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a b s t r a c t

A new sparse kernel density estimator with tunable kernels is introduced within a forward constrained
regression framework whereby the nonnegative and summing-to-unity constraints of the mixing
weights can easily be satisfied. Based on the minimum integrated square error criterion, a recursive
algorithm is developed to select significant kernels one at time, and the kernel width of the selected
kernel is then tuned using the gradient descent algorithm. Numerical examples are employed to
demonstrate that the proposed approach is effective in constructing very sparse kernel density
estimators with competitive accuracy to existing kernel density estimators.

& 2015 Published by Elsevier B.V.

1. Introduction

The probability density function (PDF) estimation, e.g., the Parzen
window (PW) and finite mixture model, is of fundamental impor-
tance to many data analysis and pattern recognition applications
[1–8]. There is a considerable interest into research on sparse PDF
estimation which can be summarized into two categories. The first
category is based on constrained optimization. For example, the
support vector machine (SVM) density estimation was researched
[9,10], in which the density estimation problem is formulated as a
supervised learning mode whilst the mean absolute deviation
between the empirical cumulative distribution function (CDF) calcu-
lated from the training data and the CDF based on the PDF estimator
also calculated from the training data are minimized. This yields the
sparsity inducing property, i.e., at the optimality, many kernels'
weights are driven to zero. The desirable property of sparsity
inducing also happens in the interesting approach of reduced set
density estimator (RSDE) [11], which is based on the minimization of
the integrated square error (ISE) between the estimator and the true
density evaluated on the training data [2,11,12], and two efficient
optimization algorithms were introduced. Alternatively, by exploiting
the first and the second order Riemannian geometry of the multi-
nomial manifold, the Riemannian trust-region algorithm [13] was

recently applied to find the set of sparse mixing coefficients based on
the minimum ISE (MISE), referred to as the RTR-MISE algorithm [14].

The second category of sparse kernel density estimators con-
structs the PDF estimator in a forward regression manner. A
regression-based PDF estimation method was introduced [15], in
which the empirical CDF is constructed and used as the desired
response. In order to automatically determine the model structure
with the improved model generalization, the regression-based idea
of [15] and the approach of [16] were extended to yield an
orthogonal forward regression (OFR) based sparse density estima-
tion algorithm [17] which is capable of automatically constructing a
very sparse kernel density estimate, with comparable performance
to that of the PW estimate. A simpler and viable alternative
approach was proposed to use kernels directly as regressors by
adopting the PW estimate as the target response [18]. A sparse
kernel density estimator [19] was introduced based on the MISE
and the forward constrained regression (FCR) [20] to select sig-
nificant kernels one at time, which has very low computational cost
and is referred to as the FCR-MISE algorithm.

With the exception of [4], in all the above-mentioned sparse
kernel estimators, including those based on the MISE approach
[11,14,19], the PDF kernels involve a single and fixed kernel
bandwidth parameter that needs to be empirically predetermined.
By contrast, this paper introduces a new sparse kernel density
estimator with tunable kernels also based on the MISE. Specifically,
a new recursive algorithm is developed to select significant kernels
one at time, followed by tuning the kernel width of the selected
kernel using the gradient descent algorithm. This means that there
is no need to determine the bandwidth parameters empirically
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outside the algorithm loop. Numerical examples are employed to
demonstrate that the proposed approach can construct very sparse
kernel density estimates with competitive accuracy, compared to
the existing kernel density estimators.

2. Forward construction of tunable sparse kernel density
estimator

Given the finite data set DN ¼ fxjgNj ¼ 1 consisting of N data
samples, where the data xjARm follows an unknown PDF pðxÞ,
the problem under study is to find a sparse approximation of pðxÞ
by forward construction based on the subset DM ¼ x01; x

0
2;…; x0M

� �
of M data samples selected from DN. For example, if x6 from DN is
selected to form the first kernel, it is denoted as x01 in DM. A general
kernel based density estimate of pðxÞ is given by

bpðMÞ x;βM ;σM
� �¼ XM

i ¼ 1

βiKσi x; x0i
� � ð1Þ

subject to

βiZ0 and βT
M1M ¼ 1; ð2Þ

where Kσi x; x0i
� �

is the Gaussian kernel with the kernel center
vector x0i and an adjustable kernel width σi given by

Kσi x; x0i
� �¼ 1

2πσ2
i

� �m=2 exp � Jx�x0i J
2

2σ2
i

 !
; ð3Þ

and βi is the ith kernel weight, while σM ¼ σ1 σ2…σM½ �T,
βM ¼ β1 β2…βM

� �T, and 1M is the M-dimensional vector whose
elements are all equal to one.

We form the kernel density estimator (1) from the subset DM in a
forward construction manner. Specifically given the initial condition
σi ¼ σ0, 8 i, and starting from an empty model set, our proposed
sparse kernel density estimation algorithm selects the kernel func-
tions Kσ0 x; x0i

� �
into the model set one at a time from DN. At each

forward step, the associated kernel width σi is then optimized to
obtain Kσi x; x0i

� �
.

Let the superscript ðlÞ denote the lth forward selection step. At
the lth forward selection step, further denote the intermediate

kernel density estimator bpðlÞðx;βðlÞ
l ;σ lÞ as byðlÞðxÞ, where σðlÞ

l ¼
σ1 σ2…σl½ �T and βðlÞ

l ¼ ½βðlÞ
1 βðlÞ

2 …βðlÞ
l �T, with βðlÞ

i , 1r ir l, as the
kernel's weights at the lth forward selection step, i.e.,

byðlÞðxÞ ¼
Xl
i ¼ 1

βðlÞ
i Kσi x; x0i

� �
: ð4Þ

The proposed algorithm integrates the FCR procedure [20]
described below:

(i) At the first step, the PDF estimator is simply

byð1ÞðxÞ ¼ Kσ1 x; x01
� �

; ð5Þ
where Kσ1 x; x01

� �
is obtained by adjusting the kernel width

from σ0 to σ1 based on the selected kernel center x01. Clearly
βð1Þ
1 ¼ 1.

(ii) At the lth step, where lZ2, the PDF estimator is constructed by
adding the lth kernel Kσ l x; x0l

� Þ to byðl�1ÞðxÞ according to

byðlÞðxÞ ¼ λlbyðl�1ÞðxÞþð1�λlÞKσ l x; x0l
� �

; ð6Þ
where Kσ l x; x0l

� �
is obtained by adjusting the kernel width from

σ0 to σl based on the selected kernel center x0l, while 0rλlr1,
8 l, and λ1 ¼ 0.

It can be straightforwardly verified that the model constructed
using the FCR procedure satisfies the convex constraint conditions

of (2), namely, βðlÞ
i Z0, 1r ir l, and

Pl
i ¼ 1 β

ðlÞ
i ¼ 1, 8 lZ1, see [20].

Moreover, given λl and βðl�1Þ
l�1 , βðlÞ

l can be recursively computed via

βðlÞ
l ¼ λlβ

ðl�1Þ
l�1

1�λl

" #
; ð7Þ

where l41 and βð1Þ
1 ¼ βð1Þ

1 ¼ 1.
It can be seen that the key issues at each forward selection step l are

(1) how to initially select the kernel center vector x0l with the kernel
width σl ¼ σ0, followed by adjusting the kernel width σl for the selected
kernel; and (2) how to compute λl and hence the kernel weight βðlÞ

l .

3. Joint kernel selection and kernel width optimization based
on the MISE

We now introduce our new algorithm integrating the kernel
term selection, the kernel width optimization and the kernel
weight calculation based on MISE [2,11,12] and the FCR framework
described in the previous section. In particular, we detail the joint
kernel selection, the tunable kernel width optimization and kernel
weight estimation at the lth forward selection stage. Specifically,
based on the ISE criterion, we formulate initially the kernel weight
estimation problem for a given kernel per forward selection step,
and then the kernel width optimization using the gradient descent
algorithm for the selected kernel. Joint kernel selection together
with the kernel width/weights optimization is finally presented.

3.1. Kernel weight estimation

At the lth forward selection stage, Kσi x; x0i
� �

are given for
1r ir l�1, and we consider the problem of determining λl and
σl for a fixed x0l based on the ISE which is the global accuracy
measure for density estimate and is given by [11]

ISE βðlÞ
l ;σ l

� 	
¼
Z

pðxÞ�
Xl
i ¼ 1

βðlÞ
i Kσi x; x0i

� � !2

dx

¼
Z

p2ðxÞ dxþ
Z Xl

i ¼ 1

βðlÞ
i Kσi x; x0i

� � !2

dx

�2E
Xl
i ¼ 1

βðlÞ
i Kσi x; x0i

� �" #

¼
Z

p2ðxÞ dxþ
Xl
i ¼ 1

Xl
j ¼ 1

βðlÞ
i β

ðlÞ
j

Z
Kσi x; x0i
� �

Kσj x; x0j
� 	

dx

�2
Xl
i ¼ 1

βðlÞ
i E Kσi x; x0i

� �� �
¼
Z

p2ðxÞ dxþQ ðlÞ λl;σl
� �

; ð8Þ

in which E½�� denotes the expectation with respect to the true
density pðxÞ. Since the unknown term

R
p2ðxÞ dx is independent of

βðlÞ
l , it can be dropped from the objective function. We write the

argument directly as fλl;σlg for the last term Q ðlÞ λl;σl
� �

, which
becomes our objective function. We point out that since our
algorithm is based on the FCR framework, only these two para-
meters need to be estimated at the lth selection stage. Note that

βðlÞ
l depends on λl and β

ðl�1Þ
l�1 , i.e., the sequence fλ1; λ2;…; λl�1g, that

have already been obtained from the previous forward selection
steps (see (7)). Similarly fσ1;σ2;…;σl�1g are also obtained from
the previous forward selection steps.

Using the following unbiased estimator of

E Kσi x; x0i
� �� �� 1

N

XN
k ¼ 1

Kσi xk; x0i
� � ð9Þ
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as well as noting the result of
R
Kσi x; x0i
� �

Kσj ðx; x0jÞ dx given in the
Appendix yields

Q ðlÞ λl;σl
� �

9
Xl
i ¼ 1

Xl
j ¼ 1

βðlÞ
i β

ðlÞ
j Kσi;j x0i; x

0
j

� 	

� 2
N

Xl
i ¼ 1

βðlÞ
i

XN
k ¼ 1

Kσi xk; x
0
i

� �
; ð10Þ

where σi;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
i þσ2

j

q
. Using matrix expression, we easily obtain

the recursive form of Q ðlÞðλl;σlÞ which is given by

Q ðlÞ λl;σl
� �¼ μðlÞ �2νðlÞ ð11Þ

where

μðlÞ ¼ βðlÞ
l

� 	T
CðlÞ
l β

ðlÞ
l ;

νðlÞ ¼ βðlÞ
l

� 	T
pðlÞ
l ;

8>><>>: ð12Þ

in which pðlÞ
l and CðlÞ

l can be computed recursively as

pðlÞ
l ¼ pðl�1Þ

l�1

� 	T 1
N

XN
k ¼ 1

Kσl
xk; x

0
l

� �" #T
; ð13Þ

CðlÞ
l ¼

Cðl�1Þ
l�1 bðlÞ

l�1

bðlÞ
l�1

� 	T
γl

264
375; ð14Þ

and

γl ¼ 1= 4πσ2l
� �m=2

bðlÞl−1 ¼ ½Kσ1;l x′1; x
′
l

� �
⋯Kσl−1;l x′l−1; x

′
l

� ��T
8<: ð15Þ

This recursion is initialized at the first step (l¼1) as

Cð1Þ
1 ¼ K ffiffi

2
p

σ1
x01; x

0
1

� �¼ γ1 ð16Þ

and

pð1Þ
1 ¼ 1

N

XN
k ¼ 1

Kσ1 xk; x01
� �

: ð17Þ

By substituting (7) and (12)–(14) into (11), we have

Q ðlÞ λl;σl
� �¼ λlβ

ðl�1Þ
l�1

1�λl

" #T Cðl�1Þ
l�1 bðlÞ

l�1

bðlÞ
l�1

� 	T
γl

264
375 λlβ

ðl�1Þ
l�1

1�λl

" #

�2 λl βðl�1Þ
l�1

� 	T
1�λl

� � pðl�1Þ
l�1

1
N

XN
k ¼ 1

Kσl xk; x0l
� �

2664
3775

¼ λ2l μ
ðl�1Þ þ 1�λl

� �2γlþ2λl 1�λl
� �

bðlÞ
l�1

� 	T
βðl�1Þ
l�1

�2λlνðl�1Þ �2 1�λl
� �
N

XN
k ¼ 1

Kσl xk; x0l
� �

: ð18Þ

For l41, Q ðlÞ λl;σl
� �

is a quadratic function with respect to λl.
Hence there exits a unique minimum of Q ðlÞ λl;σl

� �
for a given σl,

which can be found by setting ð∂=∂λlÞQ ðlÞ λl;σl
� �¼ 0, followed by

the constraint satisfaction operation. This yields the closed-form
solution for λl for the given σl as

λl ¼min max ul;0
� �

;1
� �

; ð19Þ
with

ul ¼
γl� bðlÞ

l�1

� 	T
βðl�1Þ
l�1 þνðl�1Þ � 1

N
PN

k ¼ 1 Kσl xk; x0l
� �

μðl�1Þ þγl�2 bðlÞ
l�1

� 	T
βðl�1Þ
l�1

: ð20Þ

It is easy to verify that the constraint satisfaction operator

min maxfu;0g;1f g ¼
1; u41;
0; uo0;
u; 0rur1:

8><>: ð21Þ

Therefore, 0rλlr1 is guaranteed. By plugging λl back to (18), we
obtain the MISE value Q ðlÞ λl;σl

� �
for this given kernel. The

computational cost of parameter estimation for a kernel with
fixed width is in the order of OðlÞ, which is extremely low, owing
to the recursive computation and the closed-form solution for the
parameter λl when σl is fixed.

3.2. Kernel width optimization with MISE criterion

We now consider the problem of optimizing Kσ l x; x0l
� �

by
adjusting σl, also based on the MISE, when λl is fixed. Express (18) as

Q ðlÞ λ;σl
� �¼ λ2l μ

ðl�1Þ �2λlνðl�1Þ þSðlÞ λl;σl
� �

; ð22Þ
where

SðlÞ λl;σl
� �¼ 2λl 1�λl

� �Xl�1

i ¼ 1

βðl�1Þ
i Kσi;l ðx0i; x0lÞ

þ 1�λl
� �2γl�2 1�λl

� �
N

XN
k ¼ 1

Kσl xk; x
0
l

� � ð23Þ

which excludes all the components independent of σl. The gradient
descent algorithm for minimizing SðlÞ λl;σl

� �
and hence ISEðlÞ ¼

ISE λl;σl
� �

for the selected x0l and the fixed λl is given as follows.
Starting with σold

l ¼ σ0, repeat the following iterations for a
sufficiently large number of times Iter, e.g., Iter¼ 20

σnew
l ¼ σold

l �η
∂SðlÞ λl;σold

l

� �
∂σl

;

σold
l ’maxfσnew

l ;σming;

8>><>>: ð24Þ

where η40 is a small positive learning rate, σmin is a small
positive value representing the lower bound of the kernel width
parameter, and the gradient is given by

∂SðlÞ λl;σl
� �
∂σl

¼ 2λl 1�λl
� �Xl�1

i ¼ 1

βðl�1Þ
i

∂Kσi;l ðx0i; x0lÞ
∂σl

�m 1�λl
� �2γl

σl
�2 1�λl
� �
N

XN
k ¼ 1

∂Kσl xk; x0l
� �
∂σl

¼ 2λl 1�λl
� �Xl�1

i ¼ 1

βðl�1Þ
i Kσi;l ðx0i; x0lÞ � mσl

σ2
i þσ2

l

 

þ Jx0i�x0l J
2σl

ðσ2
i þσ2

l Þ2

!
�m 1�λl

� �2γl
σl

�2 1�λl
� �
N

XN
k ¼ 1

Kσl xk; x0l
� � �m

σl
þ Jxk�x0l J

2

σ3
l

 !
: ð25Þ

3.3. Joint kernel selection and parameter estimation algorithm

At the lth forward selection stage, a data sample is to be
selected from the remaining ðN� lþ1Þ candidate data samples
based on the fixed1 kernel width σ0, while the associated kernel
width σl is optimized, and the l kernel weights are adjusted. More
specifically, we initially review the contribution of each candidate
data sample according to its associated MISE value, based on the
fixed kernel width σ0, and decide which is to be added to the
model. The data point producing the smallest MISE value amongst
all the candidate data samples is selected as x0l. With the kernel
weights being fixed, we then adjust the kernel width σl using the
gradient descent algorithm described in Section 3.2. Finally, the
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optimal kernel weights are recalculated for the given σl as
described in Section 3.1.

First define Xðl�1Þ
N ARm�N as

Xðl�1Þ
N ¼ x01…x0l�1 xðl�1Þ

l …xðl�1Þ
N

h i
; ð26Þ

and qðl�1Þ
N AR1�N as

qðl�1Þ
N ¼ 1

N

XN
k ¼ 1

Kσ0 xk; x
0
1

� �
…1
N

XN
k ¼ 1

Kσ0 xk; x
0
l�1

� �"

�1
N

XN
k ¼ 1

Kσ0 xk; x
ðl�1Þ
l

� 	
…

1
N

XN
k ¼ 1

Kσ0 xk; x
ðl�1Þ
N

� 	#
; ð27Þ

with

Xð0Þ
N ¼ xð0Þ1 xð0Þ2 …xð0ÞN

h i
¼ x1 x2…xN½ �; ð28Þ

qð0Þ
N ¼ 1

N

XN
k ¼ 1

Kσ0 xk; x1ð Þ 1
N

XN
k ¼ 1

Kσ0 xk; x2ð Þ
"

…
1
N

XN
k ¼ 1

Kσ0 xk; xNð Þ
#
: ð29Þ

If the jlth column, where lr jlrN, and the lth column of Xðl�1Þ
N are

interchanged, Xðl�1Þ
N becomes XðlÞ

N . Similarly, if the jlth column and

the lth column of qðl�1Þ
N are interchanged, qðl�1Þ

N becomes qðlÞ
N .

Further define the jth element of qðl�1Þ
N as qðl�1ÞðjÞ ¼

ð1=NÞPN
k ¼ 1 Kσ0 ðxk; xðl�1Þ

j Þ for lr jrN. We are now ready to pre-

sent our proposed algorithm.
Initialization: At the 1st stage of the selection procedure, set

βð1Þ
1 ¼ βð1Þ

1 ¼ 1 and λ1 ¼ 0.

Step 1. For 1r jrN, based on σ0, compute

Q ð1;jÞ ¼ γ�2pð1;jÞ
1 ; ð30Þ

where γ ¼ 1=ð4πσ2
0Þm=2 and pð1;jÞ

1 ¼ qð0ÞðjÞ.
Step 2. Find

Q ð1;j1Þ ¼min Q ð1;jÞ; 1r jrN
n o

: ð31Þ

Then the j1th column and the first column of Xð0Þ
N are

interchanged to yield Xð1Þ
N , and the j1th column and the

first column of qð0Þ
N are interchanged to yield qð1Þ

N . This
effectively selects the first kernel.

Step 3. Apply (24) to find σ1.
Step 4. Calculate μð1Þ ¼ Cð1Þ

1 and νð1Þ ¼ pð1Þ
1 using (16) and (17).

Update Q ð1Þ ¼ μð1Þ �2νð1Þ.

The lth stage of the selection procedure, where lZ2:

Step 1. For lr jrN, set σj ¼ σ0, compute

bðl;jÞ
l�1 ¼ Kσ1;j x01; x

ðl�1Þ
j

� 	
…Kσl� 1;j x0l�1; x

ðl�1Þ
j

� 	h iT
;

dðl;jÞ ¼ bðl;jÞ
l�1

� 	T
βðl�1Þ
l�1 ;

λðjÞl ¼min max
γ�dðl;jÞ þνðl�1Þ �qðl�1ÞðjÞ

μðl�1Þ þγ�2dðl;jÞ
;0

( )
;1

( )

and

Q ðl;jÞ λðjÞl
� 	

¼ λðjÞl
� 	2

μðl�1Þ þ 1�λðjÞl
� 	2

γ

þ2λðjÞl 1�λðjÞl
� 	

dðl;jÞ �2λðjÞl ν
ðl�1Þ �2 1�λðjÞl

� 	
qðl�1ÞðjÞ:

Step 2. Find

Q ðl;jlÞ ¼min Q ðl;jÞ; lr jrN
n o

: ð32Þ

Then the jlth column and the lth column of Xðl�1Þ
N are

interchanged to yield XðlÞ
N . Also the jlth column and the

lth column of qðl�1Þ
N are interchanged to yield qðlÞ

N . This
effectively selects the lth kernel.

Step 3. With λl ¼ λðjlÞl , calculate βðlÞ
l using (7). Then apply (24)

to find σl.
Step 4. Update pðlÞ

l , CðlÞ
l . Recalculate λl using (19) and (20).

Recalculate βðlÞ
l using (7). Update μðlÞ, νðlÞ and Q ðlÞðλl;σlÞ

using (11)–(14).

Termination: The selection procedure is terminated at the
ðMþ1Þth stage when the following condition is satisfied:

Q ðMþ1Þ �Q ðMÞ
 rδQ ;

where δQ is a predetermined very small positive number, and this
produces a subset model with the M significant kernels.

3.4. Remarks

Remark 1. The reason that the optimization of (18) with respect to λl
and σl is carried out separately is that the optimal value λl can be
expressed in closed form for fixed σl, thus significantly reducing
computational costs. Alternatively both of them can be optimized using
gradient descent algorithm simultaneously. Since the relationship with
respect to σl is not quadratic, the results will not be the same, each only
achieving a local minimum. However the property that (18) is quadratic
in λl cannot be exploited for computational advantage.

Remark 2. In FCR-MISE algorithm [19], each kernel has a common
fixed width, and appropriate kernel value can be determined
empirically through trial and error based on cross-validation. More
specifically, a suitable kernel width value can be found using a line
search based on the cross-validation performance. In the proposed
algorithm, the kernel width is given as a σM , where each element in
σM is optimized from an initial σ0 which needs to be preset. Unlike
the fixed kernel width in FCR-MISE algorithm [19], the choice of σ0
is more relaxed, since there is a wide range of suitable values.

3.5. Computational cost

The proposed algorithm is an extension to the low cost FCR-MISE
algorithm [19], with the difference that each kernel is tuned after it
has been selected. The FCR-MISE algorithm [19] has a significant
advantage in that it offers a much lower complexity in constructing
PDF estimate than other existing sparse estimators with OðN2Þ
complexity. Table 1 compares the computational cost of the proposed
algorithm with that of the FCR-MISE algorithm at the lth forward
step. Overall the computational cost is increased at each forward
stage, compared to the FCR-MISE algorithm. Since the tuning of the
kernel is only applied to the selected kernel, the extra cost is small. In
contrast to our proposed algorithm which automatically tunes each

Table 1
Computational cost of the proposed algorithm in comparison to the FCR-MISE
algorithm at the lth forward step.

Method Kernel
selection

Kernel width
tuning

kernel weight re-
estimation

FCR-MISE ðN� lþ1ÞOðlÞ None None
The proposed ðN� lþ1ÞOðlÞ Iter�OðNþ lÞ OðNÞ
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kernel width, however, there exists extra computational cost for any
estimator based on a pre-set fixed single kernel width, such as the
FCR-MISE algorithm, since this kernel width has to be empirically
tuned outside the algorithm loop. Moreover, the total computational
cost of an algorithm is dependent on the model size M of the final
selected model. Since M is usually much smaller than N, the total
computational cost is approximately linear with respect to the model
size M. Since our proposed algorithm can produce a much smaller
model, its total computational cost can actually be lower than that of
the FCR-MISE algorithm.

4. Simulation study

Two numerical examples are provided. In each example, we
randomly draw a data set of N points from a known distribution
pðxÞ to construct the PDF estimate bpðMÞ xk;βM ;σM

� �
based on the

proposed approach. A separate test data set of Ntest ¼ 10;000
sample points was used for evaluation according to the L1 norm

L1 ¼
1

Ntest

XNtest

k ¼ 1

p xkð Þ�bpðMÞ xk;βM ;σM
� � : ð33Þ

The experiment was repeated for 100 different random runs.

Example 1. The density to be estimated for this 2-dimensional (2-
D) example was given by the mixture of two densities, a Gaussian
and a Laplacian, as defined by

pðxÞ ¼ 1
4π

exp �ðx1�2Þ2
2

 !
exp �ðx2�2Þ2

2

 !

þ0:35
8

expð�0:7jx1þ2j Þ expð�0:5jx2þ2j Þ: ð34Þ

The estimation data set had N¼500 samples.

Example 2. The density to be estimated for this 6-D example was
the mixture of three Gaussians defined by

pðxÞ ¼ 1
3

X3
i ¼ 1

1

ð2πÞ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðΓiÞ

p
� exp �1

2
ðx�μiÞTΓ�1

i ðx�μiÞ
� �

; ð35Þ

with μ1 ¼ ½1 1 1 1 1 1�T, μ2 ¼ ½�1 �1 �1 �1 �1 �1�T , μ3 ¼
½0 0 0 0 0 0�T, Γ1 ¼ diagf1;2;1;2;1;2g, Γ2 ¼ diagf2;1;2;1; 2;1g,
and Γ3 ¼ diagf2;1;2;1;2;1g. The estimation data set had N¼600
samples.

Six methods were used for comparison: (a) the well known PW
estimate; (b) the sparse density construction (SDC) algorithm [17];
(c) the sparse kernel density construction (SKD) algorithm [18];
(d) the reduced set density estimator with multiplicative non-
negative quadratic programming (RSDE-MNQP) [11]; (e) the FCR-
MISE algorithm [19]; and (f) the RTR-MISE algorithm [14].

We briefly explain these six algorithms. Both the SDC algorithm
[17] and the SKD algorithm [18] are regression-based PDF estimation
methods that construct sparse PDF forwardly. For the SDC algorithm,
the empirical CDF is constructed and used as the desired response, but
for the SKD algorithm the PW estimate is constructed and used as the
desired response. The RSDE-MNQP [11], the FCR-MISE [19] and the
RTR-MISE [14] are all based on the MISE, but employ different
optimization algorithms. Specifically, the RSDE-MNQP algorithm uses
the MNQP algorithm, the FCR-MISE algorithm formulates the density
estimation in a forward constrained regression manner by selecting
one kernel at a time forwardly, and the RTR-MISE algorithm is based
on the Riemannian trust-region algorithm [13]. We also point out that
the MISE cost function is used in PW estimate using grid search for an
optimal kernel width. However, the single kernel width for the other
five algorithms needs to be preset empirically.

The algorithmic parameters of the proposed approach were set to
σmin ¼ 0:1 and σmin ¼ 1 for Examples 1 and 2, respectively, Iter¼ 20
and η¼ 0:02 for the both examples, while δQ was set to 10�4 and
10�5 for the two example. The results obtained by the seven kernel
density estimators are listed in Table 2(a) and (b), for the two examples,
where the results of the SDC, SKD, FCR-MISE and RTR-MISE are quoted
from [14,17–19], respectively. The results of Table 2 clearly show that
our proposed algorithm can construct much sparser kernel density
estimates than the five state-of-the-art benchmark sparse kernel
density estimators compared, with competitive accuracy. Compared to
the low cost FCR-MISE algorithm, the proposed algorithm increases the
computational complexity per forward step of Iter�OðNþ lÞ due to the
tunable kernel calculation. However it is clear that the resultant models
are much sparser leading to fewer forward regression steps for
computational cost reduction. Note that the computational costs of
[19] have already been shown to be better than the other algorithms.

5. Conclusions

We have introduced a new sparse kernel density estimator with
tunable kernels based on the idea of forward constrained regression by
adding one kernel at a time based on the minimum ISE criterion. Our
main contribution has been to develop a new recursive algorithmwhich

Table 2
Performance comparison of kernel density estimators.

Method L1 test error (mean 7 STD) Kernel number (mean 7 STD)

Example 1
PW ð4:1870:8Þ � 10�3 50070

SDC [17] ð3:8370:8Þ � 10�3 11:972:6

SKD [18] ð3:8470:8Þ � 10�3 15:373:9

RSDE-MNQP [11] ð4:2470:8Þ � 10�3 129:4735:7

FCR-MISE [19] ð3:3370:8Þ � 10�3 25:172:7

RTR-MISE [14] ð3:1370:7Þ � 10�3 36:7711:3

The proposed ð3:5770:7Þ � 10�3 7:671:4

Example 2
PW ð3:1870:13Þ � 10�5 60070

SDC [17] ð4:4871:2Þ � 10�5 14:972:1

SKD [18] ð3:1170:5Þ � 10�5 9:471:9

RSDE-MNQP [11] ð3:6770:7Þ � 10�5 29:4710:1

FCR-MISE [19] ð2:8270:1Þ � 10�5 19:470:9

RTR-MISE [14] ð2:5370:1Þ � 10�5 81:2720

The proposed ð2:6470:2Þ � 10�5 2:970:2

X. Hong et al. / Neurocomputing 173 (2016) 1976–19821980



selects a significant kernel at each forward construction stage, and then
optimizes the kernel width of the selected kernels based on the gradient
descent algorithm. The significant advantages of the proposed method
are that it is able to obtain very sparse PDF estimates due to the
individually tunable kernel width parameters, and it requires no empiri-
cally predetermined parameters outside the algorithm. Numerical exam-
ples have been employed to demonstrate that the proposed approach
can construct very sparse kernel density estimators with competitive
accuracy to the existing state-of-the-art sparse kernel density estimators.

Appendix A. Integrating
R
Kσi ðx; x0iÞKσj ðx; x0jÞ dx

With the notations x¼ x1x2⋯xm½ �T and x0i ¼ x0i;1x
0
i;2⋯x0i;m

h iT
for

1r ir l, we haveZ
Kσi x; x0i
� �

Kσj x; x0j
� 	

dx¼ 1
ð2πσiσjÞm

� ∏
m

k ¼ 1

Z
exp �

ðxk�x0i;kÞ2
2σ2

i

�
ðxk�x0j;kÞ2

2σ2
j

 !
dxk

ð36Þ
in whichZ

exp �
ðxk�x0i;kÞ2

2σ2
i

�
ðxk�x0j;kÞ2

2σ2
j

 !
dxk

¼
Z

exp �
ðσ2

i þσ2
j Þx2k�2ðx0i;kσ2

j þx0j;kσ
2
i Þxkþðx0i;kÞ2σ2
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i

2σ2
i σ

2
j

 !
dxk

¼ exp �
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j þðx0j;kÞ2σ2

i

σ2
i þσ2

j

�
x0i;kσ

2
j þx0j;kσ

2
i

σ2
i þσ2
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 !2

2σ2
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2
j =ðσ2

i þσ2
j Þ
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1CCCCCA
�
Z
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¼ exp �
ðx0i;k�x0j;kÞ2

2ðσ2
i þσ2

j Þ

 !

�
Z

exp �
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Noting
R ð1= ffiffiffiffiffiffiffiffi

2πs
p

Þ exp �ðx�μÞ2=2s
� 	

dx¼ 1, we haveZ
exp �

ðxk�x0i;kÞ2
2σ2

i

�
ðxk�x0j;kÞ2

2σ2
j

 !
dxk

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2

i σ
2
j =ðσ2

i þσ2
j Þ

q
exp �

ðx0i;k�x0j;kÞ2

2ðσ2
i þσ2

j Þ

 !
ð38Þ

so thatZ
Kσi x; x0i
� �

Kσj x; x0j
� 	

dx

¼ 1
ð2πσ2

i;jÞm=2 exp �
Jx0i�x0j J

2

2σ2
i;j

 !
¼ Kσi;j ðx0i; x0jÞ ð39Þ

with σi;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
i þσ2

j

q
.
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