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a b s t r a c t 

Given the actual needs for detecting multiple features of butterflies in natural ecosystems, this paper pro- 

poses a model of weakly-supervised butterfly detection based on a saliency map (WBD-SM) to enhance 

the accuracy of butterfly detection in the ecological environment as well as to overcome the difficulty of 

fine annotation. Our proposed model first extracts the features of different scales using the VGG16 with- 

out the fully connected layers as the backbone network. Next, the saliency maps of butterfly images are 

extracted using the deep supervision network with shortcut connections (DSS) used for the butterfly tar- 

get location. The class activation maps of butterfly images are derived via the adversarial complementary 

learning (ACoL) network for butterfly target recognition. Then, the saliency and class activation maps are 

post-processed with conditional random fields, thereby obtaining the refined saliency maps of butterfly 

objects. Finally, the locations of the butterflies are acquired based on the saliency maps. Experimental re- 

sults on the 20 categories of butterfly dataset collected in this paper indicate that the WBD-SM achieves 

a higher recognition accuracy than that of the VGG16 under different division ratios. At the same time, 

when the training set and test set are 8:2, our WBD-SM attains a 95.67% localization accuracy, which is 

9.37% and 11.87% higher than the results of the DSS and ACoL, respectively. Compared with three state- 

of-the-art fully-supervised object detection networks, RefineDet, YOLOv3 and single-shot detection (SSD), 

the detection performance of our WBD-SM is better than RefineDet, and YOLOv3, and is almost the same 

as SSD. 

© 2023 Elsevier Ltd. All rights reserved. 
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. Introduction 

The long-term survival and development of human society are 

ritically affected by biodiversity. With the development of human 

ociety, however, the biodiversity decline has become increasingly 

evere, which is now one of the top ten environmental problems 

orldwide [1] . Reliable species detection is an essential procedure 

n carrying out relevant biological research and is a prerequisite for 

tudying biological evolutionary and developmental processes [2] . 

nsects are the most abundant form of animal life. At present, there 

re over 1.5 million kinds of insects that have been discovered 
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round the world. Butterflies, which are lepidopteran insects with 

cales on their wings and liquid-sucking proboscis, are among the 

ost diverse insects. There are more than 18,0 0 0 butterflies world- 

ide, of which approximately 1200 types are found in China [3] . 

utterflies play a crucial role in the research of speciation, com- 

unity ecology, biogeography, climate change, and plant-insect re- 

ationships. The challenging problem is that the detection of but- 

erfly species is quite tricky. The shape, color, texture, and pattern 

f wings vary among butterflies of different types. Manual recog- 

ition and classification of butterfly species require professionally 

rained recognition specialists with prolonged experience. More- 

ver, the process of manual identification is exceptionally time- 

onsuming and inefficient. 

With the development and application of machine learning, fa- 

orable conditions have been created for the fast, accurate auto- 

atic detection and recognition of butterfly objects. In general, 

achine learning-based methods first characterize the butterfly 
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pecimen images by manually extracting the image features (color, 

exture, edges and shape) and then implement automatic detec- 

ion of butterfly images by integrating statistical learning method 

4] . In the real world, the primary demand for butterfly detection 

s ecological butterfly image detection in natural scenes. Due to the 

omplex environmental background of ecological butterfly images 

nd the various postures and self-protective mimicry of butterflies, 

ignificant challenges exist in automatic butterfly specimen detec- 

ion. 

In response to the above problems, we propose a weakly- 

upervised butterfly object detection model based on a saliency 

ap (WBD-SM) along with class activation map. We collect a but- 

erfly dataset with 20 categories of butterfly and use it to demon- 

trate the effectiveness of our proposed WBD-SM. Our experi- 

ental results indicate that the WBD-SM achieves a recognition 

ccuracy of 89.40%, which represents an improvement by 2.60% 

ver the performance achieved by the VGG16 [5] . The WBD-SM 

lso attains a localization accuracy of 95.67%, which is 9.37% and 

1.87% higher than those achieved by the deep supervision net- 

ork with shortcut connections (DSS) [6] and adversarial com- 

lementary learning (ACoL) [7] , respectively. Furthermore, com- 

ared with state-of-the-art fully-supervised object detection net- 

orks, including RefineDet [8] , YOLOv3 [9] , and single-shot de- 

ection (SSD) [10] , our WBD-SM is superior over RefineDet and 

OLOv3, in terms of detection performance, while its detection 

erformance is almost the same as the SSD. To sum up, the main 

ontributions of our work are as follows. 

1. We propose a weakly-supervised butterfly detection method 

based on a saliency map. 

2. We explore to modify the saliency map with the class activa- 

tion map and then generate the bounding box with the finer 

saliency map. 

3. Experimental results show the proposed method outperforms 

state-of-the-art fully-supervised methods. 

The rest of this paper is organized as follows: Section 2 re- 

iews the related work on object detection, while Section 3 details 

he structure and learning algorithm of our proposed WBD-SM. 

ection 4 demonstrates the initial experimental results and anal- 

sis. Our conclusions are given in Section 5 , where future research 

irections are also suggested. 

. Related work 

Object detection aims to recognize and localize substantial ob- 

ects of predefined categories from the images accurately and effi- 

iently. Since 2012, due to the excellent performance achieved by 

eep convolutional neural networks (CNNs) in classification tasks, 

esearchers have increasingly attracted to study the object detec- 

ion algorithms based on deep learning. Depending on the pres- 

nce or absence of a candidate box generation stage, the deep 

earning-based object detection algorithms can be classified into 

wo-phase and one-phase algorithms [11] . The pioneer algorithm 

f two-phase object detection is the regions-CNN (R-CNN) based 

n proposal regions, which combines AlexNet with selective search 

12,13] . It utilizes a search algorithm to initially extract about 20 0 0 

roposal regions, each of which is then normalized and inputted 

nto the CNN one by one for feature extraction. Finally, the fea- 

ures are subjected to support vector machine classification and 

egional regression. R-CNN has brought a qualitative change to the 

ccuracy of object detection. It represents a milestone in applying 

eep learning to object detection, which also lays the foundation 

or deep learning-based two-phase object detection. Subsequently, 

esearchers have proposed models like Fast R-CNN [14] , Faster R- 

NN [15] , and Mask R-CNN [16] in succession based on R-CNN. 
2

With two-phase object detection algorithms, the candidate 

oxes are extracted from the images initially. Then secondary cor- 

ection is performed based on the proposal regions to yield the de- 

ection results. These algorithms achieve high detection accuracy, 

ut their detection speed is quite low. Some researchers have put 

orward one-phase object detection algorithms to address the in- 

fficiency of two-phase object detection algorithms. Such type of 

lgorithms does not require the branching of proposal regions. For 

 given input image, the candidate boxes and categories of ob- 

ects are regressed directly at multiple positions. These algorithms 

ainly include the you only look once (YOLO) series [17,18] and 

SD series [19] . 

By discarding the candidate box extraction branches, YOLOv1 

17] directly implements feature extraction, candidate box classi- 

cation, and regression in the same branchless deep CNN. It sim- 

lifies the network structure and slightly improves the detection 

peed, thus enabling the deep learning-based object detection al- 

orithm to meet the needs of real-time monitoring tasks with the 

omputing power constraint. Later, in response to its insufficient 

ocalization accuracy, Redmon and Farhadi proposed YOLOv2 [18] , 

nd YOLOv3 [9] successively. The authors utilized the operations 

atch normalization, high-resolution classifier, direct target box lo- 

ation detection, and multi-scale training to enhance the model 

etection accuracy. 

Based on the regression idea, SSD [10] effectively applies the 

oncept of multi-scale detection to extract multiple feature maps 

f different scales for detection. Furthermore, it also borrows the 

nchor mechanism from the faster R-CNN to preset a fixed number 

f default boxes with different levels and aspect ratios at each lo- 

ation of the extracted feature maps. The network performs dense 

ampling directly on the feature maps to obtain candidate boxes 

or prediction. The authors of [19] adopt a feature fusion technique 

or the extracted features of different scales. Since the features in 

ach scale have information related to other scales, the fusion adds 

he connections between feature maps in various layers. 

The two-phase and one-phase class object detection approaches 

ave their distinct advantages. The existing models combine these 

wo classes of algorithms to get better performance. For example, 

efineDet [8] combines the advantages of the two-phase model 

ith the one-phase model. It consists of two inter-connected mod- 

les, i.e., the anchor refinement module and the object detection 

odule. Specifically, the first module filters out the negative an- 

hors to reduce the search space of the classifier and coarsely ad- 

usts the positions of anchors to provide better initialization for the 

econd module. The second module then refines the anchors gen- 

rated by the first module to improve the prediction accuracy for 

ulti-class labels further. 

As aforementioned, the two categories of deep learning-based 

bject detection algorithms have achieved particular successes in 

ealing separately with detection accuracy and efficiency. Never- 

heless, both types of algorithms require manual labeling of the 

bject locations, and they all belong to the fully supervised ob- 

ect detection. With the development of deep learning, demand- 

ng requirements have been placed on the quantity and quality 

f labeled data. Manual labeling increasingly becomes unable to 

eet this demand, as manual labeling suffers from the unavoid- 

ble drawbacks of subjectivity and high cost. 

To address this problem, weakly-supervised object detection 

ased on image-level annotation has become a hot research topic. 

he methods of weakly-supervised object detection can be divided 

nto three classes, i.e., the segmentation-based methods [20] , the 

ultiple instance learning (MIL)-based methods [21] , and the con- 

olutional feature-based methods [22] . Among them, the convo- 

utional feature-based weakly-supervised object detection is re- 

arded as the mainstream method. Zhou et al. [23] replaced the 

ully connected layer of CNN with global average pooling (GAP), 
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here the localization capability of the convolution unit was re- 

ained through class activation mapping, thereby generating class 

ctivation maps (CAMs). Subsequently, in response to the mere 

mphasis on local regions with the standard CAM methods, sev- 

ral researchers adopted a variety of means to obtain more holistic 

AMs, which ultimately yielded better results of object detection. 

owever, CAM generally is a detection bottleneck, owning to the 

imitation of the network classification capability and the lack of 

oundary recognition ability. 

Saliency detection, aiming at highlighting visually salient ob- 

ects or regions in an image, is widely applied as a pre-processing 

rocedure in various computer vision tasks, such as object de- 

ection, image segmentation, and visual tracking. Saliency detec- 

ion approaches can be roughly divided into two groups, i.e., the 

ottom-up/top-down network and the side-fusion network [24] . 

he bottom-up/top-down network first generates hierarchical fea- 

ures layer by layer and then detects the salient objects with the 

nal features, with the examples including SFCN [25] , DHSNet and 

FNet [26] . The side-fusion network aggregates the multi-layer fea- 

ures of the backbone network, and forms a multi-scale feature 

or detection, with the representatives of OSVOS [27] , NLDF [28] , 

nd DSS [6] . Compared with the bottom-up/top-down network, 

he side-fusion network can achieve higher performance gain in 

aliency detection. 

This paper combines the side-fusion based saliency detec- 

ion and CAM method to build the WBD-SM. Targeting weakly- 

upervised detection of butterfly objects, we adopt the saliency de- 

ection based on the CAM method to enhance the model’s atten- 

ion to butterfly edge information for attaining more accurate de- 

ection. The network only needs to detect the saliency maps (SMs) 

f butterflies, and fuses the SMs and CAMs. Here, the CAMs have 

wo roles. One is to provide the label information for the saliency 

ap. The other is to distinguish the butterfly from the whole im- 

ge, helping the saliency map to remove non-butterfly regions. Fi- 
Fig. 1. The Structure

3 
ally, we can get a more accurate and finer saliency map. Although 

he WBD-SM accomplishes object localization with two subtasks 

ointly, no additional annotation is made in either of them. Hence, 

he proposed model is weakly-supervised. More specifically, we 

enerate the SMs of butterfly images with the trained DSSNet [29] , 

hich are used as rough labels containing noise to replace the 

ruth labels of the saliency detection subtask. Thus, in the saliency 

etection subtask, no annotation of images is performed except for 

he categorical annotation. At the same time, it is only necessary 

o provide the class labels in the classification task [30] . 

. Weakly supervised detection network based on saliency map 

.1. The overall architecture 

Figure 1 depicts the proposed WBD-SM network, which is a 

ully convolutional network consisting of the backbone network as 

ell as the target location and recognition networks. The backbone 

etwork is the VGG16 [5] without the fully connected layers, while 

he saliency detection part uses the deep supervision with short 

onnections (DSS) [6] and the recognition part exploits the ad- 

ersarial complementary learning (ACoL) [7] . Hence, the proposed 

etwork offers two types of SMs. One is the general SMs detected 

y the DSS, and the other is the specific CAMs detected by ACoL. 

As shown in Fig. 1 , the backbone network, i.e., the VGG16 with- 

ut the fully connected layers, initially extracts the features of the 

nput images. Then, for each layer in the VGG16, the butterflies’ 

ocations are identified with the target location network. Further- 

ore, the types of butterflies are recognized by the target recog- 

ition network using the conv5_3 layer of the VGG16 as its in- 

ut. Finally, the SMs and CAMs are used as the inputs of the con- 

itional random fields (CRFs) to generate the final segmentation 

aps of butterfly objects, thereby updating the saliency annotation 

nd generating the bounding box. 
 of WBD-SM. 
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Fig. 2. An example of an image and its saliency map. 

Fig. 3. An example of an image and its class activatin map. 
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Table 1 

The Structure of the backbone network. 

No. Layer input conv output 

1 conv1_1 224 × 224 ×3 64, 3 × 3 224 × 224 ×64 

2 conv1_2 224 × 224 ×64 64,3 × 3 224 × 224 ×64 

3 pooling2 224 × 224 ×64 2 × 2 112 × 112 ×64 

4 conv2_1 112 × 112 ×64 128,3 × 3 112 × 112 ×128 

5 conv2_2 112 × 112 ×128 128,3 × 3 112 × 112 ×128 

6 pooling2 112 × 112 ×128 2 × 2 56 × 56 ×128 

7 conv3_1 56 × 56 ×128 256,3 × 3 56 × 56 ×256 

8 conv3_2 56 × 56 ×256 256,3 × 3 56 × 56 ×256 

9 conv3_3 56 × 56 ×256 256,1 × 1 56 × 56 ×256 

10 pooling3 56 × 56 ×256 2 × 2 28 × 28 ×256 

11 conv4_1 28 × 28 ×256 512,3 × 3 28 × 28 ×512 

12 conv4_2 28 × 28 ×512 512,3 × 3 28 × 28 ×512 

13 conv4_3 28 × 28 ×512 512,1 × 1 28 × 28 ×512 

14 pooling4 28 × 28 ×512 2 × 2 14 × 14 ×512 

15 conv5_1 14 × 14 ×512 512,3 × 3 14 × 14 ×512 

16 conv5_2 14 × 14 ×512 512,3 × 3 14 × 14 ×512 

17 conv5_3 14 × 14 ×512 512,1 × 1 14 × 14 ×512 

18 pooling5 14 × 14 ×512 2 × 2 7 × 7 ×512 

Table 2 

The Structure of side output branches. 

No. Layer conv1 conv2 conv3 

1 conv1_2 128, 3 × 3 128, 3 × 3 1, 1 × 1 

2 conv2_2 128, 3 × 3 128, 3 × 3 1, 1 × 1 

3 conv3_3 256, 5 × 5 256, 5 × 5 1, 1 × 1 

4 conv4_3 256, 5 × 5 256, 5 × 5 1, 1 × 1 

5 conv5_3 512, 5 × 5 512, 5 × 5 1, 1 × 1 

6 pool5 512, 7 × 7 512, 7 × 7 1, 1 × 1 
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Fig. 4. Illustration of shortcut connection from branch conv3_3 to branch conv2_2. 
Specifically, for the backbone network, it is the VGG16 with- 

ut the fully connected layers, with 13 convolutional layers and 5 

ooling layers. It is structured with five blocks of convolutional lay- 

rs. The first two blocks respectively contain 2 convolutional layers, 

nd the last three blocks include 3 convolutional layers each. The 

ooling layer is performed with max-pooling to reduce the size of 

eature maps, and it has no parameters to learn. Tab. 1 describes 

he structure of the backbone network in detail. 

There are two reasons for selecting VGG16. First, our task is 

utterfly object detection. It is a task about pixel-level, paying 

ore attention to low-level features. VGG16 has 16 layers and 

as some low-level features, which are suitable for our task. Sec- 

nd, our dataset has about 20 0 0 butterfly images, and VGG16 is 

nough for dealing with this dataset. There is no need to use a 

ore extensive backbone network, such as Inception, Resnet50, 

nd Densenet121. Besides, for this task, we pay more attention to 

he detection accuracy than the detection time. Therefore, we don’t 

se MobileNet128 [31] as the backbone network either. 

There are two reasons to combine the saliency map with the 

lass activation map. One is that saliency detection aims to de- 

ect the whole saliency region of the input image, not a specific 

lass of objects. Although it gives nearly accurate boundary infor- 

ation, the saliency map lacks category information, and usually, 

he whole saliency region is more significant than that of the tar- 

et region. Figure 2 displays a butterfly image and its saliency map. 

he other is the class activation map can locate the general posi- 

ion of the specific target. However, it cannot identify the boundary 

nformation. Figure 3 depicts a butterfly image and its class activa- 

ion map. 

.2. Target location network 

For a butterfly image, usually, the butterfly is the saliency 

bject. Therefore, we use a saliency detection network, called 

olistically-nested edge detector (HED) to locate it. As shown in 

ig. 1 , the saliency detection network is accomplished primarily 

y the six side-output branches at the upper part of the back- 

one network. Each branch includes three convolutional layers. 

able 2 details the structures of these six side-output branches. 

his part of the network achieves saliency detection by introduc- 

ng the shortcut connections into the skip structure of HED archi- 

ecture. The architecture implements short connections and skips 

onnections from the deeper side to the shallower side. Specifi- 

ally, between the conv3 layer and the saliency map, some hori- 

ontal dotted lines across different branches indicate the shortcut 
4

onnections from the higher branches to the lower branches. These 

onnections utilize the features of the higher branches to guide the 

ower ones to extract the most salient regions based on the cross- 

ntropy (CE) loss. Figure 4 illustrates the shortcut connection from 

he conv3 layer of the branch conv3_3 to the conv3 layer of the 

ranch conv2_2. 

.3. Target recognition network 

For target recognition, it has two tasks. On the one hand, 

t must classify the butterflies as accurately as possible. On the 

ther hand, it needs to provide supplementary information for 

he saliency map generated by the target location network to 

et a finer saliency map. Adversarial complementary learning net- 

ork uses two adversarial complementary parallel branches, one is 

rained to learn the most distinguish region, and the other is for- 

idden to learn the second determined region. By combining these 

wo regions, we can get a class activation map of the butterfly im- 

ge. 

In our target recognition network, we use two branches of A 

nd B to recognize the class labels of a butterfly image to deal with 

he intra-class variations and between-class similarities. There are 

wo reasons. First, different butterfly images have similar class acti- 
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Fig. 5. Illustration of the erasing procedure. 
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ation maps, and the most distinguished region usually is not cov- 

ring the whole regions of the butterfly. Second, the second distin- 

uish region can provide supplementary information for the first 

istinguish region. As shown in Fig. 5 , the recognition of butter- 

y types is accomplished mainly by two adversarial complemen- 

ary parallel branches, A and B, located at the lower part of the 

ackbone network. Each branch consists of two 3 × 3 convolutions, 

 1 × 1 convolution, a GAP layer, and the softmax layer. The GAP 

ayer takes the average of each convolutional feature map, and feds 

o result vector into the softmax layer. There is no parameters to 

ptimize in the global average pooling layer, thus avoiding overfit- 

ing. 

The network completes the recognition task while generating 

he CAMs. Among them, branch A utilizes the original feature 

aps, which can locate the most discriminative region. As for 

ranch B, the feature maps after erasing the most discriminative 

art (zeroing the corresponding area) are used. Accordingly, the 

ranch is forced to find other features used for classification, which 

ventually locates the second discriminative region. Through the 

dversarial learning between branches A and B, the network can 

dentify a more holistic area. 

.4. Objective function design 

Let the original input image be X , the corresponding saliency 

ruth label be Z, and the class label be y . The rest of the details

re given in subsequent subsections. 

.4.1. Saliency detection loss 

In the saliency detection, there are a total of six side branches 

nd one fusion layer. For each side branch and fusion layer, the 

oss function with truth-value needs to be calculated. Suppose that 

fter the m th ( m = 1 , . . . , 6 ) side pass through the short and skip

onnections, the activation value of the output layer is R 

m 

side 
. Then, 

he loss L m 

side 
of this layer is 

 

m 

side = h (Z, R 

m 

side ) (1) 

here h (·, ·) denotes the CE loss function of dichotomous classifi- 

ation [32] , which is calculated as follows. Let the available data 

f N samples be given by 
{

Z i , R side,i 
m 

}
N 
i =1 

, where Z i is the i th sam-

le of the saliency truth label Z and R 

m 

side,i 
is the i th sample of the
5 
utput of the m th branch R 

m 

side 
. Then, 

 

(
Z, R 

m 

side 

)
= −

N ∑ 

i =1 

Z i log R 

m 

side,i + ( 1 − Z i ) log 
(
1 − R 

m 

side,i 

)
(2) 

In both (1) and (2) , N is the number of training samples. On the 

ther hand, the loss L f use of the fusion layer is given by 

 f use = h 

( 

Z, 

6 ∑ 

m =1 

f m 

R 

m 

side 

) 

(3) 

here f m 

are the weights used during the weighted fusion. Ulti- 

ately, the total loss L S of the saliency subtask is 

 S = L f use + 

6 ∑ 

m =1 

αm 

L m 

side (4) 

n which αm 

are the weights for the side branch losses. We initial- 

zed f m 

as 0.167, and αm 

as 1 before training. During training, the 

f m 

is constant, and αm 

is optimized by gradient descent. 

.4.2. Class recognition loss 

In the recognition subtask, there are two parallel branches. Sup- 

ose that the activation values for the output layers of these two 

ranches are y a and y b , respectively. Then, the losses of the two 

ranches are 

 a = h̄ ( y, y a ) (5) 

nd 

 b = h̄ ( y, y b ) (6) 

here h̄ (·, ·) denotes the CE loss function of polytomous classifica- 

ion [33] . Hence, 

¯
 ( y, y a ) = −

N ∑ 

i =1 

C ∑ 

c=1 

y c a,i log y c i (7) 

here y c 
i 

and y c 
a,i 

are the cth category of the i th samples of y and

 a , respectively, while N is the number of training samples and C

s the number of categories. The total loss of class recognition is 

iven by 

 C = βa L a + βb L b (8) 

here βa and βb denote the weights for the two branch losses. 

e initialized βa and βb as 1, and both of them are optimized by 

radient descent. 
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.4.3. Multi-task loss 

The network includes two tasks, namely, saliency detection and 

lass recognition. Compared to the saliency detection task, the 

ecognition task is less complicated and easier to train. Thus, if 

he two subtasks are set with the same weight, the entire training 

rocess will be biased towards the recognition task. It isn’t easy to 

alance the two tasks by setting the appropriate weights a priori. 

o achieve a dynamic finding of the appropriate weight ratio for 

he multi-task loss, we introduce uncertainty into the loss mea- 

urements of different tasks [21] . Specifically, the total loss of the 

etwork is defined by 

 f inal = 

1 

δ2 
s 

L S + 

1 

δ2 
c 

L C + log δs + log δc (9) 

here δs and δc denote the noise parameters, which are learnable 

oss weights. Learning of these two noise weights is based on gra- 

ient descent [34] . We initialized δs and δc as 1, and both of them 

re optimized by gradient descent. 

.5. Training process 

All of the parameters of WBD-SM were tuned with the back- 

ropagation algorithm, i.e., the parameters of the backbone net- 

orks, and that of both the target location network and the target 

ecognition network. 

Algorithm 1 displays the algorithm flow of the WBD-SM train- 

ng process. In the Algorithm 1 , W S and W C denote the weights of

aliency detection and recognition, respectively. In addition, f S rep- 

esents the output result of the saliency detection network, f C rep- 

esents the output result of the recognition network, and the sym- 

ol ‘ �’ denotes the weighted fusion operation. Furthermore, N SM 

is 

he number of training iterations, and we set N SM 

= 25 empirically. 

lgorithm 1 WBD-SM training algorithm. 

equire: Training image X , saliency label M, class label y 

1: while the SM is updated less than N SM 

do 

2: if the training converges, then 

3: Obtain the predicted SM M S ← f S ( W S , X ) 

4: Obtain the CAM M C ← f C ( W C , X ) 

5: Update the saliency label M update = CRF ( M S � M C ) 

6: end if 

7: end while 

.6. Conditional random field 

After obtaining both the saliency map and the class activation 

ap, we can fuse them to get a finer saliency map. Here, we use 

he conditional random field to modify its edge. The energy func- 

ion of conditional random field is 

(x ) = 

∑ 

p 

βp ( x p ) + 

∑ 

p,q 

βpq ( x p , x q ) (10) 

here x stands for the predictive label of a pixel. 

Before inputting to the conditional random field, we modify the 

used saliency map as the following operation. 

p ( x p ) = − log ˆ M p 

τσ ( x p ) 
(11) 

here ˆ M p is the normalized value of each pixel x p , σ (·) denotes 

he sigmoid activation function, and τ represents a scale factor. The 

pq ( x p , x q ) is defined as 

pq ( x p , x q ) = μ( x p , x q ) 

[
λ1 exp 

(
−‖ 

φp − φq ‖ 

2 

2 σ 2 
1 

− ‖ 

V p − V q ‖ 

2 

2 σ 2 
2 

)
+ λ
6 
p 

(
−‖ 

φp − φq ‖ 

2 

2 σ 2 
3 

)]
(12) 

here μ( x p , x q ) = 0 if x p = x q , otherwise, μ( x p , x q ) = 1 . φp and V p 
espectively sands for the position and pixel value of x p . λ1 , λ2 , 

1 , σ2 and σ3 are the parameters of controlling the importance 

f the Gaussian kernel. We leverage the public tool, PyDenseCRF 

35] , to implement it. Here, because there are only two classes to 

egment, we directly treat the computed posterior probability of a 

ixel being the finer saliency map. 

.7. Inferential process 

To attain high model localization accuracy, the generation of 

 bounding box is needed. We input the image into the trained 

odel to generate a fused SM. Then, a threshold is set to binarize 

he SM. Here, we choose 80% of the maximum pixel value as the 

hreshold to segment the SM. In the end, the bounding box is set 

s a rectangular box covering the largest connected region. Figure 6 

isplays the procedure of generating the rectangular box. 

. Experimental results 

To verify the performance of our proposed WBD-SM in butter- 

y object detection, we create an ecological image dataset contain- 

ng twenty types of butterflies. Then, the recognition accuracy of 

ur WBD-SM is compared with that of the VGG16 [5] . Next, we 

ompare the localization accuracy of the WBD-SM with those of 

he DSS [6] , and ACoL [7] . Then, to demonstrate that our weakly- 

upervised object detection model can achieve a competitive result 

ith the fully-supervised object detection models, the detection 

ccuracy of the WBD-SM is compared with those of the RefineDet 

8] , YOLOv3 [9] , and SSD [10] . Finally, we investigate the effects of

he CAM acquisition method and threshold erasing on the achiev- 

ble performance of our WBD-SM. All experiments in this paper 

re implemented using the open-source, deep learning framework 

yTorch. The experimental platform is an Nvidia Tesla K40c GPU 

erver, and the memory size during training is 16 GB. The server 

PU model is Intel® Xeon® E5-2643, while the operating system 

s Windows 7. 

.1. Dataset 

Through field photography and web crawlers, a butterfly object 

etection dataset, “Butterfly20”, is created that contains twenty 

enera of butterflies. In Fig. 3 , the example images of these twenty 

utterfly types are illustrated. For each genus, the number of im- 

ges is 101 or 102, and there is a total of 2,026 butterfly images. 

he range of the means of twenty classes is from 0 . 2484 ± 0 . 4061

o 0 . 5306 ± 0 . 4593 , and the Pearson correlation coefficient be-

ween different classes is from 0.9501 to 0.9972. The dataset is di- 

ided into a training set and a test set with two ratios for each 

lass: 8:2 and 7:3. For the 8:2 ratio, the training set contains 1,621 

mages, whereas the test set includes 405 images. For the 7:3 ra- 

io, the training set contains 1,418 images, whereas the test set in- 

ludes 608 images. 

To perform the saliency detection task, the trained DSS is uti- 

ized to generate the butterfly image’s rough saliency label. The 

aliency labels are normalized to within [0 , 1] during the network 

nput. To improve the model’s detection capability, the training set 

s augmented during training, which includes the horizontal flip, 

ertical flip, and random alteration of image brightness, contrast, 

nd saturation. 
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Fig. 6. An example of generating the rectangular box. 
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.2. Parameter setting and evaluation indices 

The WBD-SM is trained with the training Algorithm 1 . Before 

he training, ImageNet [36] is used to pre-train the convolutional 

art of the initial VGG16. The input image size is set to 256 × 256 ,

nd each mini-batch contains 16 images. The learning rate is an 

xponentially decaying learning rate, whose initial value is set to 

.0 0 01, with a decay rate of 0.96. The Adam optimizer [37] is used,

nd a total of 25 epochs are iterated. 

The model performance is evaluated from two perspectives: the 

ecognition accuracy and the location accuracy. Since our method 

s weakly supervised learning, we realized the butterfly detection 

ith only image-level labels. Therefore, the location accuracy is 

elatively more important than the recognition accuracy here. 

For the recognition accuracy, the top1 classification accuracy is 

dopted, which is defined as the fraction of the test images for 

hich the top class label predicted (the one having the highest 

robability) is the same as the correct label. On the other hand, 

he location accuracy (Loc_Acc) is evaluated with the frame per 

econd (FPS) and the intersection over union (IoU). The FPS refers 

o the number of images processed per second. The larger the FPS 

s, the faster the model is running. The IoU is the area of inter- 

ection between computationally predicted and labeled bounding 

oxes divided by the area of their union. 

IoU means the area of intersection between predicted and 

round-truth bounding boxes divided by the area of their union. 

t is computed as: 

oU = 

area (P ) ∩ area (G ) 

area (P ) ∪ area (G ) 
, (13) 

here P and G stand for the predicate and ground-truth bounding 

ox, respectively. Figure 8 shows its computing style. 

We choose 0.5 as the threshold for several object detection 

ethods, for example, MDFN [38] , Gated CNN [39] , and STDnet- 

T [40] . If the value of IoU is more than 0.5, we treat it to locate

ccurately; otherwise, locating inaccurately. If the threshold is less 

han 0.5, the location accuracy will rise. However, there will appear 
7 
ome inaccurate locations, even wrong locations. If the threshold is 

reater than 0.5, the location accuracy will drop. Similarly, the lo- 

ation boxes will be more accurate. 

.3. Comparison of recognition results 

To verify the effectiveness of the saliency detection in the WBD- 

M network, the WBD-SM recognition results are compared with 

he VGG16 recognition results. For a fair comparison, the same op- 

imizer, initial learning rate, decay rate, and number of iterations 

re adopted for the two networks. Figure 9 compares the recogni- 

ion accuracies attained by the WBD-SM and VGG16 with different 

plitting ratios. 

As shown in Fig. 9 , we can get that: 

1) For the 8:2 division ratio, the recognition accuracy of the WBD- 

SM is always higher than the VGG16 at the same number of it- 

erations, except for epoch 17. After convergence, the recognition 

accuracy of the WBD-SM reaches 89.4%, which is 2.6% higher 

than 86.8% achieved by the VGG16 on the test data. Particular 

noteworthy is that the accuracy of the WBD-SM already reaches 

76.7% after the first epoch, while the accuracy of the VGG16 is 

a mere 42.5% after the first epoch. 

2) For the 7:3 division ratio, the recognition accuracy of WBD-SM 

shows the same trend as 8:2 division ratio. After convergence, 

the recognition accuracy of WBD-SM achieves 88.16%, which in- 

creases by 1.95% than 86.19% got by VGG16 on the test data. 

3) This suggests that due to the integration of the saliency detec- 

tion task in the WBD-SM, the model can achieve faster local- 

ization of areas conducive to recognition, which also yields a 

slightly improved final acceptance accuracy. 

.4. Comparison of target location results 

To verify the superior localization performance of the WBD- 

M, Table 3 compares the butterfly localization accuracy attained 
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Table 3 

Localization accuracy results of three models with dif- 

ferent splitting ratios. 

Methods Loc_Acc(8:2) (%) Loc_Acc (7:3) (%) 

DSS [6] 86.30 83.78 

ACoL [7] 83.89 77.01 

WBD-SM 95.67 92.76 

Table 4 

Comparison of WBD-SM with fully-supervised 

detection models. 

Models Loc_Acc (%) Speed (FPS) 

RefineDet [8] 94.02 7.300 

SSD [10] 95.69 8.403 

YOLOv3 [9] 91.10 9.132 

WBD-SM 95.67 14.345 
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Table 5 

Localization accuracy of different CAMs. 

Experiment number CAMs Location accuracy (%) 

1 top1 78.13 

2 top5 (0.5) 75.00 

3 top3 (0.3) 83.89 

4 top3 (3:2:1) 87.26 
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y our WBD-SM with those achieved by the DSS and ACoL, while 

ig. 10 illustrates the output results from the three models. 

According to the results of Table 3 and Fig. 10 , we can draw the

ollowing observations: 

1) For the 8:2 division ratio, the WBD-SM attains a 95.67% local- 

ization accuracy, which increases by 9.37% and 11.87% over the 

DSS (86.30%) and ACoL (83.89%), respectively. For the 7:3 divi- 

sion ratio, the WBD-SM attains a 92.76% localization accuracy, 

which increases by 8.98% and 15.75% over the DSS (83.78%) 

and ACoL (77.01%), respectively. This demonstrates the supe- 

rior localization ability of our proposed WBD-SM over well- 

established models. 

2) The WBD-SM highlights the locations of butterfly objects by 

fusing the results of its two component networks. Conse- 

quently, unlike the other two models, it can display butterfly 

objects but not the rest of the objects that occupy salient loca- 

tions. 

.5. Detection performance comparison between WBD-SM and 

ully-supervised object detection networks 

To verify the detection performance of the WBD-SM, we further 

ompare it with the fully-supervised RefineDet, SSD and YOLOv3. 

n Table 4 , the localization results of these four models under the 

:2 division ratio are compared. It can be seen that the WBD-SM 

ttains a 95.67% localization accuracy, which is 1.65% and 4.57% 

igher than the results obtained by the RefineDet and YOLOv3, re- 

pectively, while it is only 0.02% lower than the result of the SSD. 

esides, our model got the speed of 14.345 FPS, higher than that all 

f other models. This indicates that by combining SMs with adver- 

arial erasing, the weakly supervised WBD-SM can yield a compet- 

tive result with fully supervised state-of-the-art object detection 

odels. 

.6. Effect of CAM acquisition method on the localization 

erformance 

To obtain accurate CAMs, the efficiency of CAMs generated by 

he top 5 prediction classes is first analyzed. In Fig. 11 , the CAMs

enerated by the top 5 prediction classes under the 8:2 division ra- 

io are compared are presented. It is clear that the CAM generated 

y the higher-ranking prediction class displays the target location 

etter and is more reliable. Although the top1 CAM has the high- 

st reliability, the CAMs generated by other prediction classes may 

iscover the parts that the top1 CAM misses. Hence, they can serve 

s a supplement to the top1 CAM. 
8 
Next, we investigate the effects of various CAM acquisition 

ethods on the localization results by utilizing only CAM localiza- 

ion. In Table 4 , four types of CAM acquisition methods are com- 

ared, where ‘top1’ represents the CAM generated by the first pre- 

iction class only, and ‘top5(0.5)’ represents the mean fusion of the 

AMs generated by the top 5 prediction classes, while ‘top3(0.3)’ 

epresents the mean fusion of the CAMs generated by the top 3 

rediction classes, and ‘top3(3:2:1)’ represents the weighted fu- 

ion of the top 3 classes according to a weight ratio of 3:2:1 

0.57:0.28:0.14). From Table 5 , we can draw the following obser- 

ations. 

1) As suggested by the results of Experiments 1 and 2, the fu- 

sion with too low-rank CAMs leads to the reduction in localiza- 

tion accuracy. This is because the lower the prediction class’s 

ranking, the less its reliability. Low-rank CAMs leads to the re- 

duction in localization accuracy. This is because the low-rank 

CAMs stand for the wrong class label of the butterfly image, 

and therefore its CAM is wrong, focusing on different areas. 

This will provide the wrong information for the saliency map, 

leading to the reduction in localization accuracy. 

2) Comparison between Experiments 1 and 3 reveals that the fu- 

sion of the CAMs up to the top 3 classes helps to enhance the 

localization accuracy. This is because apart from the best top1 

class, the effective localization regions are also found in the 

CAMs of top2 and top3 classes. 

3) Experiment 4 attains the highest localization accuracy by fus- 

ing the top 3 classes with higher-rank class principles having 

higher weight. The weight ratio 3:2:1 (0.57:0.28:0.14) is found 

empirically. 

.7. Effect of erasing threshold on the localization performance 

During the generation of CAMs, the two adversarial branches, 

 and B, learn different regions of interest. Branch A learns the 

ost discriminative area, whereas branch B learns the second dis- 

riminative region. The most discriminative region is determined 

y the threshold ρ . A minimal threshold value makes the network 

iscover additional regions, thereby bringing in noise. By contrast, 

n overly large threshold prevents the network from learning suf- 

cient regions. Therefore, an appropriate threshold is essential for 

he two branches to jointly learn a proper range of regions. 

In Fig. 12 , the efficiencies of the generated CAMs are displayed 

t various thresholds under the 8:2 division ratio. As can be seen, 

hen ρ = 0 . 5 , the red area also covers the regions other than

he butterflies, which presents disconnected sites. With the in- 

rease of ρ , the red area is more connected, but its coverage area 

ecreases. 

In Table 6 , the effects of various erasing thresholds on the local- 

zation accuracy are investigated. In Experiments 5–9, the SMs are 

btained by fusing the CAMs with the SMs after three iterations 

SMP3). In Experiments 10–14, the SMs are accepted only from the 

AMs. Both sets of experiments demonstrate that the highest lo- 

alization accuracy is attainable at the threshold value of ρ = 0 . 8 .

t thresholds lower or higher than this value, the localization ac- 

uracy all degrades to some extents. These findings are consistent 

ith the results visualized in Fig. 7 . 
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Fig. 7. Images of the 20 butterflies. 
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Table 6 

Effect of Erasing Threshold on Localization Accuracy. 

Experiment number ρ Saliency Map Location accuracy (%) 

5 0.5 CAMs + SMP3 94.47 

6 0.6 CAMs + SMP3 94.71 

7 0.7 CAMs + SMP3 95.43 

8 0.8 CAMs + SMP3 95.67 

9 0.9 CAMs + SMP3 94.47 

10 0.5 CAMs 56.85 

11 0.6 CAMs 68.99 

12 0.7 CAMs 78.13 

13 0.8 CAMs 87.98 

14 0.9 CAMs 84.13 

Fig. 8. Computing style of the IoU. 
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Table 7 

Results of WBD-SM with different backbone networks. 

Models Location accuracy(%) Speed(FPS) 

WBD-SM-Inception 92.60 9.132 

WBD-SM-ResNet50 93.65 9.674 

WBD-SM-DenseNet121 94.40 7.641 

WBD-SM-MobileNet128 95.21 10.239 

WBD-SM-VGG16 95.67 14.345 

Table 8 

Results of four models on the Oxford-IIIT Pet dataset. 

Models Location Accuracy (%) Speed (FPS) 

RefineDet 90.90 4.493 

SSD 90.80 6.190 

YOLOv3 94.80 7.857 

WBD-SM 93.88 5.213 
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.8. Effect of backbone networks on the localization performance 

To investigate the backbone network on the performance of 

BD-SM, the location accuracy and speed are obtained from WBD- 

M with different backbone networks are analyzed. We equipped 

ur model with different backbone networks. They are Incep- 

ion, ResNet50, DenseNet121, and MobileNet28 [31] , and the cor- 

esponding models are represented as WBD-SM-Inception, WBD- 

M-ResNet50, WBD-SM-DenseNet121, WBD-SM-MobileNet128, and 

BD-SM-VGG16, respectively. Table 7 gives their results. 
Fig. 9. Comparison of the recognition accuracies attained b

10 
From Table 7 , we can get that WBD-SM-VGG16 gets the 95.67% 

ocation accuracy, higher than that of all the other models. This 

ndicates that VGG16 as the backbone network can combine the 

bstract and low-level features to provide suitable information for 

he saliency map. Additionally, we can obtain the speed of 14.345 

PS, faster than that all of the other models. 

.9. Comparison on alternate dataset 

To validate our method on other datasets, we compared our 

ethod with RefinDet, SSD and YOLOv3 on the Oxford-IIIT Pet 

ataset, which is available online, i.e., [ http://www.robots.ox.ac.uk/ 

vgg/data/pets/ ]. The Oxford-IIIT Pet dataset has 37 categories 

ith roughly 200 images for each class. The images have signifi- 

ant variations in scale, pose and lighting. All images have an as- 

ociated ground truth annotation of bread, head ROI, and pixel- 

evel trimap segmentation. Table 8 listed the results of these four 

odels on this dataset. From Table 8 , we can get that WBD-SM 

chieves the location accuracy of 93.88%, higher than that of both 

efineDet and SSD models. Specifically, it improves by 2.78% and 

.08%, respectively. When comparing with YOLOv3, it is lower by 

.92% than that of YOLOv3. Secondly, the speed of WBD-SM is 

.213 FPS, faster than both RefineDet and SSD, while slower than 

hat of YOLOv3. This demonstrates that our WBD-SM model can 

chieve competitive results of both location accuracy and speed on 

 larger dataset than fully supervised models. 
y WBD-SM and VGG16 with different dividing ratios. 

http://www.robots.ox.ac.uk/~vgg/data/pets/
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Fig. 10. Comparison of three models’ output results with different dividing ratios. 

Fig. 11. Top1 to top5 class activation maps. 

Fig. 12. Effect of erasing threshold ρ on class activation maps. 

11 
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. Conclusions and future research 

This paper has proposed a weakly supervised butterfly de- 

ection based on a saliency map (WBD-SM). Our WBD-SM uses 

GG16 without fully connected layers to extract features of dif- 

erent scales, which serves as the backbone network. DSS is uti- 

ized to remove the SMs of butterfly images, and the CAMs of 

utterfly images are derived via the ACoL network. Afterwards, 

he SMs and CAMs are post-processed with conditional random 

elds, thereby obtaining the refined SMs of butterfly objects. Fi- 

ally, the locations of the butterflies are acquired based on the 

Ms. The experimental results involving a butterfly dataset with 

0 categories of butterfly have demonstrated that the proposed 

BD-SM considerably outperforms DSS and ACoL, in terms of lo- 

alization accuracy, while our WBD-SM achieves a higher recog- 

ition accuracy than that of VGG16. The experiments have also 

hown that our weakly-supervised WBD-SM yields competitive re- 

ults with fully supervised state-of-the-art object detection mod- 

ls, including RefineDet, YOLOv3 and SSD, in terms of detection 

erformance. 

Although the WBD-SM has achieved favourable results, many 

spects of this novel model require further studied. Given the in- 

bility of saliency detection to implement semantic and instance 

iscrimination, the detection network proposed in the WBD-SM 

an only detect a single butterfly object in the images. It is in- 

apable of achieving a simultaneous distinction between multiple 

utterfly objects. Although this paper has obtained excellent local- 

zation results by fusing SMs with CAMs, multiple repeated steps 

re needed to yield accurate results. Additionally, the two subtasks 

emain highly independent of each other, and they are not inte- 

rated deeply during network training. In future research, the net- 

ork needs to be made adaptable to various scenarios. The associ- 

tion between the two tasks should be explored further to develop 

 better way of integrating them. There is also a need to collect 

igger and comprehensive butterfly datasets. 
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