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a b s t r a c t

This contribution proposes a novel probability density function (PDF) estimation based over-sampling
(PDFOS) approach for two-class imbalanced classification problems. The classical Parzen-window kernel
function is adopted to estimate the PDF of the positive class. Then according to the estimated PDF,
synthetic instances are generated as the additional training data. The essential concept is to re-balance
the class distribution of the original imbalanced data set under the principle that synthetic data sample
follows the same statistical properties. Based on the over-sampled training data, the radial basis function
(RBF) classifier is constructed by applying the orthogonal forward selection procedure, in which the
classifier's structure and the parameters of RBF kernels are determined using a particle swarm
optimisation algorithm based on the criterion of minimising the leave-one-out misclassification rate.
The effectiveness of the proposed PDFOS approach is demonstrated by the empirical study on several
imbalanced data sets.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

In a typical two-class imbalanced classification problem, the
instances in one class outnumber the instances of the other class.
The majority class is usually referred to as the negative class, while
the minority one as the positive class. Machine learning based on
imbalanced data, whereby the imbalance in class distribution
renders the positive class instances to be submerged in the
negative class, is of great interest. The problem typically arises in
life threatening or safety critical applications, such as mammo-
graphy for breast cancer detection [1], mobile phone fraud detec-
tion [2], and detection of oil spills in satellite radar images [3].
In addition, many engineering applications, including information
retrieval and filtering [4], direct marketing [5], risk management
[6], and so on, are inherently imbalanced. In these applications, the
primary objectives are often to target and explore the rare cases/

classes which are less probable yet highly risky/costly. The
imbalance between two classes is problematic for many standard
classification algorithms [7–11]. The performances of these algo-
rithms deteriorate as class imbalance degree increases, or as the
data samples of positive class become sparser [9]. For example, the
kernel-based methods, which are regarded as robust classifiers
[12], construct a decision hyperplane separating two classes.
Without special countermeasure, the resultant hyperplane will
tend to be placed in favour of the classification performance for
the negative class, but the classification performance for the target
class becomes unsatisfactory. There exist a large amount of works
to deal with the imbalanced learning, and the reader is referred to
the excellent survey paper [12] for more information. Typical
techniques of tackling the imbalanced problem can be categorised
into two categories: resampling methods, also known as external
methods, and imbalanced learning algorithms, often referred to as
internal methods.

Imbalanced learning algorithms are obtained by modifying some
existing learning algorithms internally so that they can deal with
imbalanced problems effectively, without ‘artificially’ altering or re-
balancing the original imbalanced data set. For example, the kernel
classifier construction or model selection procedure can be modified,
in order to cope with the imbalanced distribution during the
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classifier construction process [11,13]. A well-known radial basis
function (RBF) modelling approach is the two-stage procedure [14],
in which the RBF centres are first determined using the κ-means
clustering [15] and the RBF weights are then obtained using the least
squares estimate (LSE). To cope with imbalanced data sets, a natural
extension of [14] is to modify the latter stage as the weighted LSE
(WLSE), where the same weighted cost function of [13] is used. This
κ-meansþWLSE algorithm provides a viable technique for this
category of imbalanced learning.

The resampling methods are external as they operate on
original imbalanced data set, aiming to provide a re-balanced
input to train a conventional classifier. One scheme is to assign
different weights to the samples of the data set in accordance with
their misclassification costs [16,17]. There have been a large
number of studies focusing on this simple yet effective methodo-
logy to combine with the conventional classifiers for the reba-
lanced data set. Clearly the ultimate classification performance
will be dependent on the adopted resampling strategy as well as
the choice of classifier. In terms of classifier development, recently,
the particle swarm optimisation (PSO) algorithm [18] has been
applied to minimise the leave-one-out (LOO) misclassification rate
in the orthogonal forward selection (OFS) construction of tunable
RBF classifier [19,20]. PSO [18] is an efficient population-based
stochastic optimisation technique inspired by social behaviour of
bird flocks or fish schools, and it has been successfully applied to
wide-ranging optimisation applications [21–28]. Owing to the
efficiency of PSO, the tunable RBF modelling approach advocated
in [19,20] offers significant advantages over many existing kernel
or RBF classifier construction algorithms, in terms of better
generalisation performance and smaller classifier size as well as
lower complexity in learning process. With regarding to the choice
of resampling strategy, we note that various resampling methods
can be divided into the two basic categories, according to whether
they re-balance the class distribution by under-sampling or over-
sampling.

Random under-sampling is the non-heuristic method aiming to
re-balance class distribution by randomly eliminating instances in
the negative class [29]. Despite its simplicity, random under-
sampling is considered to be one of the most effective re-
sampling methods [30]. A major drawback of this technique is
that it may discard data potentially important for building the
classifier. Thus, many studies focus on heuristic selection techni-
ques [31–40] to eliminate negative class instances. The method
presented in [35] selectively under-samples the negative class,
while keeping all the samples of the positive class. Specifically, the
negative class instances are divided into the four categories: class-
label noise instances A that overlap the positive class decision
region; borderline instances B that are unreliable and can easily
cause misclassification; redundant instances C that do not harm
classification accuracy but increase classification costs; and safe
instances D that are worthy of being kept for classification process.
The categories A and B are detected by the use of Tomek links
concept [41], as the instances complying with Tomek links are
either borderline or noisy samples. Also a SHRINK [3] system
attributes the overlapping regions of both the negative and
positive classes as the positive class, and searches for the best
positive-class region. Alternatively, Wilson's edited nearest neigh-
bour (ENN) rule [42] is introduced to eliminate noisy instances in
the negative class [43]. The ENN rule removes any instance
whose class label differs from the class label of at least two of its
three nearest neighbours, and a neighbourhood cleaning rule
(NCL) [44] modifies the ENN by removing any negative-class
instance whose class label differs from that of its 3-nearest
neighbours. In order to find a consistent subset, the categories
C and D are identified by involving Hart's condensed nearest
neighbor (CNN) rule [45].

Under-sampling tends to be an ideal option when the imbal-
ance degree is not very severe. However, as pointed out in [46], the
use of over-sampling is necessary when the imbalance degree is
high. Random over-sampling is the non-heuristic method aiming
to re-balance class distribution by randomly replicating instances
in the positive class. Studies [9,29] highlight that this method is
simple yet very competitive to more complex over-sampling
methods. However, over-fitting is a recognised serious problem
for random over-sampling, because the exact copies of the
instances in the positive class are made. In the study of imbalanced
data sets in marketing analysis, over-sampling the positive
instances with replacement is applied to match the number of
negative instances [5]. The study [47] proposed a synthetic
minority over-sampling technique (SMOTE), which aims to
enhance the significance of some specific regions in the feature
space by over-sampling the positive class. Instead of mere data
oriented duplicating, SMOTE generates synthetic instances in the
feature space formed by random samples along the line linking the
instance and its k-nearest neighbours (k-NN). Although SMOTE is
well acknowledged by the academic community, it still has some
drawbacks, including over generalisation and large variance [48].
Thus, SMOTEBoost [49], borderline-SMOTE [50] and adaptive
synthetic sampling (ADASYN) [51] were proposed to alleviate its
limitations. Despite the empirical evidences that the foregoing
methods have been effective in improving the classification
performance for the target class, the reason behind the success
of the oversampling approaches, such as SMOTE, is not fully
understood. In fact, there exist little theoretical studies to justify
most of the oversampling methods. This raises the fundamental
questions as how to measure the quality of synthetic instances and
why these can be used as training samples.

Against this background, we propose a novel oversampling
approach based on the kernel density estimation from positive-
class data samples. The estimation of the probability density
function (PDF) from observed data samples is a fundamental
problem in many machine learning and pattern recognition
applications [52–54]. The Parzen window (PW) estimate is a
simple yet remarkably accurate nonparametric density estimation
technique [53–55]. According to the estimated PDF, synthetic
instances are generated as the additional training data. The RBF
classifier proposed in [20] is then applied to the rebalanced data
set, to complete the classification process. In the generic density
estimation application, the PW estimator has a well-known draw-
back, owing to the fact that it employs the full data sample set in
defining the density estimate for a subsequent observation and,
therefore its computational cost for testing directly scales with the
sample size. Note that we apply the PW estimator for estimating
the distribution of the minority class, which by nature consists of a
small number of data samples. Therefore the potential disadvan-
tage of the PW estimate does not exist in our application. In fact, if
the sample size of the positive class is large, there will be no need
to oversample it by introducing artificial samples, and the imbal-
ance of the two classes can be better dealt with by removing some
samples from the majority class, in other words, by undersampling
the negative class.

The significance of our PDFOSþPSO-OFS method is twofold.
Firstly, in comparison to the existing oversampling techniques, our
PDFOS based oversampling approach has much stronger theore-
tical justification. This is because an ideal or “optimal” oversam-
pling technique should generate synthetic data according to
the same probability distribution which produces the observed
positive-class data samples. By using the estimated PDF of the
minority class to generate synthetic samples, the generated
synthetic data follow the same statistical properties as the
observed positive-class data samples. Therefore, the proposed
PDFOS technique generates synthetic instances with better quality
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than the existing oversampling methods. Secondly, the PSO-
OFS based RBF classifier, with its structure and parameters
determined using a PSO algorithm based on minimising the LOO
misclassification rate in the efficient OFS procedure, has been
shown to outperform many existing classifier construction algo-
rithms [20].

To evaluate the proposed PDFOSþPSO-OFS method, an exten-
sive experimental study is carried out, in which three benchmarks
are used for the comparison purpose. The first benchmark uses the
same PSO-OFS based RBF classifier applied to the SMOTE over-
sampling data set [56], denoted by the SMOTEþPSO-OFS, which
offers a very competitive performance to many existing methods
for combating two-class imbalanced classification problems, as
demonstrated in [56]. The second benchmark is the algorithm
advocated in [13], denoted by the LOO-AUCþOFS, which is a state-
of-the-art representative of the internal approach for dealing with
imbalanced problems. The third benchmark, the κ-meansþWLSE
algorithm, as discussed previously, is also a typical imbalanced
learning approach. The experimental results obtained demonstrate
that the proposed PDFOSþPSO-OF method is competitive to
these existing state-of-the-arts methods for two-class imbalanced
problems.

The rest of the paper is organised as follows. Section 2 presents
the proposed PDF estimation based over-sampling (PDFOS) algo-
rithm. Section 3 describes our chosen classifier, the PSO aided
tunable RBF model for two-class classification constructed by
minimising the LOO misclassification rate based on the OFS
procedure. The effectiveness of our approach is demonstrated by
numerical examples in Section 4, and our conclusions are given in
Section 5.

2. PDF estimation based over-sampling (PDFOS)

Consider the two-class data set given as

DN ¼ fxk; ykgNk ¼ 1 ¼DN þ ⋃DN �

¼ fxi; yi ¼ þ1gN þ
i ¼ 1⋃fxl; yl ¼ �1gN �

l ¼ 1 ð1Þ
where ykAf71g denotes the class label for the feature
vector xkARm, N¼Nþ þN� is the total number of instances,
while there are Nþ positive-class instances and N� negative-
class instances, respectively. The underlying classification problem
is imbalanced, and this manifests as Nþ 5N� . The sample xk

complies with an unknown PDF, with the assumption that
instances are generated independently and identically from the
unknown underlying probability distribution.

2.1. Kernel density estimation for positive class

Denote the unknown PDF that generates the positive-class
sample set DN þ by pðxÞ. A general kernel-based density estimator
p̂ðxÞ for pðxÞ based on DN þ ¼ fxi; yi ¼ þ1gN þ

i ¼ 1 is defined by

p̂ðxÞ ¼ 1
Nþ

∑
N þ

i ¼ 1
Φsðx�xiÞ ð2Þ

where s is the window width or smoothing parameter, and
Φsðx�xiÞ is the scaled kernel function which calculates the
distance from x to the training instance xi, scaled by s. The
normal kernel scaled by a single s is often chosen as kernel
function [57–59]

Φsðx�xiÞ ¼
s�m

ð2πÞm=2e
�ð1=2s2Þðx�xiÞTðx�xiÞ ð3Þ

Using a single smoothing parameter s in the above kernel
implies that all the dimensions of the feature space are uncorre-
lated and they have the same spread. To obtain a better estimate of

the density distribution for the positive class, the following kernel-
based PDF estimate involving the covariance matrix S of the
positive class is adopted in this paper

p̂ðxÞ ¼ ðdet SÞ�1=2

Nþ
∑
N þ

i ¼ 1
ΦsðS�1=2ðx�xiÞÞ ð4Þ

where

ΦsðS�1=2ðx�xiÞÞ ¼
s�m

ð2πÞm=2e
�ð1=2s2Þðx�xiÞTS� 1ðx�xiÞ ð5Þ

in which S is the unbiased estimate of the positive class covariance
given by

S¼ 1
Nþ �1

∑
N þ

i ¼ 1
ðxi�xÞðxi�xÞT ð6Þ

with x ¼ ð1=Nþ Þ∑N þ
i ¼ 1xi being the mean vector of the positive

class. The idea to include S in (5) is to cope with the situations
where the coordinates of the feature space are correlated and the
spreads of the coordinates are different. In such situations, if an
equal spread parameter s is applied to all the coordinates as in (3),
the estimated PDF could not adequately represent the true
distribution of the data set [60,61].

The value of s in the density estimator p̂ðxÞ of (4) needs to be
determined. The most tractable global measure of the discrepancy
of p̂ðxÞ from the true density pðxÞ is the mean integrated square
error (MISE) calculated using DN þ , based on which s can be found
by minimising the least-squares cross-validation score function
MðsÞ [52], defined by

MðsÞ ¼N�2
þ ∑

i
∑
j
Φn

sðS�1=2ðxj�xiÞÞþ2N�1
þ Φsð0Þ ð7Þ

where

Φn

sðS�1=2ðxj�xiÞÞ �Φð2Þ
s ðS�1=2ðxj�xiÞÞ

�2ΦsðS�1=2ðxj�xiÞÞ ð8Þ
in which Φð2Þ

s ðS�1=2ðxj�xiÞÞ is given by

Φð2Þ
s ðS�1=2ðxj�xiÞÞ ¼

ð
ffiffiffi
2

p
sÞ�m

ð2πÞm=2 e�ð1=4s2Þðxj �xiÞTS� 1ðxj �xiÞ ð9Þ

The optimal s can be found by a grid search. The computational
cost of this process is OðN2

þ Þ, scaled by the number of the grid
points set in the grid search, which is low as Nþ is by nature a
small number.

2.2. Over-sampling based on kernel density estimator

Over-sampling on the positive class is performed by drawing
data samples according to the PDF estimate p̂ðxÞ in (4), estimated
based on the given training data set DN þ . Each synthetic sample
can be generated by using the following two steps.

1. Based on the discrete uniform distribution, randomly draw
a data sample, xo, from the positive-class data set.

2. Generate a synthetic data sample, xn, using the Gaussian
distribution with xo as the center or mean vector and s2S as
the covariance matrix.

In Step 2, the synthetic sample xn can be generated according to

xn ¼ xoþsR � randnðÞ ð10Þ
where R is the upper triangular matrix with strictly positive
diagonal entries that is the Cholesky decomposition of S, namely,
RTR¼ S, and randnðÞ is the m-dimensional pseudorandom
vector drawn from the zero-mean normal distribution with the
m-dimensional identity matrix Im as its covariance matrix. In order
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to generate the required amount of synthetic samples specified by
the oversampling rate r, which is defined as the ratio of the
number of generated instances to that of original positive-class
instances, the above procedure is repeated r � Nþ times.

A synthetic 2-dimensional imbalanced data set is generated to
illustrate the PDF estimation and the over-sampling process. The
negative class has 100 instances, with the mean vector ½0 0�T and
the covariance matrix I2, while the positive class has 10 instances,
with the mean vector ½2 2�T and the covariance matrix I2, as shown
in Fig. 1(a). In Fig. 1(b), the minimum value of MðsÞ is found at
s¼ 1:25 by the grid search with step 0.05. In Fig. 1(c), the kernel
function placed at each positive-class instance is constructed
according to s and S, in which s2S controls the rotation of the
kernel and its spread in each dimension. Note that, in this
example, however, S� I2. Fig. 1(d) presents the density estimate
for the positive class, which is the mixture of all the density
kernels in Fig. 1(c) with an equal weighting for each component.

The over-sampled data distributions for the synthetic imbal-
anced data set of Fig. 1(a), obtained by the proposed PDFOS and
SMOTE methods at the over-sampling rate r¼ 1000%, are depicted
in Fig. 2(a) and (b), respectively, where the solid line xþy�2¼ 0 in
both Fig. 2(a) and (b) is the ideal decision boundary for this
synthetic data set. In the original imbalanced data set, there are
only 10 positive-class instances in comparison with 100 negative-
class instances. As only a very limited number of instances
represent the positive class in the feature space, especially in the
crucial region where the decision boundary lies, the trained
decision boundary based on the original imbalanced data set will
be biased towards the positive class. Both the PDFOS and SMOTE
methods increase the positive-class instances, particularly in the
decision region, after the positive class has been over-sampled
10 times of its original size. However, it can be seen from

Fig. 2(b) that the over-sampled positive-class data set is confined
in the region defined by the original positive-class instances, due
to the fact that the SMOTE generates the synthetic instances in the
line linking the original instance to its k-NN neighbours [56]. As a
result, increasing the oversampling rate r only leads to a higher
density in this region only. By contrast, the over-sampled positive
class generated by the proposed PDFOS expands along the direc-
tion of the ideal decision boundary, as can be clearly seen from
Fig. 2(a).

3. Tunable RBF modelling for classification

After the positive class has been oversampled with a required
oversampling rate r, a tunable RBF classifier can then be constructed
based on the expanded or rebalanced training data set using the
algorithm proposed in [19,20]. For the completeness, this PSO-OFS
algorithm for constructing the tunable RBF classifier is briefly
described. For notational simplicity, the oversampled two-class
training data set is still denoted as DN ¼ fxk; ykgNk ¼ 1, where the
number of the total instances, N, is understood to have been
increased appropriately. Specifically, the RBF classifier to be con-
structed based on the rebalanced training data set DN takes the form

ŷðMÞ
k ¼ ∑

M

i ¼ 1
wigiðxkÞ ¼ gT

MðkÞwM

~yðMÞ
k ¼ sgnðŷðMÞ

k Þ ð11Þ

where M is the number of RBF kernels, ŷðMÞ
k is the output of the

M-term classifier with the M kernels, gið�Þ, for 1r irM, wM ¼
½w1 w2 ⋯ wM�T is the weight vector and gT

MðkÞ ¼ ½g1ðxkÞ g2ðxkÞ

Fig. 1. Illustration of PDF estimation for the synthetic imbalanced data set: (a) the imbalanced synthetic data set with x denoting positive-class instance and 1 denoting
negative-class instance, (b) grid search of s with step 0.05, (c) the PDF kernel of each instance, and (d) the estimated density distribution of the positive class.
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⋯gMðxkÞ�, while ~yðMÞ
k denotes the estimated class label for xk with

sgnðyÞ ¼
�1; yr0
1; y40

(
ð12Þ

In this study, the Gaussian kernel function

giðxÞ ¼ e�ðx�μiÞTΣ� 1
i ðx�μiÞ ð13Þ

is adopted, where μiARm is the center vector of the ith RBF kernel
and the ith kernel's covariance matrix takes a diagonal form of
Σi ¼ diagfs2

i;1;s2
i;2;⋯;s2

i;mg. Hence, the position of each kernel, μi,
and coverage of each kernel, Σi, are both considered as the
parameters to be determined in kernel modelling.

From (11), the RBF classifier over DN can be written in the
matrix form as

y¼ GMwMþεðMÞ ð14Þ

where εðMÞ ¼ ½εðMÞ
1 εðMÞ

2 ⋯εðMÞ
N �T is the error vector with the M-term

modelling error εðMÞ
k ¼ yk� ŷðMÞ

k , y¼ ½y1 y2…yN �T is the desired class
label vector, and the kernel matrix GM ¼ ½g1 g2…gM � with
gl ¼ ½glðx1Þ glðx2Þ⋯glðxNÞ�T for 1r lrM. Note that gl is the lth
column of GM while gT

MðkÞ is the kth row of GM . Consider the
orthogonal decomposition GM ¼ PMAM , where

AM ¼

1 a1;2 ⋯ a1;M
0 1 ⋱ ⋮
⋮ ⋱ ⋱ aM�1;M

0 ⋯ 0 1

2
6664

3
7775 ð15Þ

PM ¼ ½p1 p2⋯pM � ð16Þ

and the columns in (16) satisfy pT
i pj ¼ 0 for ia j. The RBF classifier

(14) can alternatively be represented as

y¼ PMθMþεðMÞ ð17Þ

where θM ¼ ½θ1 θ2⋯θM �T satisfies θM ¼AMwM . The space spanned
by the original model bases gi, 1r irM, is identical to that
spanned by pi, 1r irM.

The OFS procedure constructs the RBF kernels one by one by
minimising the LOO misclassification rate [19,20]. Specifically, at
the nth stage of model construction, the nth RBF kernel, namely, pn

and θn, is determined. Define the LOO model output of the n-term
RBF model constructed from the LOO data set DN\ðxk; ykÞ, calcu-
lated at xk, as ŷðn;�kÞ

k . Further define the associated LOO decision
variable as

sðn;�kÞ
k ¼ sgnðykÞŷðn;�kÞ

k ¼ ykŷ
ðn;�kÞ
k ð18Þ

Then the LOO misclassification rate is defined by [62]

JðnÞLOO ¼ 1
N

∑
N

k ¼ 1
Idðsðn;�kÞ

k Þ ð19Þ

in which the indicator function IdðsÞ is given by

IdðsÞ ¼
1; sr0
0; s40

(
ð20Þ

By making use of Sherman–Morrison–Woodbury theorem [63] as
well as the orthogonal property, the LOO decision variable can be
efficiently calculated according to [19,20,62]

sðn;�kÞ
k ¼ψ ðnÞ

k

ηðnÞk

ð21Þ

in which ψ ðnÞ
k and ηðnÞk can be computed recursively by:

ψ ðnÞ
k ¼ψ ðn�1Þ

k þykθnpnðkÞ�
p2nðkÞ

pT
npnþλ

ð22Þ

ηðnÞk ¼ ηðn�1Þ
k � p2nðkÞ

pT
npnþλ

ð23Þ

where pn(k) is the kth element of pn and λZ0 is a small
regularisation parameter.

To determine the nth RBF kernel, its center vector μn and
diagonal covariance matrix Σn can be found by minimising JðnÞLOO.
The problem of determining the nth RBF kernel's parameters at
the nth stage of the OFS procedure is therefore to solve the
following optimisation problem

fμn;Σngopt ¼ arg min
μ;Σ

JðnÞLOOðμ;ΣÞ ð24Þ

The PSO algorithm used to solve this optimisation problem is
summarised in Appendix. The construction of the RBF classifier
automatically terminates at the size of M when JðMþ1Þ

LOO Z JðMÞ
LOO

[19,20,62]. The computational complexity of constructing an
M-term RBF model tuned by the PSO algorithm can be shown
to be ðMþ1Þ � L� S � OðNÞ [20], where L is the number of
iterations imposed by the PSO algorithm while S is known
as the population size. Note that M5N is very small, and L and
S are not large integers. Therefore, the PSO-OFS algorithm has a
lower complexity than most existing state-of-the-arts kernel
classifier construction algorithms.

4. Experimental results

The effectiveness of the PDFOSþPSO-OFS method was
examined on the six data sets summarised in Table 1 in the order

Fig. 2. Comparison between the over-sampled data distributions of the synthetic imbalanced data set by the PDFOS and SMOTE at the over-sampling rate r¼ 1000%: (a) the
PDFOS, and (b) the SMOTE.
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Table 1
Summary of the properties of the data sets.

Data set Attributes mþ1 Positive Nþ Negative N� ID n-fold CV s

Pima Diabetes 8 268 500 1.87 10 0.4770.03
Haberman's survival 3 81 225 2.78 3 0.5270.03
Glass(6) 9 29 185 6.38 3 0.4270.06
ADI 9 90 700 7.78 8 0.5670.07
Satimage(4) 36 626 5809 9.28 10 0.9070.00
Yeast(5) 8 44 1440 32.73 3 0.1070.00

Fig. 3. Comparison of ROC curves on imbalanced data sets: (a) Pima Indians diabetes, (b) Haberman's survival, (c) glass, (d) ADI, (e) satimage, and (f) yeast.
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Table 2
Comparison of mean and standard deviation of AUCs.

Data set LOO-AUCþOFS κ-meansþWLSE SMOTEþPSO-OFS PDFOSþPSO-OFS

Pima Diabetes 0.7770.06 0.8070.06 0.8270.06 0.8470.06
Haberman's survival 0.6870.06 0.6270.06 0.7170.06 0.7470.06
Glass(6) 0.9470.05 0.9370.06 0.9270.06 0.9770.04
ADI 0.8270.03 0.8270.03 0.8270.03 0.8370.03
Satimage(4) 0.8870.03 0.8870.03 0.9170.03 0.9170.03
Yeast(5) 0.9370.04 0.9870.02 0.9770.03 0.9870.02

Fig. 4. Comparison of G-mean on imbalanced data sets: (a) Pima Indians diabetes, (b) Haberman's survival, (c) glass, (d) ADI, (e) satimage, and (f) yeast.
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of the ascending imbalanced degree (ID), which is defined as
ID¼N� =Nþ . The austempered ductile iron (ADI) material data set
came from the study [64], while the other five data sets were from
the UCI machine learning repository [65]. Note that the data sets,
Glass, Satimage and Yeast, are multiple-class data sets, which were
turned into the two-class problems in this study by considering
the class with the class label given in the brackets as the chosen
positive class and designating the other classes altogether as the
negative class. Considering the size of the data set and the sparsity
of the positive class, different n-fold cross-validations (CVs) were
performed on the different data sets. Each dimension of a feature
vector xk ¼ ½xk;1 xk;2⋯xk;m�T was normalised to the range ½0;1� using

the operation

xk;i ¼
xk;i�xmin;i

xmax;i�xmin;i
; 1rkrN; 1r irm ð25Þ

with

xmin;i ¼ min
1rkrN

xk;i

xmax;i ¼ max
1rkrN

xk;i

8<
: ð26Þ

The mean and standard deviation of s, determined by the PW
density estimator for the positive class of each data set, averaged
over the n-fold CV are also reported in the last column of Table 1.

Fig. 5. Comparison of F-measure on imbalanced data sets: (a) Pima Indians diabetes, (b) Haberman's survival, (c) glass, (d) ADI, (e) satimage, and (f) yeast.
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As discussed in the introduction section, the data sets were also
tested on three other benchmark algorithms, two of which belong
to weighted methods, namely, the LOO-AUCþOFS with different
weight ρ [13] and the κ-meansþWLSE with different weight ρ.
More specifically, based on the WLSE, the LOO-AUCþOFS uses the
OFS based model selection criterion of maximising the LOO area
under the curve (AUC) of receiver operating characteristics (ROC)
[13], while the κ-meansþWLSE selects the RBF centers via the
κ-means clustering. The third algorithm, the SMOTEþPSO-OFS,
uses the SMOTE for over-sampling and then applies the same PSO-
OFS based RBF classifier, as presented in Section 3, to the
rebalanced data set.

Three typical performance metrics for evaluating imbalanced
classification performance were involved in the experimental
study, and they were the area under the ROC curve (AUC) [66],
the G-mean and the F-measure [67]. Receiver operating character-
istics (ROC) curves are first presented in Fig. 3, where FP and TP
stand for false positive and true positive, respectively. The (FP, TP)
pair in the ROC of Fig. 3 is the mean of FP and TP, respectively,
averaged over the n-fold CV. Each algorithm is related to one curve
formed by the pairs of (FP, TP), obtained for different over-
sampling rates r of the SMOTEþPSO-OFS and PDFOSþPSO-OFS
or different weights ρ of the LOO-AUCþOFS and κ-meansþWLSE.
The means and standard deviations of the AUC metric [66] are
then listed in Table 2, where the best results are highlighted in
boldface. Likewise, the G-mean and F-measure metrics [67] with
respect to different r and ρ are reported in Figs. 4 and 5,
respectively. Note that, for each data set, the G-mean and
F-measure versus r of the SMOTEþPSO-OFS and PDFOSþPSO-
OFS and ρ of the LOO-AUCþOFS and κ-meansþWLSE are depicted
as two separate subplots in the same plot, respectively. The best
G-mean and F-measure of each method with the corresponding r

or ρ value are listed in the Tables 3 and 4, respectively, where
again the best results are highlighted in boldface.

As shown in Fig. 3 and Table 2, the proposed PDFþPSO-OFS
algorithm is able to achieve a better performance for the imbal-
anced data sets with various imbalanced degrees, in terms of the
AUC metric, over the three selected competitive and state-of-the-
art benchmark methods. The AUC is a metric for evaluating the
overall performance across the whole ROC plane. For single
operating points, there exist trade-offs between the TP rate and
FP rate. As an example, for the satimage data set results depicted
in Fig. 3(e), the weighted methods tend to perform better, in terms
of TP rate, in the lower FP rate region. The influences of r or ρ to
the achievable G-mean and F-measure can be observed in
Figs. 4 and 5, respectively. The PDFOSþPSO-OFS shows a very
competitive performance, in terms of the best G-mean and
F-measure as presented in Tables 3 and 4, respectively. Noticeably,
the best G-mean and F-measure tend not to occur at the same r
or ρ. Also, the case of fully re-balanced positive and nega-
tive classes does not necessarily result in the best G-mean or
F-measure. Furthermore, a higher value of r or ρ does not
guarantee better G-mean and F-measure, as the FP rate may
increase along with the TP rate.

5. Conclusions

Although re-sampling is a straightforward and effective way to
deal with imbalanced classification problems, most of the existing
methods lack sufficient theoretical insight and justification. This
study has followed the principle of over-sampling technique that
seeks to re-balance the skewed class distribution, but with the aim
of maintaining the true statistical information as manifested in the

Table 3
Comparison of mean and standard deviation of best G-means.

Data set LOO-AUCþOFS k-meansþWLSE SMOTEþPSO-OFS PDFOSþPSO-OFS

Pima Diabetes 0.7470.04 0.7570.06 0.7670.05 0.7870.05
ðρ¼ 2:0Þ ðρ¼ 2:5Þ ðr ¼ 100%Þ ðr ¼ 100%Þ

Haberman's survival 0.6770.05 0.5770.07 0.6970.08 0.6970.02
ðρ¼ 3:0Þ ðρ¼ 4:0Þ ðr ¼ 200%Þ ðr ¼ 400%Þ

Glass(6) 0.9370.03 0.9570.02 0.9570.06 0.9770.04
ðρ¼ 3:0;6:0Þ ðρ¼ 8:0Þ ðr ¼ 600%Þ ðr ¼ 600%Þ

ADI 0.7670.01 0.7770.02 0.7670.02 0.7770.01
ðρ¼ 15:0Þ ðρ¼ 10:0Þ ðr ¼ 1000%;1500%Þ ðr ¼ 800%;1000%Þ

Satimage(4) 0.8570.03 0.8470.02 0.8670.01 0.8670.02
ðρ¼ 8:0Þ ðρ¼ 10:0Þ ðr ¼ 1000%Þ ðr ¼ 600%Þ

Yeast(5) 0.9270.09 0.9770.01 0.9870.00 0.9870.01
ðρ¼ 27:0;30:0Þ ðρ¼ 18:0Þ ðr ¼ 2700%Þ ðr ¼ 900%Þ

Table 4
Comparison of mean and standard deviation of best F-measures.

Data set LOO-AUCþOFS k-meansþWLSE SMOTEþPSO-OFS PDFOSþPSO-OFS

Pima Diabetes 0.6770.05 0.6870.06 0.7070.04 0.7170.06
ðρ¼ 2:0Þ ðρ¼ 2:5Þ ðr¼ 100%Þ ðr¼ 100%Þ

Haberman's survival 0.5270.06 0.4470.11 0.5570.09 0.5470.03
ðρ¼ 3:0Þ ðρ¼ 4:0Þ ðr¼ 200%Þ ðr¼ 200%;400%Þ

Glass(6) 0.8770.03 0.8970.02 0.9270.07 0.9570.01
ðρ¼ 3:0Þ ðρ¼ 8:0Þ ðr¼ 900%Þ ðr¼ 100%;200%Þ

ADI 0.4270.01 0.4270.02 0.4370.02 0.4570.03
ðρ¼ 10:0Þ ðρ¼ 5:0;10:0Þ ðr¼ 300%Þ ðr¼ 300%Þ

Satimage(4) 0.5870.03 0.5570.05 0.5870.06 0.5770.05
ðρ¼ 3:0Þ ðρ¼ 2:0Þ ðr¼ 200%Þ ðr¼ 200%Þ

Yeast(5) 0.5970.08 0.6170.03 0.5970.03 0.6370.10
ðρ¼ 9:0;12:0Þ ðρ¼ 3:0Þ ðr¼ 600%Þ ðr¼ 600%Þ
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observed data. This has been achieved by a PW based PDF
estimator using the positive data samples, followed by drawing
data samples according to the estimated PDF in order to re-
balance the data. The RBF classifier is then constructed based on
the rebalanced data set using the efficient PSO aided OFS proce-
dure. Experimental results have demonstrated that the proposed
PDFOSþPSO-OFS approach offers a very competitive method, in
comparison with many existing state-of-the-art methods for deal-
ing with imbalanced classification problems.

As reviewed in the introduction section, under-sampling is
considered to be able to refine the distribution of the negative
class and, as a result, to further improve the overall classification
performance. Our future work will investigate how to combine
under-sampling with the proposed PDFOS technique. For the
challenging class of high-dimensional problems, where the feature
space dimension is extremely large, in thousands or even tens of
thousands, but the sample size is extremely small by comparison,
in hundreds or even in tens, efficient feature selection becomes
essential. We are currently investigating suitable feature selection
techniques for integrating with the proposed PDFOSþPSO-OFS
approach in order to tackle this type of challenging high-
dimensional problems effectively.
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Appendix A. PSO for optimising a RBF node's parameters

To start the PSO, the search space for the candidate solutions
needs to be defined initially. For convenience, define the
2m-dimensional vector γ that combines μn and Σn. Then, the
optimisation problem defined in (24) can be rewritten as

γopt ¼ arg min
γAΓ

JðnÞLOOðγÞ ð27Þ

where the search space Γ is defined by

Γ9 ∏
2m

i ¼ 1
½Γi;min;Γi;max� ð28Þ

Specifically, the search space for μn ¼ ½μn;1 μn;2⋯μn;m�T is specified
by the distribution of the training data fxkgNk ¼ 1 according to

μn;iA ½xmin;i; xmax;i�9 ½Γi;min;Γi;max�; 1r irm ð29Þ

with xmin;i and xmax;i given in (26), while each element of Σn is
limited in the range

s2
n;iA ½s2

min;s
2
max�9 ½ΓðiþmÞ;min;ΓðiþmÞ;max�; 1r irm ð30Þ

A swarm of particles, fγ½l�s g
S
s ¼ 1, that represents the candidate

solutions are initially generated randomly within the search space
Γ, where S is the size of the swarm and 0r lrL is the iteration
index with L representing the maximum number of iterations.
Each particle position γ½l�s has the associated cost JðnÞLOOðγ½l�s Þ. For the
sth particle, γ½i�s with the best JðnÞLOOðγ½i�s Þ for 0r ir l is stored as
the cognitive information CI½l�s . For the entire swarm, γ½i�s with
the best JðnÞLOOðγ½i�s Þ for 0r ir l and 1rsrS is stored as the social
information SI½l�. Each particle γ½l�s has a velocity vector
ν½l�s ¼ ½ν½l�s;1ν½l�s;2⋯ν½l�s;2 m�T to direct its “flying” or search, where ν½l�s AV

with the velocity space defined by

V9 ∏
2m

i ¼ 1
½�Vi;max;Vi;max� ð31Þ

in which Vi;max ¼ 1
2ðΓi;max�Γi;minÞ.

The cognitive information CI½l�s and the social information SI½l�

are used to update the particle velocities and positions according
to

ν½lþ1�
s ¼ randðÞ � ν½l�s þrandðÞ � c1 � ðCI½l�s �γ½l�s Þ

þrandðÞ � c2 � ðSI½l� �γ½l�s Þ ð32Þ

γ½lþ1�
s ¼ γ½l�s þν½lþ1�

s ð33Þ
where randðÞ is the uniform random number in ½0;1�, c1 and c2 are
the two acceleration coefficients. The velocity space V is applied to
confine the updated ν½lþ1�

s according to

ν½lþ1�
s ¼ 70:1 � randðÞ � Vmax; ν½lþ1�

s � 0

ν½lþ1�
s;i ¼ Vi;max; ν½lþ1�

s;i 4Vi;max

ν½lþ1�
s;i ¼ �Vi;max; ν½lþ1�

s;i o�Vi;max

8>>><
>>>:

ð34Þ

Typically, the time varying acceleration coefficients [21]

c1 ¼ 2:5�ð2:5�0:5Þ � l=L
c2 ¼ 0:5þð2:5�0:5Þ � l=L ð35Þ
can be adopted for the two coefficients c1 and c2 in (32).

The detailed algorithmic steps for applying the PSO algorithm
to determine the nth RBF node's parameters can be found in
[20,56]. It is notable that at each stage for constructing RBF
classifier the computational complexity including one LOO cost
evaluation and the associated model column orthogonalisation
maintains the order of O(N). Thus, the computational require-
ments of constructing an M-term RBF model tuned by PSO can be
given as ðMþ1Þ � L� S � OðNÞ [20].
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