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a b s t r a c t

Fast independent component analysis (FastICA) is an efficient feature extraction tool widely used for
process fault detection. However, the conventional FastICA-based fault detection method does not
consider the ubiquitous measurement noise and may exhibit unsatisfactory performance under the
adverse effects of the measurement noise. To solve this problem, we propose a new process fault
detection method based on noise-resistant joint diagonalization independent component analysis
(NRJDICA), which explicitly takes the measurement noise into consideration. Specifically, the NRJDICA
algorithm is developed to estimate the mixing matrix and the independent components (ICs) by
whitening the measured variables and performing the joint diagonalization of the whitened variables’
time-delayed covariance matrices. The relationships between the kurtosis statistics of the ICs and the
fourth-order cross cumulant statistics of the measured variables are then derived based on the estimated
mixing matrix to help sorting the estimated ICs and selecting the dominant ICs. The serial correlation
information of each dominant IC is next estimated by using a moving window technique, based on which
a monitoring statistic is constructed to conduct fault detection. The simulation studies using a three-
variable system and a continuous stirred tank reactor show that the proposed method has superior fault
detection performance over the traditional FastICA-based fault detection.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

With the advancement in measurement technology and dis-
tributed control systems, modern industrial processes have
become increasingly more complex. To ensure process safety and
stability as well as to maintain high quality of final products,
reliable and timely fault detection has emerged as an essential
task. Due to the convenient availability of substantial measured
data in industrial plants, multivariate statistical analysis methods,
which can extract meaningful feature information from large
amounts of the measured data for detecting various faults or
abnormal situations of industrial processes, have attracted much
attention from both process engineers and academic researchers
[1–18]. Principal component analysis (PCA), as one of the classical

multivariate statistical analysis approaches, has found wide-
ranging applications in the fault detection field [11–16,19–22].
PCA projects the high-dimensional and correlated measured vari-
ables onto a smaller set of the uncorrelated latent variables called
the principal components (PCs) that retain most of the original
variance. However, PCA can only utilize the second-order zero-
delayed covariance information and it cannot take the meaningful
time-delayed covariance statistical information or the higher-
order statistical information of the measured data into considera-
tion [23–25], which may lead to insufficient feature extraction and
unsatisfactory fault detection performance. Moreover, fault detec-
tion based on PCA assumes that the measured data follow a
multivariate Gaussian distribution, in order to derive the control
limits of Hotelling's T-squared (T2) and the companion squared
prediction error (SPE) monitoring statistics. In practice, industrial
process data usually obey non-Gaussian distribution due to
process nonlinearity, operating condition shifts or other reasons
[26,27], and the control limits derived based on the Gaussian
distribution assumption may be ill-suited for fault detection
purpose as the resulting fault indication may be biased.

More recently, fault detection based on independent compo-
nent analysis (ICA) has become a hot topic [2–6,8,10,23–40]. ICA
was originally derived for solving the blind source separation
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problem [41–48] and was introduced to fault detection by Kano
et al. [29]. As a multivariate statistical analysis method, ICA can
exploit the higher-order statistical information [41–45] or the
second-order time-delayed covariance statistical information
[32,47] to extract mutually independent latent variables called
independent components (ICs) from the measured non-Gaussian
variables, and it can be regarded as a useful extension of PCA. ICA
is especially suitable for process fault detection as real-world
processes are usually non-Gaussian [23–27]. Different criteria have
been considered to develop various ICA algorithms [41], including
the maximization of the non-Gaussian measures, such as negen-
tropy, the minimization of the mutual information and the max-
imum likelihood estimation. Among the existing ICA algorithms,
the fast ICA algorithm (FastICA) [41] based on the maximum
negentropy criterion is widely used in the ICA-based fault detec-
tion methods because of its fast convergence rate and good non-
Gaussian feature extraction ability [34,35]. Lee et al. [25] devel-
oped a FastICA-based fault detection method by utilizing the
FastICA to extract the non-Gaussian ICs from the measured data
and constructing three elliptical-type monitoring statistics, known
as I2, I2e and SPE. Hsu et al. [36] argued that I2, I2e and SPE may not
always appropriately capture the characteristics of the extracted
ICs by the FastICA because of the ICs' skewed distributions, and
developed a rectangular-type monitoring statistic named the
adjusted outlyingness to monitor non-Gaussian processes. After
concluding that both the elliptical-type and rectangular-type
monitoring statistics may not always accurately estimate the
nonlinear feature space boundary of normal operating condition
(NOC), Lee et al. [37] constructed a monitoring statistic by using a
local outlier factor method on the ICs extracted by the FastICA,
which can effectively determine the nonlinear decision boundary
of NOC. Zhao et al. [6] combined the ideas of partial least squares
(PLS) and FastICA under the same mathematical umbrella by
constructing a dual-objective optimization criterion that can con-
sider higher-order statistical independence and quality-related
requirements simultaneously. The modified independent compo-
nent regression method proposed in [6] can extract the latent
variables, which have close correlation with the quality properties
and are more comprehensible for regression modeling.

Furthermore, by considering different process characteristics,
such as nonlinearity, dynamic or multi-modality, researchers have
proposed various improved fault detection methods based on the
FastICA. In particular, Stefatos and Hamza [38] developed a
dynamic ICA method for dynamic process fault detection by
augmenting the original measured data with the previous obser-
vations and applying the FastICA to extract the ICs from the
augmented data. Odiowei and Cao [39] integrated the canonical
variate analysis with the FastICA and developed a state-space ICA
based fault detection method for dynamic processes. Tian et al.
[34] proposed a multiway kernel FastICA method based on feature
samples for monitoring nonlinear batch processes. Cai et al. [33]
presented a nonlinear process fault detection method by integrat-
ing the kernel FastICA with a newly emerging manifold learning
method known as locality preserving projection. Basically, kernel
FastICA integrates kernel PCA (KPCA) with FastICA [2,3,24,34], and
thus it combines the advantages of both KPCA [22] and FastICA
[41]. In other words, kernel FastICA possesses the unique cap-
ability of data processing which KPCA alone does not have. More
specifically, kernel FastICA can indirectly excavate the second-
order time structure information of time-series data by utilizing
the higher-order information to extract mutually independent
kernel ICs. This is important because the second-order time
structure information, such as the time-delayed covariance infor-
mation, can be utilized as a viable alternative for the higher-order
information [45]. By contrast, KPCA is blind to the second-order
time structure information, and can only utilize the second-order

zero-delayed covariance information to extract kernel PCs which
are only uncorrelated but not independent. Therefore, kernel
FastICA is more appropriate for time-series data than KPCA. Zhang
[2] also pointed out that ICs can reveal more dynamic information
from the measured data than PCs To account for the process
multimodal characteristics, Rashid and Yu [28] proposed a hidden
Markov model based adaptive FastICA approach for monitoring
non-Gaussian processes with multimodality. Zhang et al. [3]
developed a multimodal process fault detection method based
on the Kronecker product and modified kernel FastICA. In the
above studies, the FastICA has been employed to extract non-
Gaussian ICs for fault detection. However, this widely used FastICA
is basically a “noise-free” algorithm, which adopts the noise-free
ICA model and does not explicitly take the influence of the
measurement noise into account. In reality, the measurement
noise corruption always exists in industrial processes, as pointed
out by Ge and Song [12] and Wang [49]. Under the adverse effects
of measurement noise, the FastICA may not conduct effective and
reliable feature extraction from the measured data. Moreover, the
traditionally used monitoring statistics are also vulnerable to the
measurement noise. These limitations may degrade the perfor-
mance of the FastICA-based fault detection methods drastically.

Recently, researchers have begun to focus on the challenging
problem of how to extract more accurately the features from the
measured noisy data for fault detection. Kim and Lee [16]
extended the conventional PCA to the probabilistic PCA (PPCA)
for process monitoring, which considers the noise information of
the measured data. Zhu et al. [14] further proposed the robust
mixture PPCA for process monitoring. Compared to the PPCA, the
robust mixture PPCA can reduce the negative effect of outliers and
deal with the missing data problem more effectively. However,
PPCA based techniques are only suitable for linear processes. By
adopting a kernel technique, Ge and Song [12] proposed the kernel
generalization of PPCA to extract nonlinear features for monitoring
nonlinear processes. To meet the critical demand of identifying
fault variables that contribute to process faults, Chen and Sun [20]
proposed a probabilistic contribution analysis method in conjunc-
tion with the PPCA model based on the concept of missing
variable. Noting that the PPCA requires the same noise level in
all the measured variables, Kim et al. [17] utilized the factor
analysis (FA), which can be regarded as an extension of PPCA
and is capable of dealing with practical situations where the noise
levels are different in different measured variables. Considering
that fault information may not have a definite mapping relation-
ship to a single factor and the useful information captured by some
factors may be submerged in the insignificant information of the
other factors, Jiang and Yan [18] further proposed the weighted FA
(WFA) for process monitoring, which is capable of highlighting the
useful information that is submerged in the insignificant informa-
tion by suppressing the latter. These existing works have led to
some successes in practical applications, but there still exist many
critical and important issues which require further analysis and
research.

Specifically, most existing works assume that both latent
variables and noise variables obey Gaussian distributions. This
assumption is usually violated in real-life industrial processes
where the related variables often have non-Gaussian character-
istics, owing to various reasons, such as shifting operating condi-
tions, feedstock changes, production strategy changes, non-
Gaussian disturbances, and process nonlinearity [18,27]. The
assumption that all the noise variables have the identical power
level, as required by the PPCA-related methods [12,14,16,20], is
also too rigorous and unrealistic. Thus, an appropriate multivariate
statistical analysis approach is urgently demanded, which can
overcome these above-mentioned limitations and is capable of
meeting the practical requirements of fault detection in real-life
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industrial environments. This is the main motivation of our work.
Because ICA has good ability of extracting non-Gaussian latent
variables, fault detection in high-noise industrial environments
based on ICA is a promising topic worthy researching. Currently,
there exist some “noise-resistant” ICA algorithms [43,47,44,57] in
the blind source separation field, which can explicitly consider the
measurement noise. Nevertheless, these noise-resistant ICA algo-
rithms were not introduced for the fault detection purpose. The
main reason can be attributed to the fact that these noise-resistant
ICA algorithms generally demand some strict assumptions, such as
that the covariance matrix of the measurement noise is a diagonal
matrix with the same diagonal elements or has been obtained by
prior knowledge, which cannot be met in the application to real
industrial processes. Cai et al. [30] proposed a noisy ICA method
for fault detection, which removes the restricted assumption
imposed on the covariance matrix of the measurement noise by
these existing noise-resistant ICA algorithms, but the method of
[30] still requires that the measurement noise is Gaussian dis-
tributed. Consequently, developing an appropriate noise-resistant
ICA algorithm, which can effectively eliminate or alleviate the
effects of the measurement noise without requiring strict and
unrealistic assumptions, is extremely important for meeting the
need of the fault detection in actual process environments. More-
over, constructing a monitoring statistic which can reduce the
effects of the measurement noise is also significant for further
improving the fault detection performance.

Against this background, in this work, our main contribution is
to propose a new process fault detection method based on a novel
noise-resistant joint diagonalization ICA (NRJDICA) algorithm.
Specifically, the measurement noise is considered explicitly in
the noisy ICA model, and the proposed NRJDICA algorithm, which
does not require either the covariance matrix of the measurement
noise or the Gaussian distribution assumption for the measure-
ment noise, is derived to estimate the mixing matrix by whitening
the measured variables and performing the joint diagonalization
of the whitened variables’ time-delayed covariance matrices with
the least-squares based non-orthogonal joint diagonalization algo-
rithm of [50]. Furthermore, the estimated mixing matrix is used
for setting up the relationships between the kurtosis statistics of
the ICs and the fourth-order cross cumulant statistics of the
measured variables, to help sorting the estimated ICs and selecting
the dominant ICs. Our second contribution is to construct a new
monitoring statistic to detect process faults based on the serial
correlation information of each dominant IC calculated using a
moving window technique. This newly derived monitoring statis-
tic is capable of further reducing the influence of the measurement
noise. Therefore, our proposed NRJDICA approach can effectively
suppress the effects of the measurement noise and it offers a
convenient and more effective means for the fault detection in real
industrial processes.

The remainder of this paper is organized as follows. After
briefly reviewing the conventional FastICA-based fault detection
method in Section 2, our proposed NRJDICA-based fault detection
method is formulated in detail in Section 3. To investigate the
effectiveness of the proposed approach, its performance is eval-
uated and compared with that of the conventional method using a
simple three-variable system and a continuous stirred tank reactor
system in Section 4. Our conclusions are drawn in Section 5.

The following notational conventions are adopted throughout
this contribution. Boldface capital and lower-case letters stand for
matrices and column vectors, respectively, while R denotes the
field of real numbers. The transpose and inverse operators are
denoted by ð�ÞT and ð�Þ�1, respectively, while Im denotes the
m�m identity matrix and diagfa1; a2;…; amg represents the m�m
diagonal matrix with a1; a2;…; am as its diagonal elements.
Furthermore, Ef�g denotes the expectation operator, and ‖�‖2F

stands for the squared Frobenius norm. Additionally, for
AARm�m and prm, A1:p;:ARp�m consists of the first p rows of A,
while A:;1:pARm�p contains the first p columns of A.

2. The conventional fastICA-based fault detection method

The conventional FastICA-based fault detection generally con-
sists of two steps: (1) use the FastICA algorithm to estimate the
mixing matrix and the ICs, and (2) construct the monitoring
statistics to detect process faults. Usually, the FastICA algorithm
adopts the following noise-free ICA model:

x¼ As; ð1Þ
where x¼ ½x1 x2 ⋯ xm�TARm denote the m zero-mean measured
variables and s¼ ½s1 s2 ⋯ sm�TARm denote the m zero-mean ICs,
while AARm�m is the unknown mixing matrix. The task of the
FastICA is to estimate both A and s given only the measured x.
Alternatively, the objective of the FastICA is to estimate the ICs by
finding a de-mixing matrix WARm�m from the measured x, such
that the estimate of the ICs can be expressed bybs ¼Wx; ð2Þ
in which the elements of bs ¼ ½bs1 bs2 ⋯ bsm�T are as independent of
each other as possible.

The eigen-decomposition of the measured variables' covariance
matrix Cx ¼ EfxðtÞxTðtÞg, in which the vector xðtÞ contains the sample
values of the measured variables at sample time t, is given by

Cx ¼V diagfλ1; λ2;…; λmgVT: ð3Þ
Here λ1Zλ2Z⋯Zλm are the eigenvalues of Cx, while VARm�m is
the matrix whose column vectors are the eigenvectors of Cx and
therefore VVT ¼VTV ¼ Im. The measured data need to be whitened
first, and the whitening transformation can be implemented as

z¼Qx; ð4Þ
where Q ¼Λ�1=2VT with Λ¼ diagfλ1; λ2;…; λmg is the whitening
matrix, and z¼ ½z1 z2 ⋯ zm�TARm are the m whitened variables. The
whitened variables' covariance matrix Cz ¼ EfzðtÞzTðtÞg satisfies the
condition Cz ¼ Im.

Without loss of generality, the covariance matrix of the ICs s
can be assumed to be the m�m identity matrix, that is,
EfsðtÞsTðtÞg ¼ Im. Then, Eq. (2) can be rewritten asbs ¼Wx¼UQx¼Uz; ð5Þ
by choosing the de-mixing matrix W ¼UQ , where U is an
orthonormal matrix satisfying EfbsðtÞbsTðtÞg ¼ EfUzðtÞzTðtÞUTg ¼
UEfzðtÞzTðtÞgUT ¼UUT ¼ Im. Thus, the problem of finding the
original de-mixing matrix W is converted to a simpler problem
of computing the orthonormal matrix U . To calculate U , the
FastICA algorithm solves the following optimization which takes
the objective function J as the approximation of negentropy [41]:

max
uT
i AR1�m

JðuT
i Þ ¼ max

uT
i AR1�m

ðEfGðuT
i zÞg�EfGðvÞgÞ;

s:t: uT
i ui ¼ 1; uT

i ui�1 ¼ uT
i ui�2 ¼⋯¼ uT

i u1 ¼ 0; ð6Þ
for 1r irm, where v is a Gaussian variable with zero mean and
unit variance, while Gð�Þ is a non-quadratic function which can be
chosen as GðvÞ ¼ �expð�v2=2Þ. The resulting uT

i obtained by
solving the optimization (6) forms the ith row of U . The more
detailed description of the FastICA algorithm can be found in [41].

After obtaining U by the FastICA, the ICs can be estimated using
Eq. (5). The estimated ICs can be arranged in the descending order
according to their non-Gaussian degrees measured by the negen-
tropy statistic [34], and the rows of the matrix U are also sorted
accordingly. The estimate of the mixing matrix A is then calculated
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according tobA ¼ ðUQ Þ�1: ð7Þ
The two widely used monitoring statistics for fault detection are
given by [23,25,28,38,39]

I2ðtÞ ¼ ðbA�1Þ1:p;:xðtÞ
� �T

ðbA�1Þ1:p;:xðtÞ ¼ bsTpðtÞbspðtÞ; ð8Þ

SPEðtÞ ¼ ðxðtÞ� bA :;1:pbspðtÞÞTðxðtÞ� bA :;1:pbspðtÞÞ; ð9Þ
where p is the number of the dominant ICs chosen, andbsp ¼ ðbA�1Þ1:p;:xARp denotes the vector that contains the first p
extracted dominant ICs. I2ðtÞ is used to monitor the systematic part
of the process variation, while SPEðtÞ is used to monitor the non-
systematic part of the process variation.

3. The proposed NRJDICA-based fault detection method

In the above FastICA-based fault detection, the noise-free
FastICA used for estimating the mixing matrix and the ICs does
not consider the measurement noise, which may lead to an
inadequate feature extraction in highly noisy environments. A
possible solution is to replace this noise-free FastICA with the
existing noise-resistant ICA algorithms of [43,44,47,57]. But these
noise-resistant ICA algorithms require some prior knowledge of
the measurement noise that are unavailable in most practical
industrial processes and/or impose some unrealistic assumptions
that may not be met in practice. In addition, the monitoring
statistics I2 and SPE calculated using Eqs. (8) and (9) are also
subject to the negative effects of the measurement noise. All of
these may contribute to a degraded fault detection performance in
noisy industrial environments. This motivates us to derive a new
NRJDICA method for estimating the mixing matrix and the ICs,
which can effectively reduce the effects of the measurement noise
while imposing no unrealistic assumptions on the measurement
noise, as well as to propose a new monitoring statistic which can
further alleviate the adverse influence of the measurement noise
to improve the fault detection performance.

3.1. The NRJDICA algorithm

Instead of using the noise-free ICA model (1), we explicitly
consider the measurement noise and use the following noisy ICA
model:

~x ¼ Asþε; ð10Þ
where ~xARm are the measured variables which are contaminated
with the measurement noise variables ε¼ ½ε1 ε2 ⋯ εm�TARm. The
ICs s and the noise variables ε satisfy the conditions: (1) the
elements of s are zero-mean and mutually independent; (2) the
elements of ε are zero-mean white variables and they are mutually
independent; and (3) the elements of s and the elements of ε are
mutually independent. It is worth emphasizing that unlike many
existing approaches, the distribution of the measurement noise is
not restricted to be Gaussian in our derivation.

As the objective of the NRJDICA is also to estimate the mixing
matrix A and the ICs s from the measured variables ~x, the
whitening of ~x can be carried out according to

~z ¼ ~Q ~x; ð11Þ
where ~z ¼ ½~z1 ~z2 ⋯ ~zm�TARm are the obtained whitened variables,
and the whitening matrix is given by ~Q ¼ ~Λ�1=2 ~V

T
ARm�m in

which ~Λ ¼ diagf ~λ1;
~λ2;…; ~λmg has the eigenvalues of the measured

variables' covariance matrix C ~x ¼ Ef ~xðtÞ ~xTðtÞg as its diagonal

elements, while the columns of ~V are the eigenvectors of C ~x .
Clearly, C ~z ¼ Ef ~zðtÞ ~zTðtÞg ¼ Im.

By expressing the time-delayed covariance matrix of the lagged
~zðt� iÞ and ~zðt� jÞ as

C ~z ði; jÞ ¼ Ef ~zðt� iÞ ~zTðt� jÞg; ð12Þ
we can define the time structure matrix of the whitened variables
~z as the weighted sum of the whitened variables’ different time-
delayed covariance matrices, which can be written as

Mτl ;τu ¼ ∑
τu �1

i ¼ τl
∑
τu

j ¼ iþ1
γi;jðEf ~zðt� iÞ ~zTðt� jÞg

þEf ~zðt� jÞ ~zTðt� iÞgÞ

¼ ∑
τu �1

i ¼ τl
∑
τu

j ¼ iþ1
γi;jðC ~z ði; jÞþC ~z ðj; iÞÞ; ð13Þ

where γi;j for τlr irτu�1 and τlþ1r jrτu are the weighting
coefficients, while τl and τu define the predetermined minimum and
maximum time lags, respectively. Typically, equal weighting is applied
to form the time structure matrix (13). Substituting Eqs. (10) and (11)
into Eq. (13) as well as noticing the conditions that s and ε satisfy as
outlined after Eq. (10), Mτl ;τu can be expressed as

Mτl ;τu ¼ ∑
τu �1

i ¼ τl
∑
τu

j ¼ iþ1
γi;j ~Q ðC ~x ði; jÞþC ~x ðj; iÞÞ ~Q

T

¼ ∑
τu �1

i ¼ τl
∑
τu

j ¼ iþ1
γi;j ~QAðCsði; jÞþCsðj; iÞÞAT ~Q

T

¼HTdiag ∑
τu �1

i ¼ τl
∑
τu

j ¼ iþ1
2γi;jEfs1ðt� iÞs1ðt� jÞg;

(

∑
τu �1

i ¼ τl
∑
τu

j ¼ iþ1
2γi;jEfs2ðt� iÞs2ðt� jÞg;…;

∑
τu �1

i ¼ τl
∑
τu

j ¼ iþ1
2γi;jEfsmðt� iÞsmðt� jÞg

)
H

¼HTΓτl ;τuH; ð14Þ
where HT ¼ ~QA, and the gth diagonal element of the diagonal matrix
Γτl ;τu , namely,

∑
τu �1

i ¼ τl
∑
τu

j ¼ iþ1
2γi;jEfsgðt� iÞsgðt� jÞg;

is referred to as the time structure of the gth IC for 1rgrm.
From Eq. (14), it can easily be seen that the time structure matrix

Mτl ;τu can be diagonalized by the matrix H. By giving two different
values for τl, i.e. τl1 and τl2 , we have the two different time structure
matrices, Mτl1 ;τu

and Mτl2 ;τu
. Then, the joint diagonalization degree of

the matrices Mτl1 ;τu
and Mτl2 ;τu

can be used as the optimization
objective to estimate the matrix H. Specifically, we define the
following weighted least-squares criterion to measure the attainable
joint diagonalization degree by the matrix bH
JWLSðbH ; bΓτl1 ;τu

; bΓτl2 ;τu
Þ

¼ ∑
2

i ¼ 1
wi‖Mτli ;τu

� bHT bΓτli ;τu
bH‖2F ; ð15Þ

where wi for i¼1,2 are the positive weights, and bH denotes the
estimate of H, while bΓτli ;τu

for i¼1,2 are the estimates of Γτli ;τu
. To

estimate the matrix H by minimizing the cost function (15), the so-
called AC–DC algorithm [50] can be utilized, which alternates between
the following two minimization procedures.

(a) The alternating-columns (AC) phase minimizes JWLSðbH ; bΓτl1 ;

τu; bΓτl2 ;τu
Þ with respect to the ith column of bH T

, while keeping
its other columns as well as bΓτl1 ;τu

and bΓτl2 ;τu
fixed, for

1r irm. This sweeping procedure is repeated q times, and
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each sweep starts with the initial bH obtained from the
previous sweep. Typically, q¼10 is sufficient.

(b) The diagonalizing-centers (DC) phase minimizes JWLSðbH ; bΓτl1 ;

τu; bΓτl2 ;τu
Þ with respect to bΓτl1 ;τu

and bΓτl2 ;τu
, while keepingbH fixed.

The algorithm alternates between the two phases for a number
of times, until the reduction in the cost function values of (15)
between two consecutive iterations is below a threshold value, e.g.
10�5. The details of the AC–DC algorithm can be found in [50].

Once the estimated matrix bH is obtained, the mixing matrix A
can be estimated using

bA ¼ ~Q
�1 bHT

; ð16Þ
and the ICs can then be estimated using

bs ¼ bA�1
~x ¼ ðbHTÞ�1 ~Q ~x; ð17Þ

where for notational simplification we still use the notationbs ¼ ½bs1 bs2 ⋯ bsm�T to denote the estimated ICs by the NRJDICA
algorithm.

Referring to Fig. 1, we now summarize the proposed NRJDICA
algorithm.

(i) Calculate the whitening matrix ~Q and whiten the measured
variables ~x using Eq. (11) to obtain the whitened variables ~z .

(ii) Construct the two time structure matrices of the whitened
variables ~z , denoted as Mτl1 ;τu

and Mτl2 ;τu
, using Eq. (13).

(iii) Use the constructed Mτl1 ;τu
and Mτl2 ;τu

to form the measure
(15) of the joint diagonalization degree.

(iv) Minimize the cost function (15) by the AC–DC algorithm to
estimate the matrix H.

(v) With the estimated bH , estimate the mixing matrix A and the
ICs s using Eqs. (16) and (17), respectively.

The computational complexities of the AC and DC phases in the
AC–DC algorithm are respectively Oðqm5Þ and Oðm5Þ [50]. There-
fore, the overall computational complexity of our NRJDICA algo-
rithm is on the order of Oðqm5Þ. By contrast, the computational
complexity of the FastICA algorithm is on the order of OðmN1Þ [48],
where N1 is the sample size of the training data. The sample size
N1 and the number of the measured variables m are determined by
the specific application. Usually, the number of the training data
N1 is large. Thus, for the cases of modest m, the computational
complexity of the NRJDICA may be comparable to that of the
FastICA. It is worth noting that the operations of estimating the
mixing matrix A are executed offline and therefore the complexity
of this off-line modeling stage is not too critical. The significant
advantage of our NRJDICA algorithm over the FastICA algorithm is
that it effectively takes the measurement noise into consideration
in the modeling stage.

3.2. The construction of a noise-restraining monitoring statistic

After obtaining the estimates of the mixing matrix and the ICs
by the NRJDICA algorithm, we may simply use the estimated ICs bs
in Eqs. (8) and (9) to calculate the monitoring statistics I2 and SPE
for fault detection, as a usual practice. However, the estimated ICsbs by the NRJDICA algorithm are still corrupted by the white noise
variables ~ε, which can be clearly seen from

bs ¼ bA�1ðAsþεÞ � sþ bA�1
ε¼ sþ ~ε: ð18Þ

Thus, the calculated I2 and SPE also suffer from the adverse effects
of the measurement noise. In order to conduct reliable and
efficient fault detection, it is highly desired to construct a noise-
restraining monitoring statistic.

Before building a monitoring statistic, the estimated ICs should
be arranged in the descending order according to their non-
Gaussian degrees [34,42] and the dominant ICs are selected. Here,
we apply the well-known non-Gaussian measure called kurtosis
[51,52] to help achieving this purpose. More specifically, the
relationships between the kurtosis statistics of the ICs s and the
fourth-order cross cumulant statistics of the measured variables
can be firstly established based on the estimated mixing matrix bA,
through which the kurtosis statistics of the ICs s can be estimated
without the interference of the measurement noise. Then, the
obtained kurtosis estimates of the ICs s can be used to sort the
estimated ICs bs and to select the dominant ICs.

In particular, we consider the following fourth-order cross
cumulant of the measured variables ~xi and ~xiþ1 for
i¼ 1;2;…;m�1:

cmð ~xi; ~xi; ~xiþ1; ~xiþ1Þ ¼ Ef ~x2i ~x2iþ1g�Ef ~x2i gEf ~x2iþ1g
�2ðEf ~xi ~xiþ1gÞ2: ð19Þ

According to the conditions that the ICs s and the measurement
noise variables ε satisfy, as stated after Eq. (10), as well as the
multi-linearity property of cumulant [52], Eq. (19) can be
expressed as

cmð ~xi; ~xi; ~xiþ1; ~xiþ1Þ ¼ cm ∑
m

g ¼ 1
ai;gsgþεi; ∑

m

g ¼ 1
ai;gsg

 

þεi; ∑
m

g ¼ 1
aiþ1;gsgþεiþ1; ∑

m

g ¼ 1
aiþ1;gsgþεiþ1

!

¼ ∑
m

g ¼ 1
ai;gai;gaiþ1;gaiþ1;gcmðsg ; sg ; sg ; sgÞ

¼ ∑
m

g ¼ 1
a2i;ga

2
iþ1;gk4ðsgÞ; ð20Þ

where ai;g is the ith-row and gth-column element of the mixing
matrix A and k4ðsgÞ ¼ cmðsg ; sg ; sg ; sgÞ is known as the kurtosis

sand the ICsA

and whiten measured variables
to obtain whitened variables

Calculate whitening matrix

Construct two time structure
matrices of whitened variables

Form the measure (15) of
joint diagonalization degree

Minimize the cost function
(15) by the AC−DC algorithm

Hto estimate the matrix 

Estimate the mixing matrix 

Fig. 1. The schematic of the proposed NRJDICA algorithm.
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statistic of the gth IC sg. From Eq. (20), the relationship between
the kurtosis statistics of the ICs s and the fourth-order cross
cumulant statistics of the measured variables ~x can be written in
the matrix form

cmð ~x1; ~x1; ~x2; ~x2Þ
cmð ~x2; ~x2; ~x3; ~x3Þ

⋮
cmð ~xm�1; ~xm�1; ~xm; ~xmÞ

cmð ~xm; ~xm; ~x1; ~x1Þ

26666664

37777775

¼

a21;1a
2
2;1 a21;2a

2
2;2 ⋯ a21;ma

2
2;m

a22;1a
2
3;1 a22;2a

2
3;2 ⋯ a22;ma

2
3;m

⋮ ⋮ ⋯ ⋮
a2m�1;1a

2
m;1 a2m�1;2a

2
m;2 ⋯ a2m�1;ma

2
m;m

a2m;1a
2
1;1 a2m;2a

2
1;2 ⋯ a2m;ma

2
1;m

266666664

377777775

k4ðs1Þ
k4ðs2Þ
⋮

k4ðsm�1Þ
k4ðsmÞ

26666664

37777775:

ð21Þ
It can be observed from Eq. (21) that the calculation of the fourth-
order cross cumulant is not influenced by the measurement noise
variables ε. Let us define

cΦ ¼

ba2
1;1ba2

2;1 ba2
1;2ba2

2;2 ⋯ ba2
1;mba2

2;mba2
2;1ba2

3;1 ba2
2;2ba2

3;2 ⋯ ba2
2;mba2

3;m

⋮ ⋮ ⋯ ⋮ba2
m�1;1ba2

m;1 ba2
m�1;2ba2

m;2 ⋯ ba2
m�1;mba2

m;mba2
m;1ba2

1;1 ba2
m;2ba2

1;2 ⋯ ba2
m;mba2

1;m

2666666664

3777777775
; ð22Þ

where bai;g is the ith-row and gth-column element of the estimated
mixing matrix bA, and
cmð ~xÞ ¼ ½cmð ~x1; ~x1; ~x2; ~x2Þcmð ~x2; ~x2; ~x3; ~x3Þ⋯

cmð ~xm�1; ~xm�1; ~xm; ~xmÞcmð ~xm; ~xm; ~x1; ~x1Þ�T: ð23Þ
Further denote the kurtosis estimate of the ith IC as bk4ðsiÞ. Then the
estimated kurtosis statistics of the ICs s, denoted asbk4 ¼ ½bk4ðs1Þbk4ðs2Þ⋯bk4ðsmÞ�T, can be calculated according to

bk4 ¼ ðcΦTcΦþμImÞ�1cΦT
cmð ~xÞ; ð24Þ

where μZ0 is a small regularization parameter, e.g. 10�6.
Based on the estimated kurtosis statistics given in Eq. (24), the

estimated ICs bs can be arranged in the descending order according
to the absolute values of bk4ðsiÞ for 1r irm and the rows of the
matrix ðbHTÞ�1 in Eq. (17) are also sorted accordingly. After this
sorting, the first p estimated ICs are selected as the dominant ICs.

To reduce the effects of the measurement noise, we adopt the
moving window technique to calculate the serial correlation
information of each dominant IC as follows:

riðtÞ ¼
1

h�1
∑
h�1

j ¼ 0
bsiðt� jÞbsiðt�1� jÞ; 1r irp; ð25Þ

where h is the window width. By calculating the serial correlation
information ri(t) of the ith dominant IC for 1r irp, the effects of
the measurement noise can be effectively alleviated. This is
because from Eq. (18), we have

riðtÞ ¼
1

h�1
∑
h�1

j ¼ 0
ðsiðt� jÞsiðt�1� jÞ

þsiðt� jÞ ~ε iðt�1� jÞþ ~εiðt� jÞsiðt�1� jÞ
þ ~ε iðt� jÞ ~εiðt�1� jÞÞ

� 1
h�1

∑
h�1

j ¼ 0
siðt� jÞsiðt�1� jÞ;

in which the approximation follows from the fact that the noise
variables ~ε ¼ ½ ~ε1 ~ε2 ⋯ ~εm�T in Eq. (18) are white, and s and ~ε are
mutually independent. Thus, based on the serial correlation

information rpðtÞ ¼ ½r1ðtÞ r2ðtÞ ⋯ rpðtÞ�T of the p estimated domi-
nant ICs bspðtÞ ¼ ½bs1ðtÞ bs2ðtÞ ⋯ bspðtÞ�T, the following noise-
restraining monitoring statistic:

L2ðtÞ ¼ rTpðtÞΨ
�1rpðtÞ; ð26Þ

can be constructed to carry out fault detection, where
Ψ¼ EfrpðtÞrTpðtÞg is the covariance matrix of rpðtÞ which can be
estimated using the training data. The idea behind this new L2ðtÞ
monitoring statistic is explained more explicitly in Appendix A.

After the construction of the noise-restraining monitoring
statistic L2ðtÞ, the corresponding confidence limit needs to be
determined for judging whether the monitored process is in
control or not. The δ confidence limit for the built monitoring
statistic can be determined as follows. Split the measured normal
operating data into the two parts: the training data with N1

samples and the validating data with N2 samples. Based on the
training data, both the serial correlation information frpðtÞgN1

t ¼ h of
the dominant ICs and the covariance matrix Ψ of rpðtÞ are
estimated. Based on the validating data, the monitoring statistic
values are calculated which are denoted as fL2ðtÞgN2

t ¼ h. Then round
ðN2�hþ1Þð1�δÞ towards the nearest integer denoted as c and
adopt the cth highest value of fL2ðtÞgN2

t ¼ h as the confidence limit for
the L2ðtÞ monitoring statistic. With this strategy, the false alarm
rates of different fault detection methods can be adjusted to the
same level approximately [53], and this makes it possible for fair
and convenient comparison of different monitoring methods.

3.3. The NRJDICA-based fault detection with the new monitoring
statistic

As illustrated in Fig. 2, the proposed NRJDICA based fault
detection approach using the new noise-restraining monitoring

data, and divide them into
Collect normal operation

training data
validating data

Take measurement from
the process

Calculate the current serial

If the current monitoring

limit
statistic exceeds confidence

: a fault is detected

On−line Fault Detection

Estimate mixing matrix
and ICs based on training
data using NRJDICA, sort
ICs and select dominant ICs

Based on training data
estimate serial correlation

 of dominant ICs and

estimate ICs and calculate
Based on validating data

Calculate L2 monitoring
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serial correlation 
of dominant ICs

δ confidence
limit for 2L

statistic values and

correlation information of
dominant ICs

under monitoring
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its covariance matrix
pr (t)

Ψ

pr (t)

L2

value

Calculate the current
monitoring statistic

Fig. 2. The fault detection procedure using the NRJDICA algorithm with the new
monitoring statistic.
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statistic L2ðtÞ consists of the off-line modeling stage and the on-
line monitoring stage, which are now detailed as follows.

The off-line modeling stage:

(1) Collect the normal operating data from the process, and divide
the data into the training data part, containing N1 samples, and
the validating data part, containing N2 samples.

(2) Based on the training data, estimate the mixing matrix and ICs
by the NRJDICA algorithm, sort the estimated ICs and select
the dominant ICs according to the estimated kurtosis statistics
of the ICs defined in Eq. (24).

(3) Based on the training data, calculate the serial correlation
information frpðtÞgN1

t ¼ h of the dominant ICs using Eq. (25) and
estimate the covariance matrix of frpðtÞgN1

t ¼ h.
(4) Based on the validating data, estimate the ICs using Eq. (17)

and calculate the serial correlation information frpðtÞgN2
t ¼ h of

the dominant ICs using Eq. (25).
(5) Use the obtained serial correlation information frpðtÞgN2

t ¼ h in

Eq. (26) to calculate the monitoring statistic's values fL2ðtÞgN2

t ¼ h,

and determine the δ confidence limit for L2ðtÞ.

The on-line monitoring stage:

(1) Take the current measurement from the process under mon-
itoring, and estimate the current ICs according to Eq. (17).

(2) Calculate the current serial correlation information of the
dominant ICs.

(3) Use the current serial correlation information of the dominant
ICs obtained in Eq. (26) to calculate the current monitoring
statistic value L2ðtÞ.

(4) Determine whether the current monitoring statistic L2ðtÞ
exceeds the confidence limit, and give an alarm if a fault is
detected.

In the above procedure, the training data, the validating data and
the current measured data for monitoring are all normalized with the
means and variances of the measured variables in the training data.
Additionally, the serial correlation information of the dominant ICs in
the training data, the validating data and the current measured data
are all normalized with the means of the serial correlation information
of the dominant ICs calculated from the training data set. How to
choose an appropriate window width h for calculating the serial
correlation information rpðtÞ of the dominant ICs is discussed in
Appendix B, while how to determine an appropriate number p of
the dominant ICs is summarized in Appendix C.

4. Simulation studies

The proposed NRJDICA-based fault detection method is eval-
uated using the two case studies, a simple three-variable system
and a continuous stirred tank reactor (CSTR) system. In both case
studies, the fault detection performance of our NRJDICA-based
fault detection method is compared with those of the FastICA-
based fault detection method and the KPCA-based fault detection
method [22].

4.1. A three-variable system

The three-variable system which is a modified version of the
system studied by Kano et al. [29] is given by ~x ¼ Asþε of Eq. (10),

with the mixing matrix defined by

A¼
�0:4326 0:2877 1:1892
�1:6656 �1:1465 �0:0376
0:1253 1:1909 0:3273

264
375: ð27Þ

The three ICs s¼ ½s1 s2 s3�T are given by

s1ðtþ1Þ ¼ sin ð2π � 18t=f sÞ;
s2ðtþ1Þ ¼ ððremðt;23Þ�11Þ=9Þ5;
s3ðtþ1Þ ¼ sin ð2π � 0:9t=f sÞ � sin ð2π � 30t=f sÞ; ð28Þ
where fs is the sampling frequency and the sample number t
ranges from 0 to 3999, while remðt;23Þ ¼ t�⌊t=23c � 23 with ⌊�c
denoting the integer floor operator. The three measured variables
~x ¼ ½ ~x1 ~x2 ~x3�T are contaminated with the three zero-mean mea-
surement white noise variables ε¼ ½ε1 ε2 ε3�T, and εi follows the
uniform distribution within ½�

ffiffiffi
3

p
σi;

ffiffiffi
3

p
σi� with the variance σi2.

We define the noise intensity of εi as the ratio percentage of εi's
variance over the output ~xi's variance, for 1r ir3. The noise
intensities in the three output signals are set to 20%, 25% and 30%.
A fault case, which is the ramp change of the second-row and the
first-column element a2;1 in the mixing matrix A, is simulated. The
ramp change rate is set to 0.02. The normal operation data with
4000 samples and the fault data with 2000 samples are respec-
tively generated by simulating the three-variable system. The
normal operation data are divided into the training set of
N1 ¼ 2000 samples and the validating set of N2 ¼ 2000 samples.
For the fault data, the fault is introduced at the 101th sample.

Define G¼ bA�1
AARm�m. The following permutation error (PE)

[46]

PE¼ 1
m

∑
m

i ¼ 1
∑
m

j ¼ 1

jgi;jj
maxljgi;lj

þ jgj;ij
maxljgl;ij

� �
�2

 !
; ð29Þ

where gi;j denotes the ith-row and jth-column element of G, is
adopted to conduct quantitative performance comparison of the
FastICA and NRJDICA algorithms. For the FastICA, G¼UQA, while

for the NRJDICA, G¼ ðbHTÞ�1 ~QA. A smaller PE value indicates that
the corresponding algorithm has the higher accuracy for estimat-
ing the mixing matrix and the ICs. The PE value for the FastICA is
1.801, while the PE value for the NRJDICA is only 0.5820. This
clearly confirms that the NRJDICA algorithm can effectively
attenuate the adverse effects of the measurement noise and,
therefore, it achieves much more accurate estimates of the mixing
matrix and the ICs than the FastICA algorithm. Consequently, the
NRJDICA-based fault detection method is expected to outperform
the FastICA-based fault detection method.

The number of the dominant ICs is set to p¼1 in both the
FastICA-based and NRJDICA-based fault detection methods. The
window width in Eq. (25) is empirically chosen to be h¼54 for the
NRJDICA-based fault detection method. As this is a linear process,
the linear kernel is chosen for the KPCA-based fault detection
method. For a fair comparison, the number of the kernel PCs is also
set to one. The fault detection performance is evaluated in terms of
the fault detection rate, which is defined as the percentage of the
fault samples whose monitoring statistic values exceed the corre-
sponding confidence limit in all the fault samples, and the fault
detection time. In order to reduce the false alarm, a fault is
indicated only when six consecutive monitoring statistic values
exceed the confidence limit and the fault detection time is then
defined as the first sample at which the confidence limit is
exceeded [54]. The δ¼ 99% confidence limit is utilized as the
alarming threshold. The monitoring charts of the three fault
detection methods are illustrated in Figs. 3–5. For a convenience
comparison, in each monitoring chart, the monitoring statistic
values are normalized by the corresponding confidence limit so
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that the confidence limit is equal to 1. The monitoring statistic
values are plotted as the solid line, while the related confidence
limit is plotted as the dashed line.

It can be seen from the KPCA-based monitoring charts of Fig. 3
that after the occurrence of the ramp-change fault at the 101th
sample, the T2 monitoring statistic values fluctuate around the
confidence limit and cannot exceed the threshold continuously
until about the 900th sample, while the SPE monitoring statistic
values of many fault samples are still below the confidence limit,
leading to a very late detection of the fault. Similarly, in the
FastICA-based monitoring charts of Fig. 4, the I2 monitoring
statistic values also fluctuate around the corresponding confidence
limit until about the 1200th sample and the SPE monitoring
statistic values of many fault samples are below the related
confidence limit. By contrast, from the NRJDICA-based monitoring
chart of Fig. 5, it can be seen that the L2 monitoring statistic
values of the fault samples exceed the confidence limit quickly
and evidently, resulting in a much earlier detection of the
fault. Table 1 compares the fault detection times (the sample
numbers) and the fault detection rates of the three fault detection
methods. The results obtained for this three-variable system
clearly show that the NRJDICA-based fault detection method has
a faster fault detection time and achieves a higher fault detection
rate than the FastICA-based and KPCA-based fault detection
methods.

4.2. A continuous stirred tank reactor system

The CSTR system is commonly used for testing the fault
detection methods [29,55]. The schematic diagram of the CSTR

Fig. 5. The monitoring chart of the NRJDICA-based fault detection method for the
simple three-variable system. The fault occurs at the 101th sample.

Fig. 4. The monitoring charts of the FastICA-based fault detection method for the
simple three-variable system. The fault occurs at the 101th sample. (a) The I2

monitoring chart. (b) The SPE monitoring chart.

Fig. 3. The monitoring charts of the KPCA-based fault detection method for the
simple three-variable system. The fault occurs at the 101th sample. (a) The T2

monitoring chart. (b) The SPE monitoring chart.
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with the cascade control system is depicted in Fig. 6. In this CSTR,
the reactant A flows into the reactor, and the first-order irrever-
sible reaction A-B happens. The single component B is produced
as an outlet stream. Heat from the exothermic reaction is taken
away by the cooling flow of the jacket. The temperature of the
reactor is controlled by manipulating the coolant flow, while the
level is controlled by manipulating the outlet flow. Based on the
mass, energy and component balances, the dynamic model of this
CSTR system can be established as follows:

dCA

dt
¼ �k0e�E0=RTCAþ

QF ðCAF�CAÞ
Ah

; ð30Þ

dT
dt

¼ k0e�E0=RTCAð�ΔHÞ
ρCp

þQF ðTF�TÞ
Ah

þUACðTC�TÞ
ρCpAh

; ð31Þ

dTC

dt
¼QCðTCF �TCÞ

VC
þUACðT�TCÞ

ρCCpCVC
; ð32Þ

dh
dt

¼ QF�Q
A

: ð33Þ

The system parameters in Eqs. (30)–(33) are described in Table 2.
The details of these parameters and the nominal operating condi-
tions of the CSTR can be found in [55].

The ten process variables are measured and they are described
in Table 3. The non-Gaussian measurement noise variables εi for
1r ir10 which obey the uniform distributions within
½�

ffiffiffi
3

p
σi;

ffiffiffi
3

p
σi� are added to all the 10 measured variables in the

simulation procedure, and the noise intensity in each measured
variable is also given in Table 3. The simulation data are sampled
every 2 seconds, and 4000 samples are generated by simulating
the CSTR system under the normal operating condition which are
divided into the training data with N1 ¼ 2000 samples and the
validating data with N2 ¼ 2000 samples. Eight fault patterns listed
in Table 4 are simulated, which can be divided into two types
according to fault characteristics: the step-change fault type and

the ramp-change fault type. The faults 1–3 are step-change faults,
while the faults 4–8 are ramp-change faults. The data for each
fault pattern are recorded with 1000 samples and the fault is
introduced at the 190th sample. For both the FastICA-based and
NRJDICA-based fault detection methods, the number of the domi-
nant ICs is set to p¼5. The window width in Eq. (25) is chosen to
be h¼76 for our NRJDICA-based fault detection method. Similarly,
for the KPCA-based fault detection method, the number of the
kernel PCs is also set to 5. Furthermore, the Gaussian kernel is
used for the KPCA and the kernel width is chosen to be 30m
according to the empirical criterion given in [22], where m is the
number of the measured variables. Again, the δ¼ 99% confidence
limit is also employed as the alarming threshold.

The monitoring charts obtained by the three fault detection
methods under the fault pattern 5 are shown in Figs. 7–9. From the
monitoring chart of our NRJDICA-based fault detection method
shown in Fig. 9, it can be seen that when the sample number is

Fig. 6. The continuous stirred tank reactor with cascade control.

Table 2
The parameters of the CSTR system.

Parameter Description

k0 Preexponential factor
E0=R Activation energy
A Reactor cross-sectional area
ΔH Reaction heat
ρ Density of reactor contents
Cp Heat capacity of reactor contents
UAC Heat-transfer coefficient
VC Capacity of cooling jacket
CpC Heat capacity of coolant
ρC Density of coolant

Table 3
The measured variables and the noise intensity in each measured variable for the
CSTR system.

Measured
variable

Variable description Noise intensity
(%)

QF Reactor feed flow rate 17.16
TF Temperature of reactor feed stream 16.95
CAF Concentration of species A in reactor feed

stream
6.61

Q Reactor outlet flow rate 61.45
T Reactor temperature 36.37
CA Concentration of species A in reactor 39.44
TCF Temperature of coolant feed 6.08
TC Temperature of coolant in cooling jacket 69.44
QC Coolant flow rate 5.11
h Reactor liquid level 7.31

Table 1
The performance comparison of the three fault detection methods for the simple
three-variable system.

Method Monitoring statistic Fault detection time Fault detection rate (%)

KPCA T2 841 40.47
SPE 538 62.74

FastICA I2 841 27.79
SPE 537 64.42

NRJDICA L2 292 89.21
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greater than 290, all the L2 monitoring statistic values exceed the
confidence limit and stay well above the confidence limit. By
contrast, from the monitoring charts of the FastICA-based fault
detection method depicted in Fig. 8, we observe that only when
the sample numbers are greater than 500 and 530, respectively,
can the I2 and SPE monitoring statistic values exceed their
corresponding confidence limits clearly. Similarly, from the mon-
itoring charts of the KPCA-based fault detection method depicted
in Fig. 7, it can be seen that only when the sample numbers are
greater than 410 and 560, respectively, can the T2 and SPE
monitoring statistic values exceed their related confidence limits
obviously. This illustrates that the NRJDICA-based fault detection

method can detect the fault pattern 5 of the CSTR process much
faster and much more effectively than the FastICA-based and
KPCA-based fault detection methods.

The monitoring charts obtained by the three fault detection
methods for the fault pattern 7 are also examined in Figs. 10–12.
Compared with the monitoring charts of the FastICA-based fault
detection method shown in Fig. 11, the monitoring chart of our
NRJDICA-based fault detection method plotted in Fig. 12 reacts
much more quickly and sharply to the occurring fault. Specifically,
in the monitoring chart of the NRJDICA-based fault detection
method, all the L2 monitoring statistic values exceed the con-
fidence limit after the 260th sample. However, in the monitoring

Table 4
The simulated fault patterns for the CSTR system.

Fault Description Value

1 Step change in the reactor feed flow rate QF �7 L/min
2 Set point change for the reactor temperature T 10 K
3 Bias in the measurement of the reactor temperature T 4 K
4 The reactor feed stream temperature TF ramps up with the ramp rate 0.3 K/min
5 The feed concentration CAF ramps up with the ramp rate 7�10�4 (mol/L)/min
6 The heat-transfer coefficient UAC ramps down with the ramp rate �125 (J/(min K))/min
7 The catalyst activation energy E0=R ramps up with the ramp rate 6 K/min
8 The coolant feed temperature TCF ramps down with the ramp rate �0.2 K/min

Fig. 7. The monitoring charts of the KPCA-based fault detection method for the
CSTR system under the fault pattern 5. The fault occurs at the 190th sample. (a) The
T2 monitoring chart. (b) The SPE monitoring chart.

Fig. 8. The monitoring charts of the FastICA-based fault detection method for the
CSTR system under the fault pattern 5. The fault occurs at the 190th sample. (a) The
I2 monitoring chart. (b) The SPE monitoring chart.
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charts of the FastICA-based fault detection method, most monitor-
ing statistic values from the 260th sample to the 400th sample are
still below the corresponding confidence limits, and thus cannot
give a definite fault indication. In the monitoring charts of the

KPCA-based fault detection method illustrated in Fig. 10, most of
the T2 monitoring statistic values are below the related confidence
limit and thus The KPCA-based T2 statistic fails to detect the fault
pattern 7, while many of the SPE monitoring statistic values from

Fig. 9. The monitoring chart of the NRJDICA-based fault detection method for the
CSTR system under the fault pattern 5. The fault occurs at the 190th sample.

Fig. 11. The monitoring charts of the FastICA-based fault detection method for the
CSTR system under the fault pattern 7. The fault occurs at the 190th sample. (a) The
I2 monitoring chart. (b) The SPE monitoring chart.

Fig. 10. The monitoring charts of the KPCA-based fault detection method for the
CSTR system under the fault pattern 7. The fault occurs at the 190th sample. (a) The
T2 monitoring chart. (b) The SPE monitoring chart.

Fig. 12. The monitoring chart of the NRJDICA-based fault detection method for the
CSTR system under the fault pattern 7. The fault occurs at the 190th sample.
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the 260th sample to the 330th sample are below the correspond-
ing confidence limit. The results obtained again confirm that the
NRJDICA-based fault detection method has better fault detection
performance than the FastICA-based and KPCA-based fault detec-
tion methods.

We next investigate the achievable fault detection performance
of the three fault detection methods on all the eight fault
scenarios. The fault detection times and the fault detection rates
obtained by the three methods are tabulated in Tables 5 and 6,
respectively. From Table 5, it can be seen that all the three
methods can detect the occurring fault immediately for the step-
change fault patterns 1–3, although the T2 monitoring statistic of
the KPCA-based fault detection method actually fails to detect the
occurrence of the fault patterns 1 and 2. In contrast to the step-
change faults, the ramp-change faults are more difficult to detect,
as confirmed by the fault detection times for the ramp-change
fault patterns 4–8. For the challenging problem of detecting the
ramp-change faults, our NRJDICA-based method achieves much
faster fault detection times than both the FastICA-based and KPCA-
based fault detection methods, as can be seen in Table 5. Taking
the fault 4 as an example, the I2 and SPE monitoring statistics of
the FastICA-based fault detection method can only detect the fault
at the 511th and 379th samples, respectively, while the T2 and SPE
monitoring statistics of the KPCA-based fault detection method
can only detect the fault at the 383th and 366th samples,
respectively. But the L2 monitoring statistic of the NRJDICA-based
method can detect the fault at the 294th sample. The results of
Table 5 show the superior ability of the NRJDICA-based method in
shortening the fault detection delay for the challenging ramp-
change fault patterns 4–8, in contrast to the FastICA-based and
KPCA-based methods. Similarly, from Table 6, it can be observed
that all the three methods can achieve high fault detection rates
equal or close to 1 for the step-change faults 1–3, which suggests
that almost all the fault samples are successfully detected by the
three fault detection methods, but again the T2 monitoring statistic

of the KPCA-based fault detection method has extremely low fault
detection rates for the step-change faults 1–3 and thus fails to
effectively and reliably detect these faults. For the challenging
ramp-change faults 4–8, the NRJDICA-based method again attains
higher fault detection rates than both the FastICA-based and
KPCA-based methods, which demonstrates the superior fault
detection ability of the NRJDICA-based fault detection method
over the other two fault detection methods. The average fault
detection rate of each monitoring statistic over the ramp-change
faults 4–8 is illustrated in Fig. 13, which further confirms that the
NRJDICA-based fault detection method outperforms both the
KPCA-based and FastICA-based fault detection methods.

5. Conclusions

A novel NRJDICA-based fault detection method has been
proposed in this paper. Our contribution is two-fold. Firstly, we
have developed a NRJDICA algorithm to estimate the mixing
matrix and the ICs, which explicitly takes the measurement noise
into consideration while imposing no unrealistic assumptions on
the measurement noise. Consequently, unlike the widely used
FastICA algorithm which suffers from the adverse effects of the
measurement noise, the proposed NRJDICA algorithm is capable of
accurately estimating the mixing matrix and the ICs under highly
noisy industrial environments. Secondly, we have constructed a
new noise-restraining monitoring statistic, which can further
effectively reduce the measurement noise's influence, for process
fault detection. Simulation results obtained on the three-variable
system and the CSTR system have demonstrated the superior fault
detection performance of the proposed NRJDICA-based fault
detection method, in terms of fault detection time and fault
detection rate, over the FastICA-based and KPCA-based fault
detection methods.

As a concluding remark, we note the three important issues
which require further investigation. Firstly, the noise-restraining
monitoring statistic L2ðtÞ is constructed based on the serial
correlation information of the dominant ICs. How to make an
effective use of the information containing in the noise-corrupted
residuals for process monitoring purpose is a challenging problem
which requires future research. Secondly, as industrial processes
often exhibit nonlinear characteristics, our future study will
consider nonlinear process behaviors in our proposed fault detec-
tion method to develop a kernel technique based generalization of
the NRJDICA for nonlinear process fault detection. Thirdly, we
implicitly assume that the monitored process is operating at one

Table 5
Comparison of the fault detection times (sample numbers) for the CSTR system.

Fault no. KPCA-based method FastICA-based method NRJDICA-based
method

T2 SPE I2 SPE L2

1 Failed 190 190 191 193
2 Failed 190 219 190 191
3 190 190 251 190 193
4 383 366 511 379 294
5 416 563 485 539 292
6 448 396 Failed 382 379
7 571 319 409 412 260
8 560 386 528 515 305

Table 6
Comparison of the fault detection rates for the CSTR system.

Fault no. KPCA-based method (%) FastICA-based method (%) NRJDICA-based
method (%)

T2 SPE I2 SPE L2

1 0.86 100.0 100.0 100.0 99.75
2 0.25 100.0 97.16 100.0 100.0
3 5.80 100.0 94.32 100.0 99.75
4 57.90 79.38 66.54 76.67 87.53
5 70.37 60.25 63.09 58.27 87.53
6 54.81 79.01 13.70 75.56 76.79
7 23.70 82.72 70.86 74.32 91.48
8 52.47 75.56 65.06 62.72 85.93

Fig. 13. Comparison of the average fault detection rates for the ramp-change fault
patterns 4–8 of the CSTR process.
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mode in the current study. Our future work will investigate how to
enhance our NRJDICA-based fault detection method to extend its
application to multimode process fault detection problems.

Appendix A. Derivation of the new L2 monitoring statistic

Considering the extracted p zero-mean feature variablesbf pðtÞ ¼ ½bf 1ðtÞ bf 2ðtÞ ⋯ bf pðtÞ�T, the well-known Hotelling's T2ðtÞ mon-
itoring statistic is expressed by [56]

T2ðtÞ ¼ bf TpðtÞΘ�1bf pðtÞ; ð34Þ

where the covariance matrix Θ¼ Efbf pðtÞbf TpðtÞg is estimated based
on the training data collected from the process under the normal
operation condition.

In particular, if the feature variables are extracted by an ICA,
they are called the ICs, and we have bf pðtÞ ¼ bspðtÞ and the covar-
iance matrix Θ¼ Ip. In this case Hotelling's T2ðtÞ monitoring
statistic becomes

I2ðtÞ ¼ bsTpðtÞbspðtÞ; ð35Þ

as given in Eq. (8). However, the estimated ICs bspðtÞ are inevitably
corrupted by the measurement noise, as can be seen clearly from
Eq. (18).

The newly proposed monitoring statistic L2ðtÞ is also based on
Hotelling's T2ðtÞ monitoring statistic. Specifically, instead of using
the original extracted dominant IC vector bsp which may suffer
from the adverse effects of the measurement noise, we use the
serial correlation information rpðtÞ of bspðtÞ which can effectively
restrain the influence of the measurement noise. Using rpðtÞ and
its covariance matrix Ψ in Eq. (34), we arrive at

L2ðtÞ ¼ rTpðtÞΨ
�1rpðtÞ; ð36Þ

as introduced in Eq. (26).

Appendix B. Empirical selection of the window width h

As currently there exists no method for determining the
optimal window width h, this parameter is usually chosen by trial
and error. Here, we present an empirical method to choose an
appropriate value for h. We now explain the basic idea of this
heuristic method. In the off-line modeling stage, the normal
operating data are collected to form the training data set and the
validating data set. Because the samples whose monitoring statis-
tic values exceed the δ confidence limit are considered as fault
samples, we choose a value for the window width h to make the
monitoring statistic values of the validating samples below the
confidence limit as much as possible. By adopting this strategy,
the region of normal operating conditions may be better
preserved.

For the constructed noise-restraining monitoring statistic L2,
we define the index

η¼ R1

R2
; ð37Þ

to measure the differences between the δ confidence limit of the
monitoring statistic L2 and the monitoring statistic values
fL2ðtÞgN2

t ¼ h for the validating data. In Eq. (37), R1 denotes the
number of the monitoring statistic values between L2lim;δ and
L2lim;δ�D, while R2 denotes the number of the monitoring statistic
values lower than L2lim;δ�D, where L2lim;δ is the δ confidence limit of
the L2 monitoring statistic and D is a predefined constant satisfy-
ing the condition DoL2lim;δ .

A smaller value of η suggests that more monitoring statistic values
are far below the confidence limit and thus the region of normal

operating conditions is better preserved. As the index η is directly
influenced by the window width h, η can be minimized to determine
an appropriate value for h using the following search procedure.

(1) Set the search range for h from hmin to hmax that covers all the
possible choices of the window width. Choose the required δ
value and set another value δ0oδ.

(2) Start with h¼ hmin.
(3) Calculate the monitoring statistic values fL2ðtÞgN2

t ¼ h for the
validating data.

(4) Determine the δ confidence limit L2lim;δ for the L2 monitoring
statistic.
If h¼ hmin: also determine the δ0 confidence limit L2lim;δ0 for the
L2 monitoring statistic, and set D¼ L2lim;δ�L2lim;δ0 .

(5) Calculate the index η of Eq. (37).
(6) Set h¼ hþ1. If hrhmax go back to step (3); otherwise, stop the

procedure.

The value h in the search range hmin to hmax that approximately
minimizes η may be chosen as the appropriate window width.

The three-variable system: A too small value of h may not
effectively reduce the influence of the measurement noise in
estimating the serial correlation information of the dominant
ICs, while a too large value of h may significantly increase the

Fig. 14. The relationship between the index η and the window width h for the
three-variable system.

Fig. 15. The relationship between the index η and the window width h for the CSTR
system.
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computational burden of the on-line fault detection. We set the
search range for the window width from hmin ¼ 50 to hmax ¼ 150
as a good compromise. The values of δ and δ0 are set to 0.99 and
0.96, respectively. The index η as the function of the window
width h is depicted in Fig. 14, where it can be found that h¼54 is
an appropriate choice for the window width.

The CSTR system: The search range for h is also set from
hmin ¼ 50 to hmax ¼ 150, while the values of δ and δ0 are also set
to 0.99 and 0.96, respectively. The index η as the function of the
window width h is plotted in Fig. 15, where it can be seen that an
appropriate choice for the window width is h¼76.

Appendix C. Determining the number of the dominant ICs

We use a scheme similar to the one discussed in [34] to
determine an appropriate number p of the dominant ICs. The
cumulative percent variance (CPV) criterion is commonly applied
in the ICA-based fault detection methods [4,40]. We construct a
CPV criterion using the absolute values of the ICs’ kurtosis
estimates given in Eq. (24) to help finding an appropriate number
p of the dominant ICs. Assume that the estimated ICs have already
been arranged in the descending order according to their non-
Gaussian degrees measured by the absolute values of the ICs’
kurtosis estimates. Then the CPV criterion is defined by

CPVðpÞ ¼∑p
i ¼ 1jbk4ðsiÞj

∑m
i ¼ 1jbk4ðsiÞj

� 100%: ð38Þ

CPVðpÞ can be set to 90%, 95% or 99% to determine the correspond-
ing value of p, as suggested in [4]. For our two case studies,
CPVðpÞ ¼ 90% is chosen to determine the number of the dominant
ICs. For the three-variable system, this leads to p¼1, while for the
CSTR system, an appropriate number of the dominant ICs is found
to be p¼5. In order to conduct a fair comparison, we use the same
p value for the FastICA-based fault detection method.
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