a type I error is defined as a failed company being
misclassified as a successful one, and a type II error is
defined as a successful company being misclassified as a
failed one. The distribution of the training patterns and the
layouts of the pattern units for the three PNNs are plotted in
Fig. 5, where an open circle denotes a successful company
pattern and a filled circle a failed company pattern. For
display purposes, the original eight-dimensional space was
scaled into a two-dimensional one in Fig. 5 using the
Sammon mapping (Sammon, 1969). The convergence rate
of the robust ML training algorithm was also investigated.

Table 2
The percentage of correct classification for the XOR problem (case B)

Pattern units Homoscedastic PNN Heteroscedastic PNN Robust heteroscedastic PNN

4 93.33% 93.33% 98.33%
6 93.33% 98.33% 98.33%
8 93.33% 98.33% 98.33%
10 93.33% Fail 98.33%
12 93.33% Fail 98.33%
14 93.33% Fail 96.67%
16 93.33% Fail 98.33%
18 93.33% Fail 100%

Fig. 4. The learning trajectory (triangles linked by line) of the mean vector
which approaches an isolated pattern. Radii of dotted circles are the corre-
sponding standard deviations. The arrow points to the position just before
the algorithm collapsed.

Fig. 5. The distribution of training patterns (W andX) and the layout of the
pattern units (K andO) for the company prediction problem. The original
eight-dimensional space is scaled using Sammon mapping. The number of
pattern units is 10, and the arrow points to where the numerical problem
occurred. (a) Homoscedastic PNN; (b) heteroscedastic PNN; (c) robust
heteroscedastic PNN.
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As illustrated in Fig. 6, the algorithm converged within 10
iterations for the company prediction problem.

8. Conclusions

The PNN is a powerful means to approximate the Bayes
strategy for pattern classification. The heteroscedastic PNN
is particularly attractive in practice because it can provide a
very parsimonious model for PDF estimation. In this study,
we have demonstrated that the optimal ML learning based
on the EM algorithm often suffers from numerical difficul-
ties when applied to heteroscedastic PNNs. To overcome
this numerical problem, we have proposed a robust ML
learning method by incorporating a robust statistical tech-
nique known as the Jack-knife with the EM algorithm.
Applications to an artificial-data problem and a complex

real-data problem have confirmed the effectiveness of this
robust ML learning method.
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