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ABSTRACT

We propose a label enhancement model to solve the multi-label learning (MLL) problem by using the in-
cremental subspace learning to enrich the label space and to improve the ability of label recognition. In
particular, we use the incremental estimation of the feature function representing the manifold structure
to guide the construction of the label space and to transform the local topology from the feature space
to the label space. First, we build a recursive form for incremental estimation of the feature function
representing the feature space information. Second, the label propagation is used to obtain the hidden
supervisory information of labels in the data. Finally, an enhanced maximum entropy model based on
conditional random field is established as the objective, to obtain the predicted label distribution. The
enriched label information in the manifold space obtained in first step and the estimated label distri-
butions provided in second step are employed to train this enhanced maximum entropy model by a
gradient-descent iterative optimization to obtain the label distribution predictor’s parameters with en-
hanced accuracy. We evaluate our method on 24 real-world datasets. Experimental results demonstrate
that our label enhancement manifold learning model has advantages in predictive performance over the

latest MLL methods.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

For many real-world multi-label problems, different labels have
different importance. For example, a natural scene image is labeled
with multiple labels such as ‘sky’, ‘water’, ‘forest’ and ‘cloud’, but
the degree to which these labels describe the image is different [1].
There are many similar examples in diverse applications, where
multiple labels related to an example do not have the same im-
portance to the example. To reflect the different degrees of impor-
tance for the set of multiple labels, a more natural way to label
an instance X is to assign a real number dJ, to each possible label
y, to represent the degree to which y describes x. We can choose
d, €0, 1], and make the label set complete, i.e., using all the la-
bels in the set always fully describes the instance. Then, }°, & =1.
Such a d} is called the description degree of y to x. The description
degrees of all the labels for an instance form a data structure con-
forming to the probability distribution called label distribution. The
learning process on the instances labeled by label distributions is
called label distribution learning (LDL).

* Corresponding author.
E-mail addresses: tutu_tanchao@163.com (C. Tan), sqc@ecs.soton.ac.uk (S. Chen),
xgeng@seu.edu.cn (X. Geng), glji@njnu.edu.cn (G. Ji).

https://doi.org/10.1016/j.patcog.2022.109189
0031-3203/© 2022 Elsevier Ltd. All rights reserved.

Label distribution is more general in most supervised learning
problems because the relevance or irrelevance of a label to an in-
stance is essentially relative. When multiple labels are associated
with an instance, the relative importance among them is more
likely to be different than exactly equal. However, in practice, it
is not realistic to directly obtain the descriptive degree of each la-
bel in many applications. This is because the process of quantify-
ing the description degrees is costly, and there is often no objec-
tive quantitative standard for the descriptiveness of each label. The
current common data labeling method is that an instance x is as-
signed with I e{0, 1} to each possible label y. If /=1, it means
that y is a relevant label of x, and if I} =0, it means that y is an ir-
relevant label of x. I}, expresses the logical relationship of yes or no,
and for an instance, the logical vector formed by the logical values
I of all the labels is called logical label. Most of the existing data
use logical labels as the supervision information of instances.

It can be visualized that the supervision information in these
data essentially follows a certain label distribution. Although this
label distribution is not explicitly given, it is possible to recover
it through the analysis of the data set. This process is called la-
bel enhancement (LE). LE refers to the process of transforming the
original logical labels of the training samples into the label distri-
butions. Similar to the multi-label classification method based on
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Label Enhancement
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Fig. 1. An example of label enhancement.

embedding [2], LE also relies on the mining of label-related infor-
mation hidden in the training set. Let ) be the original logical label
space of the samples, and denote D as the label distribution space
after LE. Then, LE expands the original label space Y={0, 1} to the
label distribution space D=0, 1]¢, where c is the number of labels.
In fact, D constitutes a hypercube in the c-dimensional Euclidean
space, and Y is only located at the vertices of the hypercube. LE
reinforces the supervision information in the training set via the
correlation among the labels. After the label distributions are re-
covered, better prediction results can be obtained through LDL. An
example of LE is illustrated in Fig. 1.

Motivated by the extensive review of the existing literature for
LDL, manifold learning (ML) and LE given in the related work sec-
tion, in this paper, we propose a label enhancement algorithm
based on ML (LEAML) for multi label enhancement learning. The
LEAML algorithm is also a probabilistic label learning model to
solve the multi-label learning (MLL) problem. Our LEAML consists
of the following three components.

1. Manifold space enhanced feature extraction: Based on the in-
cremental semi-supervised subspace learning algorithm [3], we
extract accurate and reduced-dimension features in the feature
space.

2. The label distribution estimation via label propagation: We ex-
tend the label propagation technique to the problem of label
distribution prediction, in order to obtain the hidden supervi-
sory information of labels in the data.

3. Prediction from the conditional random field via estimated la-
bel distribution: To obtain the predicted label distribution, we
construct an enhanced maximum entropy predictor model on
a conditional random field. Specifically, we use the enhanced
reduced-dimension features obtained in step 1), and we substi-
tute the logical labels with the estimated enriched label distri-
butions acquired in step 2). A gradient-descent optimization is
then performed to obtain the maximum likelihood estimate for
the parameters of the label distribution predictor.

The rest of this paper is organized as follows. The LDL, ML and
LE are first reviewed in Section 2. Our proposed LEAML algorithm
is detailed in Section 3, and we emphasize our novel contributions
in comparison with the existing LE algorithms. In Section 4, exten-
sive experimental evaluation is carried out to compare our LEAML
algorithm with the existing state-of-the-art methods. Our conclu-
sions are given in Section 5.

2. Related work
2.1. Label distribution learning

In the multi-label distribution learning framework, each label y;
of an instance x is assigned a real value di" , called the degree of
description of x by label y;, which represents the degree to which
label y; describes x. Let the c labels y'=[y} y}---yl]€Y be asso-
ciated with instance ;. Then the data set of label distributions for
X; can be denoted as d,:d{:: di:l di:zdzzf] Because the label
distribution conforms to the probability distribution, much of the
statistical theory can be directly applied to the LDL. First, dﬁj can
be expressed as a conditional probability form, dij =P(yj|x). As-
sume that P(y;|x) is a parametric model, denoted as P(y;|x; 6;),
with the parameter vector ;. Then the LDL becomes the learning
of the parameter vector 6, so that P(y;|; #;) can output a distri-
bution similar to dﬁj. Denote §={0;. - - -, 0.}. If the Kullback-Leibler
(KL) divergence is used as the measure of the similarity between
the ground-truth label distribution and the predicted label distri-
bution, the best parameter 6" is determined by

0 =argmoax22d£’ InP(y}|x;: 6;). (1)
i

Once 0" is determined, the unknown label distribution for new
sample (x’,y}) can be predicted as P(y3|x’; 0;)

Using P(yj|x: 0;) for classification is equivalent to the maxi-
mum posterior probability decision [4]. This shows that single-
label learning (SLL) is a special case of LDL.

For MLL, the descriptive degree di[f of the relevant label of each
instance x; satisfies [5]

i 1 i
}”j _ v y] EY,',
dx,v - { 0’ y1] ¢Yl’ (2)

where Y; = {j :y§ =1,Vj} is the relevant label set of x;. By using
(2), the optimization (1) can be rewritten as:

* 1 i
0 =argm0ax2:m > InP(y|x;: 6;). (3)
it yieY;

The above formula can be seen as first using entropy-based label
assignment [6] to convert the multi-label data set into a weighted
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single-label data set, and then performing the maximum likelihood
estimation of @. Therefore, MLL is also a special case of LDL. Hence,
LDL can be regarded as a more general learning framework than
SLL and MLL.

There are three categories of LDL algorithms under this learn-
ing framework [7]. The first category includes PT-Bayes and PT-
SVM [7], which transform the LDL problem into a traditional SLL
or MLL problem. The second category transforms the SLL or MLL
algorithm into a learning algorithm that can process label distri-
bution data, such as AA-kNN and AA-BP [7]. The algorithms of the
third category are specifically designed according to the inherent
characteristics of LDL, and they include SA-IIS and SA-BFGS [7].

The above algorithms mostly apply the true label distributions
and the predicted label distributions in the KL divergence metric to
measure the distance between the two distributions, and then use
the maximum entropy model to establish a parametric model of
the label distribution. Since most real-world datasets do not have

label distribution, we can only predict the label distributions dﬁlf of
the training set using the labeled samples {xi,yi}, that is, training

the parametric model of the label distribution based on {xi, yi} by
a semi-supervised algorithm [7].

2.2. Manifold learning

ML has been widely combined with various state-or-the-art
learning approaches, e.g., deep learning, to solve the challenging
problems in many practical applications. Below we review some
typical applications of ML.

Hong et al. [8] proposed a multi-task learning framework based
on deep convolutional neural network (DCNN). In this framework,
DCNN-based feature mapping and multi-task learning are con-
nected to carry out DCNN-based regression for face-pose estima-
tion. This framework unifies the multiview problem and multi-
modal problem in a single model. In addition, the authors adopted
manifold regularization to form manifold regularized convolutional
layers, so that the inner relationship of neurons can be utilized to
preserve the local properties of neurons, leading to better feature
representation.

Yu et al. [9] proposed a learning-to-rank model to jointly con-
sider visual features and click features in image retrieval. A robust
and accurate ranking model is built by using the click features, and
the visual features are utilized to further enhance the model’s per-
formance. By integrating the visual features and click features, the
authors designed an objective function, in which the hypergraph
regularizer and linear model are adopted to respectively take these
two features into consideration. An efficient algorithm based on
fast alternating linearization was designed to solve the resulting
optimization.

In [10], the authors devised a hierarchical deep word embed-
ding (HDWE) model by integrating sparse constraints and an im-
proved RELU operator to address click feature prediction from
noisy and sparse visual features. Compared with traditional em-
bedding models, HDWE can better predict the click features of im-
ages from coarse to fine through hierarchical semantics.

In [11], the authors proposed a pose recovery method using
nonlinear mapping with deep neural network. Specifically, feature
extraction is based on multimodal fusion and back-propagation
deep learning. In multimodal fusion, a unified feature description
is constructed using a hypergraph Laplacian with low-rank repre-
sentation, while in back-propagation deep learning, the nonlinear
mapping is learned from 2D image to 3D pose with parameter
fine-tuning.

To address high dimensionality of image features and low effi-
ciency of retrieving process in image-based 3D human pose recov-
ery, the authors of [12] proposed an approach to recover 3D human
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poses from silhouettes by adopting locality sensitive sparse coding
in the retrieving process. The method incorporates a local simi-
larity preserving term into the objective of sparse coding, which
groups similar silhouettes and alleviates the instability of sparse
codes.

2.3. Label enhancement

Both traditional SLL and MLL treat each label as a logical indi-
cator, with +1 indicating a relevant label and -1 (or 0) indicating
an irrelevant label. This type of label is called logical label, which
cannot provide the explicit relative importance of each label. By
contrast, label distribution that assigns a real value from 0 to 1 to
each label to indicate the relative importance of the label to the
instance is called numerical label. However, for real-world applica-
tions, it is difficult to obtain the importance of a label directly. If
the label importance can be obtained and used in training, it will
greatly enhance MLL. Therefore, we need a way to reconstruct nu-
merical labels from logical multi-label data. This is called LE. We
now review the latest LE algorithms.

2.3.1. LE Algorithm based on label propagation

Graph-based LE algorithm represents the topological structure
between instances with a graph model. Based on some reasonable
assumptions, the relationship between inter-instance correlation
and inter-label correlation can be established, and the logical labels
of the instance are enhanced into the label distributions. Specifi-
cally, Zhang et al. [13] applied the label propagation (LP) method in
semi-supervised learning to LE. This LE algorithm based on LP rep-
resents the topological structure between instances by using graph
model. First, a label propagation matrix is constructed based on
the correlation between instances. The algorithm utilizes the differ-
ent path weights in the propagation process to make the descrip-
tion of different labels naturally different, to reflect the inter-label
relationship embedding in the training data. This LP algorithm is
in fact corresponds to the regularization framework of [14].

However, this LP process imposes high complexity due to the
calculation of paired distances in the whole feature space, and
some unnecessary information may be introduced, leading to the
decrease of accuracy. More importantly, the LP algorithm is essen-
tially the propagation of logical label, and the final normalization
is used to force the logical label into the label distribution, which
cannot reflect the essence of LE, namely, to predict the label dis-
tribution of unknown instances through the relationship between
known instances.

2.3.2. LE Algorithm based on ML

Hou et al. [15] proposed an LE method based on ML. Similar to
the LE based on LP, a fully connected graph is constructed using
the training examples, and the algorithm establishes the relation-
ship between instances correlation and label correlation based on
smoothness hypothesis [16]. The underlying assumption is that the
data are distributed on certain manifold in both feature space and
label space. To explore the local topological structure in the train-
ing set, the local topological structure between the examples is ob-
tained by solving the linear relationship according to the locally
linear embedding [17]. By reconstructing the manifold of the fea-
ture space and the label space, the topological relationship of the
feature space is transferred into the label space via the smooth-
ness assumption. Hence, the topological relationship of the feature
space manifold is used to guide the construction of the label space
manifold, thereby the logical labels of the examples are enhanced
to the label distributions.

This ML algorithm [15] enhances the logical labels into the la-
bel distribution via two separate steps. First, it reconstructs the
structural information in the label space from the feature space,
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and second it uses the quadratic programming to solve the label
prediction of unknown instances. These two steps require the two
separate optimization processes with the two separate objective
functions, which inevitably introduces error and reduces the pre-
diction accuracy.

2.3.3. Graph laplacian LE

Xu et al. [18] proposed an LE algorithm called graph Laplacian
LE (GLLE), to recover the label distributions from the logical labels
by mining the hidden importance from training instances through
the topological information of the feature space. GLLE is also a typ-
ical representative of LE based on graph model. Unlike the LP algo-
rithm [13], which calculates the distance between samples in the
whole feature space, GLLE selects the instance’s k nearest neigh-
bors and calculates the distance between the instance and its k
nearest neighbors, which reduces the computational cost and im-
proves the accuracy. GLLE also integrates the topological informa-
tion of the feature space and the loss function that predicts the
label distribution through logical label into a single combined ob-
jective function, thus, avoiding the need to construct the two sep-
arate objective functions, as in the case of the ML algorithm [15].

Like other LE algorithms, GLLE has a natural ‘defect’, as its first
component loss function also models the difference between the
logical labels and the predicted label distributions. Therefore, like
other LE algorithms, it also choose the numerical label as close as
possible to the original logical label. But this is not consistent with
the ‘physical’ interpretation of the label distribution, namely, rep-
resenting the degree to which the original label describes the in-
stance.

2.3.4. LE With sample correlations

The LE with sample correlations (LESC) via low-rank representa-
tion algorithm [19] obtains the label distribution by exploiting the
low-rank representation to excavate the global information in the
feature space, which is different from the GLLE [18] that exploits
the local similarity. The first component loss function for the LESC
algorithm is the same as that of the GLLE, but its second compo-
nent loss function is based on the low-rank representation, which
is different from that of the GLLE.

The BFGS [20] is adopted to solve the optimization problem as-
sociated with the LESC, and hence to obtain the label distributions.
However, the convergence of BFGS is hard to determine. The usual
practice is to determine the number of iterations manually. This is
time consuming particularly for large-size problems.

2.3.5. Multilabel distribution learning based on multi-output
regression and ML

Recently, we proposed a multilabel distribution learning algo-
rithm based on multi-output regression through ML, referred to
as MDLRML [21]. By exploiting the samples’ ML and the LDL, we
link these two spaces’ similar and smooth manifolds. This facili-
tates using the topological relationship of the manifolds in the fea-
ture space to guide the manifold construction of the label space.
The smoothest regression function is used to fit the manifold data,
and a locally constrained multi-output regression is designed to
improve the data’s local fitting. Based on the regression results, we
enhance the logical labels into the label distributions, thereby min-
ing and revealing the label’s hidden information regarding impor-
tance or significance.

2.3.6. Probabilistic label enhancement algorithm

In our recent work [22], we proposed a very different proba-
bilistic LE algorithm, called PLEA, which enhances the logical la-
bels into the label distributions based on the principle that the la-
bel distribution represents the degree to which the original label
describes the instance. Specifically, the supervised information in
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the label manifold is utilized in the feature manifold space con-
struction to improve the accuracy of feature extraction, while dra-
matically reducing the feature dimension. Then the robust linear
regression is employed to estimate the label distributions associ-
ated with the extracted reduced-dimension features. Using the en-
hanced reduced-dimension features and their associated estimated
label distributions in the enhanced maximum entropy model, the
unknown true label distributions are accurately estimated.

2.3.7. Label distribution manifold learning algorithm

Very recently, we developed a novel label distribution ML
(LDML) method [23] to solve the LDL problem. We first extract
the accurate and reduced-dimension features of the training data
using ML. Then we estimate the unknown label distributions as-
sociated with the extracted features based on multi-output ker-
nel regression. The extracted reduced-dimension features and their
associated estimated label distributions are used to design an en-
hanced maximum entropy model, which enables us to estimate the
unknown true label distributions for the training data accurately
and efficiently. We also proposed to apply the tangent space align-
ment regression in the second stage, resulting in the LDML-R algo-
rithm [23] that has better LDL performance at the cost of imposing
higher complexity, compared with the LDML.

In the next section, after deriving our LEAML method, we will
point out the difference or novelty of the LEAML, in compari-
son with the existing methods surveyed in this section. Also in
Section 4, we will use the seven latest LE methods reviewed in
this section, namely, the LP [13], the ML [15], the GLLE [18], the
LESC [19], the MDLRML [21], the PLEA [22] and the LDML-R [23],
as the benchmarks for the performance comparison with our pro-
posed LEAML.

3. The proposed algorithm

The goal of LDL is to build a parametric model for the label dis-
tribution disz(yj|x; 0;), 1 < j<c, for sample x and its c logical
labels y;. After obtaining the parameters {;,1 < j <c}, the label

/

distributions di{ of new data (¥ ,yﬁ.) can be predicted. According
to the smooth assumption|[16], samples close to each other in the
feature space are likely to have the same logical labels. Based on
this property, it can be inferred that points close to each other in
the feature space are likely to have similar numerical label vectors.
This leads to the hypothesis that the label space and the feature
space have similar local topological structures. The topology of the
feature space can be represented as a graph G=(V, £, W), where
V={x;,1 <i<n} is the set of vertices consisting of all the training
examples, and £ is the set of all the edges in the graph, with edge
e; j representing the relationship between x; and x;, while W is
characterized by the weight matrix W= wi.j]nxn, with w; being
the weight of edge e; ;. In order to estimate the local topological
structure of the feature space, the local neighbor information of
each example is used to construct the graph G. According to [15],
each example can be reconstructed from its neighbors by a linear
combination. Therefore, the local topological structure of the fea-
ture space can be obtained by solving the following optimization

n
l‘l"}}/l‘lz X — ZW,“]'X]'
i=1

J#
in which w; ; =0 if x; is not an k-nearest neighbor of x;. The
above optimization can be transformed into a quadratic program-
ming problem

n‘lﬂi/n wiew, (5)

2

: (4)

where G = [gi_j]nxn with g; j= (% — x))T(x; — X)).
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Since the feature space and the label space should have a sim-
ilar local topological structure, the following regularization term
can be introduced [24]

R=|U-WU|}=tr(U'MU), (6)

where M= (I-W)T(I-W), and U eR™*¢ represents the numerical
label space, composed of the eigenvectors corresponding to the ¢
minimum eigenvalues of M, while I is the identity matrix of appro-
priate dimension. To train a mapping from the logical label space
to the numerical label space, the regression model can be obtained
by solving the regularized optimization problem:

min |U - Y'|2 + tr(U™MU). 7

where Y =[y' y2...y"]|eR™" is the logical label matrix. This op-
timization can be solved by quadratic programming, to construct
the label space U.

Given the dataset of size n, the algorithm first constructs the
graph, i.e., compute W <R™", Then it needs to construct the label
space U eR™¢ by solving the optimization (7), which may impose
high complexity, particularly for large n. Therefore, we employ in-
cremental label space construction method to construct U as de-
scribed in the following subsection.

3.1. Manifold space enhanced feature extraction

For the regularization term of the objective function, let v
be the eigenvector of M, associated with the eigenvalue X, at
the kth iteration, namely, M, v, =Av,. Define u,=M,v,. Then i, =
%Z,Z:] uy, is the nth step estimate of u, which can be expressed as

-1 1¢
:Ezuk:HZMkvk:
k=1

n-1; 1 2 1
n <Tl 1 ZMkvk) + Eann
k=1

lA 1
= n Uy 1+ anns (8)
where v, is the nth step estimate of v. Based on the statistical ef-
ficiency [3], it is easy to get A=|u, v=|f and the following
u
lemma.

Lemma 1. Let {M,} be a sequence of real matrices. If nlim Mp=M,
— 00

n
then nlim % >~ M;=M, where M; is the estimate of M at the ith step.
— 00 i—1

Since 11m vy = lim =
00 ”"n 1”

This leads to a recursive formula for incremental estimation of the
feature function representing the weight of the sample edge in the
feature space

=v, v, can be estimated by H 1”
Up_q

~ _n—],\ 1 ﬁn,1 (9)

Up_1q

where My, = (I - W;,)T(I - W) with W, been the nth-step estima-
tion of W. Initially, we set #; =u; =M vy, the first direction of data
spread.

The procedure (9) estimates the first major eigenvector. For the
notational convenience, we denote this first eigenvector by u ,. To
compute the other subsequent eigenvectors ﬁj,n, 2 <j<c we use
the iterative procedure of [3]. According to [3], it helps to generate
‘guiding observations’ in a complementary space for computing the
subsequent eigenvectors. Let z;=M] .}, where M .;; is the jth col-
umn of M. To compute the second eigenvector, for example, we
first subtract from z; its projection onto the estimated first eigen-
vector

u u
2 =2 _z'lr A],n 1.n

=T (10)
] o]
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The residual z, lies in the complementary space of iy ,, which
serves as the input data to the second iteration step. In this
way, the orthogonality is always enforced when the convergence
is reached. This effectively exploits the sample available well and
thus speeds up the convergence [3].

Combining the mechanism discussed above, we have the recur-
sive form for incremental estimation of the ¢ columns of U, which
will be used as the feature vectors in the conditional random field
based LE of Subsection 3.3.

Procedure : Compute the first k, 1 < k < ¢, dominant eigenvec-
tors, Uy p, Uy, -+ - il p, directly from up, n=1,2, .-, where ;,, _; is
the (n — 1)th-step estimation of the jth eigenvector. Define M, as
the nth-step estimation of M= (I — Wy)T(I - W,) with W, been
the nth-step estimation of W. Actually, W, is computed via the lo-
cal linear embedding [17], and M= (I - W,)T(I - W) then leads
to the first estimation or the ‘initial’ value of Mj, . Further give the
initial conditions ;=M. and zg =M.

Forn=1,2,--- do

For j=1,2,---,min{k, n} do
ﬁJ',n—n_‘lujn 1+1MnnMa (11)
jn—
g W Wy
S I R) "

(13)

According to the statistical efficiency [3], the estimated mean
ﬁ,«,:%z;}:1 u, is the efficient estimate of the mean of a Gaussian
distribution [25]. Our method of using average is motivated its sta-
tistical efficiency. When uj, is drawn from a Gaussian distribution,
the estimating ; , has a high statistical efficiency and a fairly low
error variance. The ¢ dominant eigenvectors, ﬁj’n for 1 <j<gc, in-
crementally constructed by the above procedure are used as the
feature functions to train the label distribution prediction model
based on the conditional random field via maximum likelihood es-
timation in Subsection 3.4.

Mnn —z]+l nz j+1,n*

3.2. Label distribution estimate via label propagation

The LP method [26] is widely used in semi-supervised learn-
ing. The core idea of this LP is very simple: the similar data should
have the same label. In each iteration of the LP process, each node
of the graph exchanges its label information with its connected
neighbor nodes. The idea is to select the community label that is
the most common label among the connected nodes. As the com-
munity label continues spreading, the nodes connected closely will
have a common label eventually. Our proposed algorithm extends
this LP to the problem of label distribution prediction, to obtain
the hidden supervisory information of labels in the data. Specifi-
cally, inspired by the LP [26], the label is propagated via the edges
between samples. The greater the weight of the edge is, the more
similar the two samples are, and the label will propagate easier. As

aforementioned, a hidden label distribution can be defined as di:J
of the size n x c:

8ij
Zi:l 8ik
Each element g; ; represents an estimated label distribution.

Give the multi-label training samples {x;.y'}7,, where y'=

=1
[¥ ¥i---¥i]T denotes the c-dimensional logical label vector for
the feature sample ;.

We have the logical label matrix Y=
[¥' % ¥"]cxn storing all the binary labeling vectors. To estimate
the label distribution for x;, we first model the local relationship

dﬁ:’= Jl<isnl1<j<c (14)
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among x; and its k nearest neighbors by the linear least squares
reconstruction (4) to yield the weight matrix W=[w,3 j]nxn. Then
the estimated label distribution g=[gi; g & | is calculated
using the formula:

(15)

where p is the balancing parameter and W[ ; is the ith column of
W. Finally, g; is normalized according to
_8ij
Yio1 8l
Here the well-established LP is used to estimate the label dis-
tributions associated with the extracted features. This is different
from the PLEA [22] and DML-R [23]. In our proposed algorithm we
use this estimated label distribution to train the prediction model
based on the conditional random field and perform a maximum
likelihood estimation of the prediction model in Subsection 3.4.

gizpyiJr(l f,O)YW[ s 1<iz<n,

gij= ,l<isnl<j<c (16)

3.3. Prediction via estimated label distribution

As described in Subsection 2.1, the label distribution description
degree d), can be represented by the form of conditional probabil-
ity d%=P(y|x). This may be interpreted as that given an example x,
the goal of LDL is to learn a conditional probability mass function
P(y|x) from x. Let fix(x,y) be a feature function that depends on
both the instance x and the label y. Then the expected value of fy
is given by the average of fx over the training set

fic= Z/ﬁ(x,y)fx(x,y)dx, (17)
y

where p(x,y) is the empirical joint distribution. We utilize the
conditional random field model [27], which is an effective sta-
tistical learning method for labeling problem, to train the para-
metric model of the label distribution. In the learning phase, the
training data set is used to obtain a conditional probability model
ﬁ(y|x) via maximum likelihood estimation. In the predicting phase,
given an input sequence X, the output sequence y is found with
the largest conditional probability ﬁ(ylx). The main reason why
we adopt the conditional random field model is that the maxi-
mum likelihood estimation used in the model is particularly suit-
able for the prediction of normal distribution. As discussed in
Subsection 3.1, according to the statistical efficiency [3], ;,, cho-
sen from a Gaussian distribution has a high statistical efficiency.

By defining the probability of a particular label sequence yz.
given observation sequence X; to be a normalized product of po-
tential functions [27-29], the conditional random field has the fol-
lowing parametrized form:

i 1 ; . 1 ‘
P(y' %) = exp (ijltq(ytj—1 I x,»)) + 7 exp (Zﬂgsr(y}? x,-)),
1 q i -

(18)
where Z; is the normalization factor given by
Cc
Z;=Y exp (ngtq(y;”,y’j, )+ wise(v), xi)), (19)
j=1 q r

tq(-,-,-) and sy (-, -) are the transition feature function and the state
feature function that depend on both the instance x; and the label
y’j respectively, while A9 and ' are the corresponding weights.
Both tq(-,-,-) and s;(-,-) are local features, and they can be any
real-valued functions.

As y; is binary, the transition feature function can be repre-
sented as:

f (x,’yi')7 y _y 17
t‘I(y y]’xl)_{ R 1 1 /

20
0, yi y’j 0. (20)
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That is, the feature of x; is extracted only when the label value is
1. Similarly the state feature function can be represented as:

st0) = {0

y;=0.

It can be seen that both the transition feature functions and the
state feature functions can be reprgsented by the ‘unified’ feature
functions of x;, denoted as ﬂ(xi,y'j), 1 <!l <k. In the same way,
all the corresponding weights, Aj? and /L;-, can be unified as 9]’.,
1<l<k =c chgrding to [4,7], the features are further expressed
as f,(x,-,y;.) :y’jfl(x,-), where fj(x;) is the class-independent Ith
feature function. Thus, our model (18) can be re-expressed as

(21)

P(yila:0;) = exp (Z(G} ~y§)ﬁ(x,->>, (22)
! 1=1
Zi= ZeXP (Z(G’ YO fi) ) (23)
j=1

where 1< j<c 1<i<n and 0;=[6] 67...6¢]T.

The features extracted lies in the feature space of x;, which in
fact can be given by the k eigenvectors i, 1 < <k=c, incre-
mentally extracted in Subsection 3.1. Specifically, arrange these ¢
eigenvectors into the matrix form

Up=[tljnllpn- ] € R™C (24)
Then the ith row of ﬁn
Upgic) = [Tnli] Tonli] - - - Tenlil], (25)

where 1 ,[i] denotes the ith element of u; ,, forms the feature vec-

tor [fl *) H ) ---fc(x,-)] extracted for x;. Therefore, our model
becomes

P(y!1x: 6)) =% exp (Z(G,’- -yﬂ»)ﬁ,,n[i]), (26)
! 1=1
Zi=) exp (Z(G} ~y3)ﬁz,n[i]>. 27)
j=1 =1

3.4. Optimization model

Substituting (26) into (1) and recognizing ijldif =1 yields the
target function of 6={6;,1 < j <c}

T(0)=>"3"d¥ InP(yi|x; ;) = szigzw' YT ali]

i=1 j=1 i=1 j=1 =1

- Zln (Z exp (Z(G; ~Y§)m,n[i]>)-
i1 i-1 =1

The target function (28) contains the unknown true label distribu-

(28)

tions d 1 . In Subsection 3.2, we have estimated the label distribu-
tions g, j via LP, which contains more supervisory information than
the logical label set. We can use this estimated label distribution
via LP to train the prediction model to obtain the label distribu-
tion predictor. Specifically, we can substitute the estimated g; ; for

l.
di? in (28) to arrive at the empirical target function

¥3% ;3008 yd Ll -3 In (Zexp (> -y})a,,n[il))
j=1 1=1

i=1 j=1 =1
(29)

nM:
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A gradient-descent iterative optimization algorithm, called the
improved iterative scaling (IIS) [30], can be applied to find the pa-
rameters 6 by solving the nonlinear equation associated with the
lower bound of T(0+A8)-T(#). Once 0;, 1 <j <c, are obtained,
P(y}lx’; 0]-) can be used to predict for the unknown true label dis-

/
tributions di} for new sample (x’,yj.).
The proposed LEAML is summarized in Algorithm 1. The com-

Algorithm 1 Label enhancement algorithm based on manifold
learning.

Input: Multi-label training sample set {x; e RY, y; = [y} - ¥¢]|T e
n
CRIGHS j
Output: Label distribution estimates c?a’ji = P(yf|wi; 6;), 1<j=<c
l<i<n

1: Step 1. Manifold space enhanced feature extraction:

2: After preprocessing, eigenvectors @;,, zj, obtainedfrom mani-
fold space are enhanced in iteration procedure (11) to (13) of-
Subsection 3.1, to get k eigenvectors 4, incrementally, forl <
I<k=c

3: Step 2. Label distribution estimation via LP:

4: Obtain estimated label distribution g; via label propagation(15)
and (16) of Subsection 3.2.

5: Step 3. Prediction from conditional random field:

6: Form empirical target function (29) with g; ; estimatedin Step
2 and w, , extracted in Step 1.

7: Use IIS iterative algorithm to optimize target function (29)to
find label distributions’ parameters 6.

8: return dij, eP(yHm’; 6;).1 < j < cfor new sample @ y).

putational complexity of this LEAML consists of three parts as sum-
marized below.

Step 1. The procedure of the incremental feature extraction has
the complexity on the order of O(n x c3).

Step 2. According to [26], the label propagation has the linear
complexity O(n). Hence, the complexity of Step 2 is O(n).

Step 3. Let the number of iterations for the IIS algorithm [30] be
upper bounded by I;;. Since the complexity per iteration of the IIS
optimization is O(c? x n?), the complexity of Step 3 is O (s x ¢2 x
n?).

3.5. Comparison with existing state-of-the-arts

We now compare our LEAML algorithm with the latest LE ap-
proaches to emphasize its novel contributions.

With the exception of the MDLRML [21], PLEA [22] and LDML-
R [23], most existing label learning methods assume that the nu-
merical label should be sufficiently close to the original logical la-
bel, and choose the difference between the logical labels and the
predicted label distributions as the loss function. This principle
however is not consistent with the ‘physics’ of the label distribu-
tion, which represents the degree to which the original label de-
scribes the instance. Similar to the MDLRML, PLEA and LDML-R,
our LEAML directly utilizes the physical interpretation of the label
distribution, namely, the conditional probability of the label given
the instance, to build the label distribution model, specifically, a
conditional random field based prediction model.

Graph semi-supervised learning methods, such as the LP
[13] and the GLLE [18], are conceptually appearing, and it is easy
to explore the properties of these algorithms through the analy-
sis of the matrix operations involved. However, in the label prop-
agation from the logical label space to the numerical label space,
these algorithms need to solve the regularized optimization involv-
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ing the label matrix variable. This imposes considerable computa-
tional complexity, particularly for large-scale data. Therefore, we
introduce incremental label learning in our LEAML to reduce the
complexity in the label propagation stage.

Many existing label learning methods, such as the ML [15], the
MDLRML [21], the PLEA [22] and the LDML-R [23], typically uti-
lize the hypothesis of manifold that the data in the same mani-
fold structure should have the same labels. Our proposed method
also exploits the local topology of the feature space to obtain the
relative label importance, and uses the distribution to train the
prediction model of label distribution. With the exception of the
PLEA and LDML-R, the existing multi-label distribution learning
algorithms either directly fit the label distribution model or use
the maximum entropy model to train the parameters of the label
distribution model. By contrast, our algorithm build an enhanced
maximum entropy model with the enriched label information in
the manifold space and the estimated enhanced distribution infor-
mation of labels, to train the label distribution prediction model’s
parameters.

Next we emphasize the differences between the proposed
LEAML algorithm and our previous MDLRML, PLEA and LDML-R.
The MDLRML [21] is very different from the PLEA, LDML-R and
LEAML. It first performs the feature extraction based on the lo-
cal tangent space alignment algorithm (LTSA) [31]. Then based on
the extracted features and their corresponding logical labels, it en-
hances the logical labels into the label distributions using multi-
output regression with sigmoid function. The PLEA [22] also first
extracts accurate and reduced-dimension features based on the
LTSA. However, it next estimates the label distributions associ-
ated with the extracted features based on regression. Then using
the extracted reduced-dimensional features and their associated
label distribution estimates to form the enhanced maximum en-
tropy model, the unknown label distributions are estimated with
enhanced accuracy. The LDML-R first extracts reduced-dimension
features in the feature manifold space using the locally linear em-
bedding ML algorithm [17]. It next uses the LTSA based regression
to learn the unknown label distributions associated with the ex-
tracted reduced-dimension features. Like the PLEA, it then forms
the enhanced maximum entropy model to estimate the unknown
label distributions. The proposed LEAML has similar three-step
algorithmic procedure as the PLEA and LDML-R. However, from
Subsection 3.1, the LEAML extracts the features in a different way
with incremental learning for reducing complexity. Moreover, from
Subsection 3.2, the LEAML estimates the label distributions us-
ing the LP method, which imposes lower complexity. Basically, the
PLEA and LDML-R focus on LDL, not on label enhancement as our
LEAML approach. In the next section, the extensive experimen-
tal results demonstrate that the proposed LEAML outperforms the
PLEA and LDML-R.

Table 1 compares the complexity of our LEAML with those of
the seven benchmarks. It can be seen that the complexity of our
LEAML is lower than those of the PLEA, LDML-R, LP and ML. It is
less straightforward from Table 1 to draw the conclusion whether
our LEAML has lower or higher complexity than the MDLRML, GLLE
and LESC. The MDLRML [21] has a two-step algorithmic procedure
and our past experience suggests that it is computationally very
efficient. It is known that the BFGS algorithm used by GLLE and
LESC for nonlinear gradient descent optimization converges very
slowly. In the next section, we will use the runtime performance
to measure the complexity.

4. Experimental evaluation

All the experiments are carried out on Matlab 2019b, running
on a PC with i5-6200 2.30 GHz processor of 4 cores and 8GB of
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Table 1

Complexity comparison of various LE algorithms, where k is
the number of nearest neighbors, f is the number of fea-
tures, I is the number of iterations for the IIS [22], Liwis
is the number of iterations for the iterative reweighed least
squares [32], Lieration 1S the number of iterations of LP [13]
and Iy is the number of iterations for the BFGS algorithm

[20].
Our LEAML 0(c® x n+n+ ki x 2 x n?)
PLEA [22] O(n x k3 + Liris x 1° + Iijs x ¢ x k x n?)
MDLRML [21]  O(c x 1 x K® + liryis x 1)
LDML-R [23] O(d x 1% + liwis x 1% + g x ¢ x k x n?)
LP [13] o n2><f+n3+]iterationxnzxf)

ML [15] O(n? + lipwis x 1°)
GLLE [18] 0(n? x f + Iyggs x n2)
LESC [19] 0(n? x f + Iyggs x n?)

Table 2
Fourteen multi-label datasets with known ground-truth label dis-
tributions from [7] used in label enhancement experiments .

No  Dataset Examples n  Features ¢  Labels ¢
1 SJAFFE 213 243 6
2 Natural_scene 2000 294 9
3 SBU_3DFE 2500 243 6
4 Yeast_spoem 2465 24 2
5 Yeast_alpha 2465 24 18
6 Yeast_cdc 2465 24 15
7 Yeast_cold 2465 24 4
8 Yeast_diau 2465 24 7
9 Yeast_dtt 2465 24 4
10 Yeast_elu 2465 24 14
11 Yeast_heat 2465 24 6
12 Yeast_spo 2465 24 6
13 Yeast_spo5 2465 24 3
14  Movie 7755 1869 5

RAM. Two sets of experiments, LE experiments and MLL experi-
ments, are performed.

4.1. Label enhancement experiments

4.1.1. LE Datasets

We use 14 real-world datasets from [7] in the LE experiments.
Basic attributes of these datasets are given in Table 2. The datasets
of Yeast-spoem to Yeast-spo5 are collected from the records of 10
biological experiments on the budding yeast genes. The rest of the
datasets are collected from facial expression images, natural scene
images and movies, respectively. These 14 datasets are labeled with
the ground-truth label distributions, and hence they are suitable
for evaluating the accuracy of the label distribution prediction.
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4.1.2. LE Evaluation measures

The output of an LE algorithm is the label distribution esti-
mate. In order to compare the estimated label distribution with the
ground-truth label distribution of the datasets, a natural evalua-
tion measure is the average distance or similarity between the pre-
dicted label distribution and the ground-truth label distribution. As
suggested in [7], we select the six measures to reflect an LE algo-
rithm’s performance from different aspects in semantics [33], and
they are: Chebyshev distance (Cheb) |, Clark distance (Clark) |,
Kullback-Leibler divergence (KL) |, Canberra distance (Canber) |,
cosine correlation coefficient (Cosine) 1, and intersection similar-
ity (Inters) 1. The first four metrics are distance metrics and hence
‘the smaller the better’: ‘}’, while the last two are similarity met-
rics and therefore ‘the larger the better’: “1".

4.1.3. Benchmarks for LE experiments and algorithmic settings

We test the LE performance of our LEAML algorithm with the
seven existing state-of-the-art benchmarks reviewed in Section 2,
which are the LP [13], ML [15], GLLE [18], LESC [19], MDLRML [21],
PLEA [22] and LDML-R [23]

We list the algorithmic parameter settings here. For our LEAML,
the balancing parameter p in (15) is empirically chosen to be 0.5,
and the number of nearest neighbors for (4) is set to k = 10. This
value is chosen simply to be consistent with the value of k used in
the benchmark MDLRML [21]. Other algorithmic parameters of the
MDLRML are: the number of low-dimensional embeddings d = 8,
two loss weightings o = 8 = 0.5 to maintain the balance of the
two loss terms, and the termination threshold & = 10~°. For the
PLEA [22], the number of extracted principal features is set to
k =10, which is the same as the number of nearest neighbors.
As for the LDML-R [23], the number of nearest neighbors in fea-
ture extraction is set to k=10, and the dimension of the embedded
coordinates is given by d=8, which are based on the experience.
For the other LE algorithms, we use the original algorithmic set-
tings provided by the authors in their publications. Specifically, we
choose the parameter of the LP [13] to be o = 0.5. For the ML [15],
we have the number of nearest neighbors k = c+ 1, and its other
parameters are A =1, € =0.01, C; =1 and G, = 10. For the GLLE
[18], we choose the parameter A from {0.01,0.1,---,100} and set
the number of nearest neighbors to k = ¢ + 1. As for the LESC [19],
the parameter A is selected among {0.0001,0.001, -- -, 10}.

4.14. Label distribution recovery performance

Fig. 2 depicts the flowchart of the label distribution recovery
experiment. As a basic task of LE is to predict the label distribu-
tions from the logical labels, we need the true logical labels. The
true logical labels of the datasets are obtained from the ground-
truth label distributions via a binarization process. We recover the

Table 3

Label distribution recovery performance measured by Chebyshev distance |.
Dataset LP ML GLLE LESC MDLRML PLEA LDML-R LEAML
SJAFFE 0.1070(7) 0.2188(8)  0.0845(6) 0.0692(5) 0.0566(4)  0.0412(2)  0.0375(1) 0.0453(3)
Natural_scene  0.2750(5) 0.2990(6)  0.3353(7) 0.3417(8) 0.1317(4) 0.1106(1)  0.1257(2) 0.1316(3)
SBU_3DFE 0.1230(5.5) 0.1868(8)  0.1230(5.5)  0.1231(7) 0.0794(4)  0.0684(1)  0.0697(2) 0.0727(3)
Yeast_spoem 0.1630(8) 0.1319(7)  0.0870(5.5)  0.0870(5.5)  0.0096(3)  0.0099(4)  0.0046(1) 0.0077(2)
Yeast_alpha 0.0400(8) 0.0387(7)  0.0192(6) 0.0169(5) 0.0073(2) 0.0150(4) 0.0124(3) 0.0054(1)
Yeast_cdc 0.0420(7) 0.0475(8)  0.0217(6) 0.0198(5) 0.0083(2)  0.0081(1)  0.0091(4) 0.0085(3)
Yeast_cold 0.1370(8) 0.1207(7)  0.0650(6) 0.0572(5) 0.0174(3) 0.0180(4) 0.0164(2) 0.0153(1)
Yeast_diau 0.0990(7) 0.2011(8)  0.0530(6) 0.0419(5) 0.0205(4) 0.0194(2) 0.0195(3) 0.0183(1)
Yeast_dtt 0.1280(8) 0.1073(7)  0.0518(6) 0.0466(5) 0.0080(2)  0.0088(4)  0.0070(1) 0.0081(3)
Yeast_elu 0.0440(7) 0.0499(8)  0.0221(6) 0.0208(5) 0.0076(1)  0.0098(4)  0.0079(2) 0.0096(3)
Yeast_heat 0.0860(7) 0.0915(8)  0.0478(6) 0.0466(5) 0.0111(1)  0.0299(4)  0.0121(3) 0.0118(2)
Yeast_spo 0.0900(7) 0.0953(8)  0.0608(5) 0.0609(6) 0.0277(3)  0.0338(4)  0.0274(2) 0.0170(1)
Yeast_spo5 0.1140(7) 0.1514(8)  0.0980(6) 0.0933(5) 0.0531(4)  0.0506(3)  0.0498(2) 0.0162(1)
Movie 0.1517(7) 0.1933(8)  0.1211(4) 0.1395(5) 0.1418(6)  0.0750(1)  0.0967(2) 0.1095(3)
Avg.Rank 7.0357(7) 7.5714(8)  5.7857(6) 5.4643(5) 3.0714(4) 2.7857(3)  2.1429(1.5)  2.1429(1.5)
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Fig. 2. The flowchart of the label distribution recovery experiment.

Table 4

Label distribution recovery performance measured by Clark distance | .
Dataset LP ML GLLE LESC MDLRML PLEA LDML-R LEAML
SJAFFE 0.3140(6)  0.8055(8)  0.3633(7) 0.2763(5) 0.2365(4) 0.1620(1)  0.1847(3)  0.1749(2)
Natural_scene  2.4828(8)  2.4520(5) 2.4609(6) 2.4649(7) 2.0868(3) 2.0568(1) 2.0674(2) 2.0915(4)
SBU_3DFE 0.5810(7) 0.7861(8)  0.3818(6) 0.3785(5) 0.2560(3)  0.2401(1)  0.2967(4)  0.2558(2)
Yeast_spoem 0.2718(8)  0.2036(7)  0.1321(6)  0.1295(5) 0.0136(3)  0.0140(4) 0.0065(1)  0.0125(2)
Yeast_alpha 0.4322(7)  0.6025(8)  0.3304(6) 0.2823(5) 0.1027(2) 0.2597(4) 0.1805(3)  0.1003(1)
Yeast_cdc 0.3803(7) 0.5593(8) 0.3018(6) 0.2727(5) 0.1041(2) 0.1174(3) 0.1186(4)  0.0873(1)
Yeast_cold 0.1805(7)  0.3224(8)  0.1738(6)  0.1552(5)  0.0424(3)  0.0453(4) 0.0402(1)  0.0405(2)
Yeast_diau 0.2841(6)  0.7276(8)  0.2964(7)  0.2302(5) 0.0913(2) 0.1114(4) 0.0991(3)  0.0583(1)
Yeast_dtt 0.1902(7)  0.2953(8)  0.1413(6) 0.1278(5) 0.0191(3)  0.0244(4) 0.0168(2)  0.0154(1)
Yeast_elu 0.3642(7) 0.5340(8) 0.2845(6) 0.2617(5) 0.1013(1)  0.1245(4) 0.1087(3)  0.1033(2)
Yeast_heat 0.4886(5) 0.5121(8)  0.4933(6) 0.4941(7) 0.2467(4) 0.2326(3) 0.0556(1)  0.0561(2)
Yeast_spo 0.5585(8)  0.4030(7) 0.2618(6)  0.2596(5)  0.1221(3)  0.1503(4)  0.1215(2)  0.0757(1)
Yeast_spo5 0.2741(7)  0.3015(8)  0.1943(6) 0.1871(5) 0.1023(3)  0.1105(4) 0.0961(2)  0.0229(1)
Movie 0.5220(5)  0.7422(8)  0.5654(6) 0.6266(7) 0.4354(3) 0.3499(2) 0.5201(4)  0.3039(1)
Avg.Rank 6.7857(7)  7.6429(8)  6.1429(6)  5.4286(5) 2.7857(3)  3.0714(4) 2.5000(2)  1.6429(1)

label distributions from the logical labels of the 14 multi-label
datasets of Table 2 using the 8 LE algorithms, and compare the
estimated label distributions with the ground-truth label distribu-
tions. Quantitative results of the 8 algorithms applied to these 14
datasets are compared in Table 3,4,5,6, Table 8 for the six metrics
measuring the distance or similarity between the truth label dis-
tributions and the recovered label distributions, respectively. Each
row of the table presents the metric values attained by the 8 LE
algorithms together with the rankings in brackets for the corre-
sponding dataset. We also calculate the algorithms” average rank-
ing performance over the 14 datasets in the last row of the table,
where the numerical value before the bracket is the average rank-
ing value over the 14 datasets, and the number in the bracket is
again the rank.

As shown in Table 3,4,5,6, Table 8, the results clearly demon-
strate the superior LE recovery performance of our LEAML al-
gorithm over the other 7 state-of-art LE benchmark algorithms.
Specifically, our LEAML ranks the first in more than 83.33% of the
experiments across all the 14 datasets and the 6 evaluation mea-
sures, and it ranks the second in 29.63% of the 84 cases. On av-
erage, the proposed LEAML achieves the best label distribution re-

covery performance, and the LDML-R achieves the second best per-
formance.

4.1.5. Computational complexity comparison

To compare the computational complexity imposed by the 8 al-
gorithms in recovering the label distributions, we record the run-
times of these algorithms to complete the LE learning task for each
dataset measured in second [s]. The runtime experimental results
are listed in Table 9. It can be seen that the MDLRML algorithm is
the clear winner, in terms of computational complexity. The pro-
posed LEAML algorithm has the second best runtime performance,
slightly lower than those of the PLEA and LDML-R algorithms.

4.1.6. Statistical validation of label distribution recovery performance

Friedman test statistically compares relative performance
among multiple algorithms over multiple datasets [34]. We use
this test to validate the statistical significance of the performance
of various algorithms given in Table 3,4,5,6, Table 8. Table 10 lists
the Friedman statistics Fr for the label distribution recovery per-
formance of Table 3,4,5,6, Table 8, with the critical value at a sig-
nificance level of 0.05, among the 8 comparing algorithms and 14
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Table 5
Label distribution recovery performance measured by Canberra metric |,.
Dataset LP ML GLLE LESC MDLRML PLEA LDML-R LEAML
SJAFFE 1.0708(7)  1.6894(8) 0.7518(6)  0.5606(5) 0.4796(4) 0.3720(1)  0.3822(2)  0.3989(3)
Natural_scene  6.7810(6)  6.7217(5) 6.8511(7) 6.8780(8) 5.3370(3)  4.9419(1)  5.0009(2)  5.3472(4)
SBU_3DFE 1.2463(7) 1.6593(8) 0.8409(6) 0.8039(5) 0.5488(3) 0.4815(1) 0.6410(4) 0.5034(2)
Yeast_spoem 0.3655(8)  0.2800(7)  0.1840(6) 0.1801(5) 0.0192(3) 0.0198(4) 0.0093(1)  0.0152(2)
Yeast_alpha 1.7068(7)  2.0181(8) 1.1135(6) 0.9514(5) 0.3328(1) 0.8726(4) 0.4740(3)  0.3677(2)
Yeast_cdc 1.3532(7) 1.7591(8)  0.9442(6) 0.8405(5) 0.3179(2) 0.3610(4) 0.3219(3)  0.2470(1)
Yeast_cold 0.3241(7) 0.5598(8) 0.3016(6) 0.2680(5) 0.0707(3)  0.0723(4) 0.0665(2)  0.0653(1)
Yeast_diau 0.6425(6)  1.6538(8)  0.6734(7) 0.5021(5) 0.1637(2) 0.2429(4) 0.1991(3)  0.1134(1)
Yeast_dtt 0.3560(7)  0.5070(8)  0.2458(6)  0.2229(5) 0.0319(3)  0.0453(4) 0.0277(1)  0.0307(2)
Yeast_elu 1.2612(7) 1.6263(8) 0.8692(6) 0.7906(5) 0.3028(2) 0.3189(4) 0.3167(3) 0.3021(1)
Yeast_heat 0.4706(7) 0.7826(8)  0.4203(6) 0.4110(5) 0.1124(1) 0.3349(4) 0.1181(3)  0.1174(2)
Yeast_spo 1.2341(8)  0.8440(7) 0.5422(6) 0.5329(5) 0.2344(2) 0.3379(4) 0.2365(3)  0.1578(1)
Yeast_spo5 0.4013(7) 0.4664(8) 0.3018(6) 0.2884(5) 0.1623(4) 0.1590(3)  0.0886(2)  0.0324(1)
Movie 0.9260(4)  1.4409(8) 1.0372(6) 1.1474(7) 0.7995(3) 0.6933(2) 0.9982(5) 0.6369(1)
Avg.Rank 6.7857(7)  7.6429(8)  6.1429(6)  5.3571(5) 2.5714(2)  3.1429(4) 2.6429(3)  1.7143(1)
Table 6
Label distribution recovery performance measured by Kullback-Leibler divergence | .
Dataset LP ML GLLE LESC MDLRML PLEA LDML-R LEAML
SJAFFE 0.0770(7)  0.2513(8)  0.0500(6) 0.0290(5) 0.0200(4) 0.0195(3) 0.0115(2) 0.0109(1)
Natural_scene ~ 1.5950(6)  2.2757(7)  2.6630(8) 1.1663(5) 0.5689(4) 0.3268(1) 0.3367(2) 0.5620(3)
SBU_3DFE 0.1050(7)  0.2489(8)  0.0690(5) 0.0692(6) 0.0250(3) 0.0217(1) 0.0326(4) 0.0232(2)
Yeast_spoem 0.0670(7)  0.5030(8)  0.0270(5.5)  0.0270(5.5)  0.0001(3.0)  0.0001(3) 0.00003(1) 0.0001(3.0)
Yeast_alpha 0.1210(8)  0.0550(7)  0.0130(6) 0.0080(5) 0.0012(2) 0.0075(4) 0.0044(3) 0.0011(1)
Yeast_cdc 0.1110(8)  0.0609(7)  0.0140(6) 0.0100(5) 0.0014(2) 0.0018(3.5)  0.0018(3.5)  0.0010(1)
Yeast_cold 0.1030(7)  0.5560(8)  0.0190(6) 0.0150(5) 0.0018(4) 0.0010(3) 0.0007(1) 0.0008(2)
Yeast_diau 0.1270(7)  0.1934(8)  0.0270(6) 0.0170(5) 0.0022(2) 0.0036(4) 0.0028(3) 0.0017(1)
Yeast_dtt 0.1030(8)  0.0648(7)  0.0130(6) 0.0100(5) 0.0002(3) 0.0002(3) 0.0001(1) 0.0002(3)
Yeast_elu 0.1090(8)  0.0567(7)  0.0130(6) 0.0090(5) 0.0015(2) 0.0022(4) 0.0017(3) 0.0013(1)
Yeast_heat 0.0890(8)  0.0656(7)  0.0170(6) 0.0155(5) 0.0090(4) 0.0074(3) 0.0010(1.5)  0.0010(1.5)
Yeast_spo 0.0840(7)  0.5320(8)  0.0290(6) 0.0280(5) 0.0060(3) 0.0077(4) 0.0049(2) 0.0019(1)
Yeast_spo5 0.0420(7)  0.0811(8)  0.0340(6) 0.0310(5) 0.0066(3) 0.0078(4) 0.0058(2) 0.0005(1)
Movie 0.1358(6)  0.1268(5)  0.2239(7) 0.2310(8) 0.0756(4) 0.0419(1) 0.0736(3) 0.0587(2)
Avg.Rank 7.2143(7)  7.3571(8)  6.1071(6) 5.3214(5) 3.0714(4) 2.9643(3) 2.2857(2) 1.6786(1)
Table 7
Label distribution recovery performance measured by cosine coefficient 1.
Dataset LP ML GLLE LESC MDLRML PLEA LDML-R LEAML
SJAFFE 0.9410(7)  0.8231(8)  0.9594(6) 0.9731(5) 0.9797(4)  0.9901(1) 0.9890(2)  0.9888(3)
Natural_scene  0.7264(7)  0.6610(8)  0.7789(3) 0.7602(4) 0.7555(5)  0.8920(1)  0.8905(2)  0.7446(6)
SBU_3DFE 0.9220(7)  0.8435(8)  0.9304(6) 0.9319(5) 0.9740(3)  0.9773(1) 0.9657(4) 0.9768(2)
Yeast_spoem 0.9503(7)  0.8530(8) 0.9780(5.5) 0.9780(5.5) 0.9998(3) 0.9998(3) 0.9999(1)  0.9998(3)
Yeast_alpha 0.9814(7)  0.9530(8)  0.9876(6) 0.9905(5) 0.9988(2)  0.9928(4)  0.9943(3)  0.9989(1)
Yeast_cdc 0.9828(7)  0.9468(8)  0.9875(6) 0.9896(5) 0.9982(3)  0.9982(3)  0.9982(3)  0.9989(1)
Yeast_cold 0.9847(6)  0.9429(8)  0.9827(7) 0.9859(5) 0.9991(3)  0.9990(4) 0.9992(2)  0.9993(1)
Yeast_diau 0.9805(6)  0.8427(8)  0.9750(7) 0.9844(5) 0.9978(2)  0.9963(4) 0.9973(3)  0.9995(1)
Yeast_dtt 0.9835(7)  0.9515(8)  0.9884(6) 0.9901(5) 0.9998(2)  0.9986(4)  0.9999(1)  0.9997(3)
Yeast_elu 0.9829(7)  0.9489(8)  0.9879(6) 0.9896(5) 0.9985(2)  0.9978(4)  0.9984(3)  0.9986(1)
Yeast_heat 0.9861(5)  0.9454(8)  0.9845(7) 0.9851(6) 0.9978(3)  0.9930(4) 0.9990(1)  0.9989(2)
Yeast_spo 0.9386(7) 0.8397(8) 0.9747(5.5) 0.9747(5.5) 0.9950(3)  0.9920(4) 0.9951(2)  0.9981(1)
Yeast_spo5 0.9686(7)  0.9359(8)  0.9713(6) 0.9732(5) 0.9935(3)  0.9927(4) 0.9943(2)  0.9995(1)
Movie 0.9589(4)  0.8765(8)  0.9369(5) 0.9200(7) 0.9301(6)  0.9750(2)  0.9723(3) 0.9860(1)
Avg.Rank 6.5000(7)  8.0000(8)  5.8571(6) 5.2143(5) 3.1429(4) 3.0714(3)  2.2857(2)  1.9286(1)

datasets. As can be seen from Table 10, at 0.05 significance level, all
the Fr values for the six metrics are greater than the critical value,
and therefore the null hypothesis of indistinguishable performance
among the learning approaches is clearly rejected for all the eval-
uation metrics. In other words, the average performance rankings
for the 8 algorithms given in Table 3,4,5,6, Table 8 are statistically
significant.

Bayesian signed-rank test [35] is employed as the statistical test
to show whether the LEAML performs significantly better than the
other LE algorithms, in terms of each evaluation metric. Table 11
summarizes the statistical test results, where the associated prob-

10

abilities for the corresponding tests are given respectively in the
brackets. Specifically, a, b and c in [a, b, c] respectively represent
the probabilities of [WIN, TIE, LOSE]. The prior default is that the
performance of the two algorithms is the same. Prior strength is
the strength of this null hypothesis, which means that this null
hypothesis is established with a probability of 0.6. The perfor-
mance of two algorithms are similar if the difference between
two algorithms’ results is less than rope = 0.01. The test results of
Table 11 clearly validate the superior performance of our LEAML
over the existing state-of-art LE algorithms, in terms of LE learning
accuracy.
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Table 8

Label distribution recovery performance measured by intersection similarity 1.
Dataset LP ML GLLE LESC MDLRML PLEA LDML-R LEAML
SJAFFE 0.8361(7)  0.7251(8)  0.8757(6)  0.9050(5) 0.9141(4) 0.9355(1) 0.9344(2)  0.9320(3)
Natural_scene  0.4512(7)  0.3307(8)  0.5226(5) 0.5107(6) 0.5751(4) 0.7278(2)  0.7257(3)  0.7561(1)
SBU_3DFE 0.8096(7)  0.7414(8)  0.8531(6)  0.8542(5) 0.9047(3) 0.9159(1) 0.8885(4) 0.9148(2)
Yeast_spoem 0.8367(7) 0.7681(8)  0.9109(6) 0.9130(5) 0.9904(3) 0.9901(4) 0.9954(2)  0.9955(1)
Yeast_alpha 0.9074(7) 0.8898(8) 0.9386(6) 0.9473(5) 0.9815(1) 0.9519(4) 0.9710(3)  0.9796(2)
Yeast_cdc 0.9122(7) 0.8836(8) 0.9376(6) 0.9445(5) 0.9786(3) 0.9758(4) 0.9787(2)  0.9834(1)
Yeast_cold 0.9213(7) 0.8646(8) 0.9250(6) 0.9338(5) 0.9826(3) 0.9820(4) 0.9836(2)  0.9880(1)
Yeast_diau 0.9128(6) 0.7557(8)  0.9052(7) 0.9301(5) 0.9771(2) 0.9648(4) 0.9720(3)  0.9858(1)
Yeast_dtt 0.9134(7) 0.8779(8) 0.9393(6)  0.9448(5) 0.9920(3) 0.9887(4) 0.9930(2)  0.9933(1)
Yeast_elu 0.9120(7) 0.8839(8) 0.9383(6) 0.9439(5) 0.9783(2) 0.9771(4) 0.9773(3) 0.9851(1)
Yeast_heat 0.9237(7) 0.8718(8) 0.9310(6) 0.9324(5) 0.9812(2) 0.9451(4) 0.9803(3)  0.9866(1)
Yeast_spo 0.8184(7) 0.7614(8) 0.9105(6) 0.9121(5) 0.9610(3)  0.9428(4) 0.9906(1)  0.9738(2)
Yeast_spo5 0.8855(7)  0.7486(8)  0.9020(6) 0.9067(5) 0.9469(4) 0.9494(3) 0.9700(2)  0.9838(1)
Movie 0.5848(7) 0.5509(8)  0.5872(6) 0.5953(5) 0.8406(4) 0.8881(2) 0.8501(3)  0.8889(1)
Avg.Rank 6.9286(7) 8.0000(8)  6.0000(6) 5.0714(5) 2.9286(3) 3.2143(4) 2.5000(2)  1.3571(1)

Table 9

Computational complexity of 8 LE algorithms imposed on LE learning of 14 datasets with ground-truth label distributions measured by runtime [s] | .
Algorithms LP ML GLLE LESC MDLRML PLEA LDML-R LEAML
Yeast-alpha 96.7089(7) 10.4143(3) 2101.2288(8) 0.6749(1) 3.3217(2) 21.2857(6) 19.0666(5) 15.7086(4)
Yeast-cdc 91.9976(6) 28.0560(5) 2058.3899(7) 2620.3463(8) 2.6802(1) 16.2703(3) 18.1193(4) 12.1933(2)
Yeast-cold 85.7640(6) 25.9546(5) 2098.2072(7) 2592.1138(8) 0.6458(1) 16.4845(3) 17.2280(4) 12.9326(2)
Yeast-diau 90.4889(6) 22.2115(5) 2164.7457(7) 2587.7626(8) 2.3170(1) 17.9098(4) 17.2450(3) 16.5481(2)
Yeast-dtt 85.0445(6) 24.5773(5) 2062.2618(7) 2568.7960(8) 2.5661(1) 17.8935(4) 17.1093(3) 12.8461(2)
Yeast-elu 91.1003(6) 31.2115(5) 1949.0746(7) 2244.6699(8) 3.1854(1) 17.3791(3) 18.2103(4) 12.2265(2)
Yeast-heat 88.0539(6) 33.0071(5) 2170.0425(7) 2324.9983(8) 1.8472(1) 17.9099(4) 17.2924(3) 14.5135(2)
Yeast-spo 88.1222(6) 21.0123(5) 2113.8297(7) 2491.1317(8) 0.6969(1) 17.8956(4) 17.1597(3) 14.8390(2)
Yeast-spo5 87.4979(6) 23.8147(5) 2234.4134(7) 2566.9491(8) 2.5439(1) 18.1495(4) 17.2504(3) 12.1442(2)
Yeast-spoem 100.8651(6) 7.5451(2) 2053.6103(7) 2654.3258(8) 0.7449(1) 17.6775(5) 17.0937(4) 16.4845(3)
Natural Scene  71.9972(3) 15.5970(2) 1098.1414(7) 2654.3258(8) 6.4686(1) 157.9247(4)  167.5837(5)  186.6003(6)
Movie 2223.9369(6) 340.6105(3)  59379.0917(8)  23081.6436(7) 251.4561(2) 216.8764(1) 446.2196(4) 448.2214(5)
SJAFFE 0.6692(2) 2.2597(3) 49.4767(8) 40.8202(7) 0.0251(1) 3.2242(4) 5.9159(5) 24.0298(6)
SBU_3DFE 109.8430(6) 13.2224(3) 2068.8012(7) 2726.1515(8) 0.8892(1) 23.9204(4) 8.8391(2) 24.0299(5)
Average rank 5.5714(6) 4.0000(5) 7.2143(7) 7.3571(8) 1.1429(1) 3.7857(4) 3.7143(3) 3.2143(2)
Table 10

Table 11

Friedman statistics F- for the label distribution recovery re-
sults in terms of each evaluation metric, with the critical
value at a significance level of 0.05 (comparing algorithms: 8,
datasets: 14) .

Evaluation metric F Critical value
Chebyshev distance 60.1633 2.112
Clark distance 75.1611

Canberra distance 68.5722

Kullback-Leibler divergence  78.7523

cosine coefficient 55.2440

intersectional similarity 153.6761

4.2. Multilabel classification experiments

Having establishing that statistically, the LE learning accuracy of
the proposed LEAML algorithm is better than the existing state-of-
the-art LE algorithms, we next evaluate the multilabel classification
capability of our LEAML.

4.2.1. Multilabel datasets, MLL metrics and MLL benchmarks

For this set of multilabel classification experiments, we em-
ploy the 10 real-word multilabel datasets without ground-truth la-
bel distributions from [36]. These 10 datasets are summarized in
Table 12, where we have S: the number of examples, T: the num-
ber of testing samples, dim(S): the feature dimensions, L(S): the
number of class labels, LCard(S): the label cardinality, LDen(S): the
label density, DL(S): the distinct label sets, and F(S): the feature
type.

Bayesian signed-rank test on the label distribution recovery performance among 8 algorithms in terms of six evaluation metrics (rope = 0.01, and default prior strength is

056).

LEAML versus Evaluation metric

Chebyshev Clark Canberra KL divergence cosine Inters

LP [1.0,0.0,0.0] [1.0,0.0,0.0] [1.0,0.0,0.0] [1.0,0.0,0.0] [1.0,0.0,0.0] [1.0,0.0,0.0]

ML [1.0,0.0,0.0] [1.0,0.0,0.0] [1.0,0.0,0.0] [1.0,0.0,0.0] [1.0,0.0,0.0] [1.0,0.0,0.0]

GLLE [1.0,0.0,0.0] [1.0,0.0,0.0] [1.0,0.0,0.0] [1.0,0.0,0.0] [0.99588,0.0,0.00412] [1.0,0.0,0.0]

LESC [1.0,0.0,0.0] [1.0,0.0,0.0] [1.0,0.0,0.0] [1.0,0.0,0.0] [0.99942,0.0,0.00058] [1.0,0.0,0.0]
MDLRML [0.99822,4e-05,0.00174] [0.99924,0.0,0.00076] [0.99466,0.0,0.00534] [0.99986,0.00014,0.0] [0.98294,0.00452,0.01254] [1.0,0.0,0.0]

PLEA [0.7511,0.0,0.2489] [0.99484,0.0,0.00516] [0.97136,0.0,0.02864] [0.8643,0.00038,0.13532] [0.97044,0.0,0.02956] [0.99998,0.0,2e-05]
LDML-R [0.37264,0.0,0.62736] [0.99634,0.0,0.00366] [0.95998,0.0,0.04002] [0.98192,0.00114,0.01694] [0.95404,0.0057,0.04026] [0.99616,0.0,0.00384]

1
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Table 12
Characteristics of 10 real-world datasets from [36] with unknown ground-truth label distribu-
tions used in multilabel classification experiments with MLL metrics .

Dataset S T dim(S) L(S) LCard(S) LDen(S) DL(S) F(S)
Emotions 415 178 72 6 1.869 0.311 27 numeric
Medical 645 333 1449 45 1.245 0.028 94 nominal
Cal500 250 252 68 174 26.044 0.150 502 numeric
Birds 320 325 260 19 1.014 0.053 133 numeric
Enron 1123 579 1001 53 3.378 0.064 753 nominal
Yeast 1200 1217 103 14 4.237 0.303 198 numeric
Image 1000 1000 294 5 1.236 0.247 20 numeric
Scene 1211 1196 294 6 1.074 0.179 15 numeric
Corel5k 2500 2500 499 374 3.522 0.009 3175 nominal
Bibtex 3700 3695 1836 159 2.402 0.015 2856 nominal
Table 13
MLL performance comparison of 9 algorithms on 10 real-world datasets of Table 12.
Yeast Emotions Medical ~ Cal500 Birds Image Scene Enron Corel5k  Bibtex
Algorithm Hamming Loss|
ML 0.2073  0.2388 0.0114 0.1578 0.0636  0.1642  0.0847 0.0546 0.0098 0.0126
ML-kNN 0.1980  0.2706 0.0153 0.1416  0.0546  0.1862  0.0989 0.0620  0.0094 0.0136
MLNB 0.2166  0.2804 0.0339 0.1395 0.0779 0.2300 0.1299 0.1145 0.0145 0.0824
MLFE 0.2038  0.2434 0.0112 0.1549 0.0615 0.1616 0.0903 0.0543 0.0101 0.0124

BP-MLL 0.4500  0.2987 0.0290 0.1472  0.0683  0.3056  0.2904 0.0682  0.0094 0.0160
MDLRML 0.1910  0.2247 0.0116 0.1412 0.0514 0.1644 0.0872 0.0570  0.0156 0.0094

PLEA 0.1945  0.2406 0.0115 0.1596  0.0645 0.1654 0.0847 0.0546  0.0098 0.0126
LDML-R 0.1950  0.2350 0.0277 0.1489  0.0510 0.2484 0.1809 0.0668  0.0092 0.0125
LEAML 0.1914  0.2491 0.2440 0.1413  0.0552 0.1610 0.0872 0.0554  0.0094 0.0127
Algorithm ranking loss|,

ML 0.3022  0.2228 0.1084 0.4721  0.3288 0.1467 0.0580 0.3210 04177 0.0897
ML-kNN 0.1715 02724 0.0540 0.1928 03070 0.1927 0.0931 0.1220 0.2663 0.2234
MLNB 0.2323  0.2150 0.0599 0.1927 0.2157 0.2420 0.1124 0.1768  0.1267 0.1584
MLFE 0.1777  0.2061 0.0209 0.2089  0.3210 0.1443 0.0713  0.0958 0.3156 0.0914

BP-MLL 0.4450  0.4803 0.2445 0.1996 03964 0.7956  0.5992 03738  0.2695 0.4764
MDLRML 0.2937  0.1812 0.1440 0.1769 0.2916 0.1352 0.0577 0.3076  0.4303 0.1017

PLEA 0.2904  0.2166 0.1093 04749 0.3865 0.1456  0.0575 0.3229  0.4439 0.0897
LDML-R 0.3038 0.2345 0.4970 0.4836 0.4858 0.4623 0.4766 0.3124 0.4982 0.4994
LEAML 0.2877 0.2222 0.1435 0.4654 0.2922 0.1352 0.0580 0.2951 0.4268 0.0886
Algorithm one errory,

ML 0.2857 0.5000 0.3421 0.0805 0.7895 0.2000 0.0000 0.6731 0.9360 0.3899
ML-kNN 0.2345 0.4213 0.2492 0.1190 0.7356 0.3600 0.2425 0.3921 0.7892 0.6225
MLNB 0.4170 0.4848 0.4234 0.1190 0.5517 0.4390 0.2851 0.5233 0.8804 0.5876
MLFE 0.2356 0.3708 0.1471 0.1984 0.7471 0.2680 0.2157 0.2608 0.7832 0.3710

BP-MLL 0.7034  0.7022 0.4024 0.1071 0.7989  0.6710 0.8269  0.2642  0.9716 0.4547
MDLRML 0.0714  0.3333 0.3684 0.0747 0.3396 0.2000 0.3000 0.0639  0.7680 0.3322

PLEA 0.1429  0.5000 0.3421 0.0776  0.4474 0.0000 0.0000 0.6923  0.9302 0.3459
LDML-R 0.2857 0.5000 0.1421 0.1494 0.0526 0.2000 0.1667 0.0566 0.0116 0.0063
LEAML 0.0714 0.1502 0.0000 0.1034 0.0526 0.0000 0.0000 0.0385 0.0000 0.0000
Algorithm coverage|

ML 0.8749 0.1600 0.5236 0.2302 0.2836 0.9510 0.9282 0.4523 0.1813 0.2472
ML-KNN 0.6414 0.2247 0.3441 0.1319 0.3606 1.0420 0.5686 0.1631 0.1978 0.5723
MLNB 0.2499 0.2871 0.1925 0.1346 0.2695 1.2450 0.6564 0.2313 0.2102 0.3819
MLFE 0.6503 0.1887 0.1475 0.1354 0.3763 0.8410 0.4582 0.1495 0.2238 0.2586

BP-MLL 0.8990  0.3089 0.2955 13386  0.4415  2.1460 2.0761 0.2369  0.1980 0.7356
MDLRML 0.8620  0.1480 0.0590 0.2270  0.2660  0.9350 0.1870 0.4390  0.1830 0.1980

PLEA 0.8816  0.1570 0.0520 0.2281  0.2828 09512 0.9330 0.4579  0.1806 0.2457
LDML-R 0.8629  0.1723 0.3398 0.2302 02704 09608 1.0690 0.7529  0.1866 0.3477
LEAML 0.8636  0.1502 0.0340 0.2276  0.2649 0.9030 0.1199 0.4329 0.1748 0.2438
Algorithm average precisiont

ML 0.8228 0.7764 0.9806 0.7758  0.6430 0.8555 0.9329 0.9056  0.7059 0.9261
ML-kNN 0.6642  0.7142 0.7695 0.5054 0.6173 0.8187 0.9108 0.5512  0.5233 0.6528
MLNB 0.6936  0.6807 0.5227 0.5120 0.6955 0.7788  0.8993  0.5569  0.3559 0.8209
MLFE 0.6996  0.7901 0.8745 0.5377  0.7047 0.8617 0.9385 0.6581  0.5549 0.8672
BP-MLL 0.4297  0.5161 0.2081 04783 02460 05111 04200 0.2057 0.2012 0.0659
MDLRML 0.8316  0.7831 0.5748 0.7883  0.6841  0.7258  0.8394 0.2130  0.3470 0.3637
PLEA 0.5085  0.6217 0.5783 0.1815  0.1255 0.7073  0.8407 0.1890  0.0339 0.3871
LDML-R 0.6910  0.6743 0.9597 0.8416 0.9348 0.7271 0.7892 0.9217 0.9873 0.9824
LEAML 0.5802  0.6515 0.9597 0.8363 0.8849 0.9277 0.8395 09168 0.9652 0.8821

To evaluate multilabel classification performance, we choose the algorithms, specifically, the BP-MLL [38], the ML [15], the ML-KNN
five widely used MLL metrics [37], and they are: Hamming loss |, [39], the MLNB [40], and MLFE the [41].
ranking loss |, one error |, coverage |, and average precision 1.

The benchmark algorithms used in this set of multilabel clas- . o
sification experiments include our previous MDLRML [21], PLEA ~ 42.2. Multilabel classification performance

[22] and LDML-R [23] as well as five existing state-of-the-art MLL The experimental results are listed in Table 13, where bold
black number indicates the best performance and bold blue num-
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Table 14
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Bayesian signed-rank test on the multilabel classification performance among the 9 algorithms in terms of five evaluation metrics (rope = 0.01, and default prior strength is

056).

LEAML versus

Evaluation metric

Hamming loss| ranking loss| one errory, coverage, average precisiont
ML [0.62732, 0.0007, 0.37198] [0.92448, 0.0003, 0.07522] [0.99968, 0.00016, 0.00016] [1.0, 0.0, 0.0] [0.51918, 0.0, 0.48082]
ML-kNN [0.93258, 0.0003, 0.06712] [0.14964, 4e-05, 0.85032] [1.0, 0.0, 0.0] [0.8928, 2e-05, 0.10718] [0.99456, 2e-05, 0.00542]
MLNB [0.95454, 2e-05, 0.04544] [0.05134, 2e-05, 0.94864] [1.0, 0.0, 0.0] [0.79686, 0.0, 0.20314] [0.99228, 0.0, 0.00772]
MLFE [0.75654, 0.0, 0.24346] [0.038, 2e-05, 0.96198] [1.0, 0.0, 0.0] [0.57846, 2e-05, 0.42152]  [0.91942, 0.0, 0.08058]
BP-MLL [0.97216, 0.00018, 0.02766]  [0.9674, 4e-05, 0.03256] [1.0, 0.0, 0.0] [0.99764, 0.0, 0.00236] [1.0, 0.0, 0.0]
MDLRML [0.16516, 0.00216, 0.83268]  [0.5875, 0.00088, 0.41162] [0.99932, 0.00012, 0.00056] [0.86442, 0.0, 0.13558] [0.98304, 0.00032, 0.01664]
PLEA [0.63194, 0.0008, 0.36726] [0.92612, 2e-05, 0.07386] [0.99772, 0.0015, 0.00078] [1.0, 0.0, 0.0] [0.99996, 0.0, 4e-05]
LDML-R [0.64654, 0.0001, 0.35336] [1.0, 0.0, 0.0] [0.99998, 2e-05, 0.0] [0.99994, 0.0, 6e-05] [0.14304, 0.00036, 0.8566]

ber indicates the second best performance. The top four ranking al-
gorithms are as follows. Our LEAML achieves the best performance
in 17 cases and the second best performance in 11 cases. The MDL-
RML attains the best performance in 10 cases and the second best
performance in 11 cases. The LDML-R has 8 cases of the best per-
formance and 8 cases of the second best performance. The fourth
ranking MLFE achieves the best performance in 8 cases and the
second best performance in 6 cases.

4.2.3. Statistical validation of multilabel classification performance

To test the statistical relationship between LEAML and the other
algorithms, the results of Bayesian signed-rank test [35] are given
in Table 14. It can be seen that the LEAML algorithm wins over the
ML, BP-MLL and PLEA in all the five metrics, while it wins over ML-
kNN, MLBN, MLFE, MDLRML and LDML-R in four metrics but loses
to each of these competitors in one metric. The results of Bayesian
signed-rank test thus suggest that our LEAML has statistically sig-
nificant advantages over these benchmarks in MLL performance.

5. Conclusions

In this paper, we have proposed a novel label enhancement
manifold learning algorithm to solve the multi-label learning prob-
lem. Our proposed LEAML consists of three interconnected compo-
nents. First we excavate the underlying label information contained
in the feature space through an incremental semi-supervised sub-
space learning. Then we estimate the label distribution via label
propagation. Afterward we use the estimated label distributions
and extracted features to train the label distribution prediction
model via the conditional random field, and the maximum like-
lihood estimation of the label distribution predictor’s parameters
are obtained based on a gradient-descent iterative optimization
algorithm. Extensive experimental results involving 14 real-word
multilabel datasets with the ground-truth label distributions have
convincingly demonstrated the superior label distribution recov-
ery performance of our proposed LEAML algorithm over the well-
established state-of-the-art LE algorithms. Experimental results in-
volving 10 real-life datasets without ground-truth label distribu-
tions have demonstrated the excellent multilabel classification per-
formance of our LEAML algorithm compared with the state-of-the-
art MLL algorithms.
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