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a b s t r a c t 

We propose a label enhancement model to solve the multi-label learning (MLL) problem by using the in- 

cremental subspace learning to enrich the label space and to improve the ability of label recognition. In 

particular, we use the incremental estimation of the feature function representing the manifold structure 

to guide the construction of the label space and to transform the local topology from the feature space 

to the label space. First, we build a recursive form for incremental estimation of the feature function 

representing the feature space information. Second, the label propagation is used to obtain the hidden 

supervisory information of labels in the data. Finally, an enhanced maximum entropy model based on 

conditional random field is established as the objective, to obtain the predicted label distribution. The 

enriched label information in the manifold space obtained in first step and the estimated label distri- 

butions provided in second step are employed to train this enhanced maximum entropy model by a 

gradient-descent iterative optimization to obtain the label distribution predictor’s parameters with en- 

hanced accuracy. We evaluate our method on 24 real-world datasets. Experimental results demonstrate 

that our label enhancement manifold learning model has advantages in predictive performance over the 

latest MLL methods. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

For many real-world multi-label problems, different labels have 

ifferent importance. For example, a natural scene image is labeled 

ith multiple labels such as ‘sky’, ‘water’, ‘forest’ and ‘cloud’, but 

he degree to which these labels describe the image is different [1] . 

here are many similar examples in diverse applications, where 

ultiple labels related to an example do not have the same im- 

ortance to the example. To reflect the different degrees of impor- 

ance for the set of multiple labels, a more natural way to label 

n instance x is to assign a real number d 
y 
x to each possible label 

 , to represent the degree to which y describes x . We can choose

 

y 
x ∈ [0 , 1] , and make the label set complete, i.e., using all the la-

els in the set always fully describes the instance. Then, 
∑ 

y d 
y 
x = 1 . 

uch a d 
y 
x is called the description degree of y to x . The description

egrees of all the labels for an instance form a data structure con- 

orming to the probability distribution called label distribution. The 

earning process on the instances labeled by label distributions is 

alled label distribution learning (LDL). 
∗ Corresponding author. 
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Label distribution is more general in most supervised learning 

roblems because the relevance or irrelevance of a label to an in- 

tance is essentially relative. When multiple labels are associated 

ith an instance, the relative importance among them is more 

ikely to be different than exactly equal. However, in practice, it 

s not realistic to directly obtain the descriptive degree of each la- 

el in many applications. This is because the process of quantify- 

ng the description degrees is costly, and there is often no objec- 

ive quantitative standard for the descriptiveness of each label. The 

urrent common data labeling method is that an instance x is as- 

igned with l 
y 
x ∈{ 0 , 1 } to each possible label y . If l 

y 
x =1 , it means

hat y is a relevant label of x , and if l 
y 
x =0 , it means that y is an ir-

elevant label of x . l 
y 
x expresses the logical relationship of yes or no, 

nd for an instance, the logical vector formed by the logical values 

 

y 
x of all the labels is called logical label. Most of the existing data 

se logical labels as the supervision information of instances. 

It can be visualized that the supervision information in these 

ata essentially follows a certain label distribution. Although this 

abel distribution is not explicitly given, it is possible to recover 

t through the analysis of the data set. This process is called la- 

el enhancement (LE). LE refers to the process of transforming the 

riginal logical labels of the training samples into the label distri- 

utions. Similar to the multi-label classification method based on 

https://doi.org/10.1016/j.patcog.2022.109189
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Fig. 1. An example of label enhancement. 
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mbedding [2] , LE also relies on the mining of label-related infor- 

ation hidden in the training set. Let Y be the original logical label 

pace of the samples, and denote D as the label distribution space 

fter LE. Then, LE expands the original label space Y ={ 0 , 1 } c to the

abel distribution space D = [0 , 1] c , where c is the number of labels.

n fact, D constitutes a hypercube in the c-dimensional Euclidean 

pace, and Y is only located at the vertices of the hypercube. LE 

einforces the supervision information in the training set via the 

orrelation among the labels. After the label distributions are re- 

overed, better prediction results can be obtained through LDL. An 

xample of LE is illustrated in Fig. 1 . 

Motivated by the extensive review of the existing literature for 

DL, manifold learning (ML) and LE given in the related work sec- 

ion, in this paper, we propose a label enhancement algorithm 

ased on ML (LEAML) for multi label enhancement learning. The 

EAML algorithm is also a probabilistic label learning model to 

olve the multi-label learning (MLL) problem. Our LEAML consists 

f the following three components. 

1. Manifold space enhanced feature extraction: Based on the in- 

cremental semi-supervised subspace learning algorithm [3] , we 

extract accurate and reduced-dimension features in the feature 

space. 

2. The label distribution estimation via label propagation: We ex- 

tend the label propagation technique to the problem of label 

distribution prediction, in order to obtain the hidden supervi- 

sory information of labels in the data. 

3. Prediction from the conditional random field via estimated la- 

bel distribution: To obtain the predicted label distribution, we 

construct an enhanced maximum entropy predictor model on 

a conditional random field. Specifically, we use the enhanced 

reduced-dimension features obtained in step 1), and we substi- 

tute the logical labels with the estimated enriched label distri- 

butions acquired in step 2). A gradient-descent optimization is 

then performed to obtain the maximum likelihood estimate for 

the parameters of the label distribution predictor. 

The rest of this paper is organized as follows. The LDL, ML and 

E are first reviewed in Section 2 . Our proposed LEAML algorithm 

s detailed in Section 3 , and we emphasize our novel contributions 

n comparison with the existing LE algorithms. In Section 4 , exten- 

ive experimental evaluation is carried out to compare our LEAML 

lgorithm with the existing state-of-the-art methods. Our conclu- 

ions are given in Section 5 . 
2 
. Related work 

.1. Label distribution learning 

In the multi-label distribution learning framework, each label y j 

f an instance x is assigned a real value d 
y j 
x , called the degree of 

escription of x by label y j , which represents the degree to which 

abel y j describes x . Let the c labels y i = 

[
y i 

1 
y i 

2 
· · · y i c 

]
∈Y be asso- 

iated with instance x i . Then the data set of label distributions for 

 i can be denoted as d i = d 
y i 

x i 
= 

[
d 

y i 
1 

x i 
d 

y i 
2 

x i 
· · · d 

y i c 
x i 

] . Because the label

istribution conforms to the probability distribution, much of the 

tatistical theory can be directly applied to the LDL. First, d 
y j 
x can 

e expressed as a conditional probability form, d 
y j 
x =P (y j | x ) . As- 

ume that P (y j | x ) is a parametric model, denoted as P (y j | x ; θ j ) ,

ith the parameter vector θ j . Then the LDL becomes the learning 

f the parameter vector θ j , so that P (y j | x ; θ j ) can output a distri-

ution similar to d 
y j 
x . Denote θ={ θ1 , · · · , θc } . If the Kullback-Leibler

KL) divergence is used as the measure of the similarity between 

he ground-truth label distribution and the predicted label distri- 

ution, the best parameter θ
� 

is determined by 

� = arg max 
θ

∑ 

i 

∑ 

j 

d 
y i 

j 

x i 
ln P 

(
y i j | x i ; θ j 

)
. (1) 

nce θ
� 

is determined, the unknown label distribution for new 

ample ( x ′ , y ′ 
j 
) can be predicted as P 

(
y ′ 

j 
| x ′ ; θ� 

j 

)
. 

Using P (y j | x ; θ j ) for classification is equivalent to the maxi- 

um posterior probability decision [4] . This shows that single- 

abel learning (SLL) is a special case of LDL. 

For MLL, the descriptive degree d 
y i 

j 
x i 

of the relevant label of each 

nstance x i satisfies [5] 

 

y i 
j 

x i 
= 

{
1 

| Y i | , y i 
j 
∈ Y i , 

0 , y i 
j 
/ ∈ Y i , 

(2) 

here Y i = { j : y i 
j 
= 1 , ∀ j} is the relevant label set of x i . By using

2) , the optimization (1) can be rewritten as: 

� = arg max 
θ

∑ 

i 

1 

| Y i | 
∑ 

y i 
j 
∈ Y i 

ln P 
(
y i j | x i ; θ j 

)
. (3) 

he above formula can be seen as first using entropy-based label 

ssignment [6] to convert the multi-label data set into a weighted 
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ingle-label data set, and then performing the maximum likelihood 

stimation of θ. Therefore, MLL is also a special case of LDL. Hence, 

DL can be regarded as a more general learning framework than 

LL and MLL. 

There are three categories of LDL algorithms under this learn- 

ng framework [7] . The first category includes PT-Bayes and PT- 

VM [7] , which transform the LDL problem into a traditional SLL 

r MLL problem. The second category transforms the SLL or MLL 

lgorithm into a learning algorithm that can process label distri- 

ution data, such as AA-kNN and AA-BP [7] . The algorithms of the 

hird category are specifically designed according to the inherent 

haracteristics of LDL, and they include SA-IIS and SA-BFGS [7] . 

The above algorithms mostly apply the true label distributions 

nd the predicted label distributions in the KL divergence metric to 

easure the distance between the two distributions, and then use 

he maximum entropy model to establish a parametric model of 

he label distribution. Since most real-world datasets do not have 

abel distribution, we can only predict the label distributions d 
y i 

j 
x i 

of 

he training set using the labeled samples 
{

x i , y 
i 
}

, that is, training 

he parametric model of the label distribution based on 

{
x i , y 

i 
}

by 

 semi-supervised algorithm [7] . 

.2. Manifold learning 

ML has been widely combined with various state-or-the-art 

earning approaches, e.g., deep learning, to solve the challenging 

roblems in many practical applications. Below we review some 

ypical applications of ML. 

Hong et al. [8] proposed a multi-task learning framework based 

n deep convolutional neural network (DCNN). In this framework, 

CNN-based feature mapping and multi-task learning are con- 

ected to carry out DCNN-based regression for face-pose estima- 

ion. This framework unifies the multiview problem and multi- 

odal problem in a single model. In addition, the authors adopted 

anifold regularization to form manifold regularized convolutional 

ayers, so that the inner relationship of neurons can be utilized to 

reserve the local properties of neurons, leading to better feature 

epresentation. 

Yu et al. [9] proposed a learning-to-rank model to jointly con- 

ider visual features and click features in image retrieval. A robust 

nd accurate ranking model is built by using the click features, and 

he visual features are utilized to further enhance the model’s per- 

ormance. By integrating the visual features and click features, the 

uthors designed an objective function, in which the hypergraph 

egularizer and linear model are adopted to respectively take these 

wo features into consideration. An efficient algorithm based on 

ast alternating linearization was designed to solve the resulting 

ptimization. 

In [10] , the authors devised a hierarchical deep word embed- 

ing (HDWE) model by integrating sparse constraints and an im- 

roved RELU operator to address click feature prediction from 

oisy and sparse visual features. Compared with traditional em- 

edding models, HDWE can better predict the click features of im- 

ges from coarse to fine through hierarchical semantics. 

In [11] , the authors proposed a pose recovery method using 

onlinear mapping with deep neural network. Specifically, feature 

xtraction is based on multimodal fusion and back-propagation 

eep learning. In multimodal fusion, a unified feature description 

s constructed using a hypergraph Laplacian with low-rank repre- 

entation, while in back-propagation deep learning, the nonlinear 

apping is learned from 2D image to 3D pose with parameter 

ne-tuning. 

To address high dimensionality of image features and low effi- 

iency of retrieving process in image-based 3D human pose recov- 

ry, the authors of [12] proposed an approach to recover 3D human 
3 
oses from silhouettes by adopting locality sensitive sparse coding 

n the retrieving process. The method incorporates a local simi- 

arity preserving term into the objective of sparse coding, which 

roups similar silhouettes and alleviates the instability of sparse 

odes. 

.3. Label enhancement 

Both traditional SLL and MLL treat each label as a logical indi- 

ator, with +1 indicating a relevant label and -1 (or 0) indicating 

n irrelevant label. This type of label is called logical label, which 

annot provide the explicit relative importance of each label. By 

ontrast, label distribution that assigns a real value from 0 to 1 to 

ach label to indicate the relative importance of the label to the 

nstance is called numerical label. However, for real-world applica- 

ions, it is difficult to obtain the importance of a label directly. If 

he label importance can be obtained and used in training, it will 

reatly enhance MLL. Therefore, we need a way to reconstruct nu- 

erical labels from logical multi-label data. This is called LE. We 

ow review the latest LE algorithms. 

.3.1. LE Algorithm based on label propagation 

Graph-based LE algorithm represents the topological structure 

etween instances with a graph model. Based on some reasonable 

ssumptions, the relationship between inter-instance correlation 

nd inter-label correlation can be established, and the logical labels 

f the instance are enhanced into the label distributions. Specifi- 

ally, Zhang et al. [13] applied the label propagation (LP) method in 

emi-supervised learning to LE. This LE algorithm based on LP rep- 

esents the topological structure between instances by using graph 

odel. First, a label propagation matrix is constructed based on 

he correlation between instances. The algorithm utilizes the differ- 

nt path weights in the propagation process to make the descrip- 

ion of different labels naturally different, to reflect the inter-label 

elationship embedding in the training data. This LP algorithm is 

n fact corresponds to the regularization framework of [14] . 

However, this LP process imposes high complexity due to the 

alculation of paired distances in the whole feature space, and 

ome unnecessary information may be introduced, leading to the 

ecrease of accuracy. More importantly, the LP algorithm is essen- 

ially the propagation of logical label, and the final normalization 

s used to force the logical label into the label distribution, which 

annot reflect the essence of LE, namely, to predict the label dis- 

ribution of unknown instances through the relationship between 

nown instances. 

.3.2. LE Algorithm based on ML 

Hou et al. [15] proposed an LE method based on ML. Similar to 

he LE based on LP, a fully connected graph is constructed using 

he training examples, and the algorithm establishes the relation- 

hip between instances correlation and label correlation based on 

moothness hypothesis [16] . The underlying assumption is that the 

ata are distributed on certain manifold in both feature space and 

abel space. To explore the local topological structure in the train- 

ng set, the local topological structure between the examples is ob- 

ained by solving the linear relationship according to the locally 

inear embedding [17] . By reconstructing the manifold of the fea- 

ure space and the label space, the topological relationship of the 

eature space is transferred into the label space via the smooth- 

ess assumption. Hence, the topological relationship of the feature 

pace manifold is used to guide the construction of the label space 

anifold, thereby the logical labels of the examples are enhanced 

o the label distributions. 

This ML algorithm [15] enhances the logical labels into the la- 

el distribution via two separate steps. First, it reconstructs the 

tructural information in the label space from the feature space, 



C. Tan, S. Chen, X. Geng et al. Pattern Recognition 135 (2023) 109189 

a

p

s

f

d

2

L

b

t

i

r

w

b

n

p

t

l

j

a

c

l

o

p

t

r

s

2

t

l

f

t

a

n

i

s

H

p

t

2

r

r

a

l

t

t

T

a

i

e

i

t

2

b

b

b

d

t

s

m

r

a

h

l

u

2

(

t

u

s

n

a

h

u

a

m

r

h

p

s

S

t  

L  

a

p

3

t  

l  

d

t

f

t

t

T

s

f  

V  

e  

e

c

t

s

e

e

c

t

m

i  

a

m

m

w

nd second it uses the quadratic programming to solve the label 

rediction of unknown instances. These two steps require the two 

eparate optimization processes with the two separate objective 

unctions, which inevitably introduces error and reduces the pre- 

iction accuracy. 

.3.3. Graph laplacian LE 

Xu et al. [18] proposed an LE algorithm called graph Laplacian 

E (GLLE), to recover the label distributions from the logical labels 

y mining the hidden importance from training instances through 

he topological information of the feature space. GLLE is also a typ- 

cal representative of LE based on graph model. Unlike the LP algo- 

ithm [13] , which calculates the distance between samples in the 

hole feature space, GLLE selects the instance’s k nearest neigh- 

ors and calculates the distance between the instance and its k 

earest neighbors, which reduces the computational cost and im- 

roves the accuracy. GLLE also integrates the topological informa- 

ion of the feature space and the loss function that predicts the 

abel distribution through logical label into a single combined ob- 

ective function, thus, avoiding the need to construct the two sep- 

rate objective functions, as in the case of the ML algorithm [15] . 

Like other LE algorithms, GLLE has a natural ‘defect’, as its first 

omponent loss function also models the difference between the 

ogical labels and the predicted label distributions. Therefore, like 

ther LE algorithms, it also choose the numerical label as close as 

ossible to the original logical label. But this is not consistent with 

he ‘physical’ interpretation of the label distribution, namely, rep- 

esenting the degree to which the original label describes the in- 

tance. 

.3.4. LE With sample correlations 

The LE with sample correlations (LESC) via low-rank representa- 

ion algorithm [19] obtains the label distribution by exploiting the 

ow-rank representation to excavate the global information in the 

eature space, which is different from the GLLE [18] that exploits 

he local similarity. The first component loss function for the LESC 

lgorithm is the same as that of the GLLE, but its second compo- 

ent loss function is based on the low-rank representation, which 

s different from that of the GLLE. 

The BFGS [20] is adopted to solve the optimization problem as- 

ociated with the LESC, and hence to obtain the label distributions. 

owever, the convergence of BFGS is hard to determine. The usual 

ractice is to determine the number of iterations manually. This is 

ime consuming particularly for large-size problems. 

.3.5. Multilabel distribution learning based on multi-output 

egression and ML 

Recently, we proposed a multilabel distribution learning algo- 

ithm based on multi-output regression through ML, referred to 

s MDLRML [21] . By exploiting the samples’ ML and the LDL, we 

ink these two spaces’ similar and smooth manifolds. This facili- 

ates using the topological relationship of the manifolds in the fea- 

ure space to guide the manifold construction of the label space. 

he smoothest regression function is used to fit the manifold data, 

nd a locally constrained multi-output regression is designed to 

mprove the data’s local fitting. Based on the regression results, we 

nhance the logical labels into the label distributions, thereby min- 

ng and revealing the label’s hidden information regarding impor- 

ance or significance. 

.3.6. Probabilistic label enhancement algorithm 

In our recent work [22] , we proposed a very different proba- 

ilistic LE algorithm, called PLEA, which enhances the logical la- 

els into the label distributions based on the principle that the la- 

el distribution represents the degree to which the original label 

escribes the instance. Specifically, the supervised information in 
4 
he label manifold is utilized in the feature manifold space con- 

truction to improve the accuracy of feature extraction, while dra- 

atically reducing the feature dimension. Then the robust linear 

egression is employed to estimate the label distributions associ- 

ted with the extracted reduced-dimension features. Using the en- 

anced reduced-dimension features and their associated estimated 

abel distributions in the enhanced maximum entropy model, the 

nknown true label distributions are accurately estimated. 

.3.7. Label distribution manifold learning algorithm 

Very recently, we developed a novel label distribution ML 

LDML) method [23] to solve the LDL problem. We first extract 

he accurate and reduced-dimension features of the training data 

sing ML. Then we estimate the unknown label distributions as- 

ociated with the extracted features based on multi-output ker- 

el regression. The extracted reduced-dimension features and their 

ssociated estimated label distributions are used to design an en- 

anced maximum entropy model, which enables us to estimate the 

nknown true label distributions for the training data accurately 

nd efficiently. We also proposed to apply the tangent space align- 

ent regression in the second stage, resulting in the LDML-R algo- 

ithm [23] that has better LDL performance at the cost of imposing 

igher complexity, compared with the LDML. 

In the next section, after deriving our LEAML method, we will 

oint out the difference or novelty of the LEAML, in compari- 

on with the existing methods surveyed in this section. Also in 

ection 4 , we will use the seven latest LE methods reviewed in 

his section, namely, the LP [13] , the ML [15] , the GLLE [18] , the

ESC [19] , the MDLRML [21] , the PLEA [22] and the LDML-R [23] ,

s the benchmarks for the performance comparison with our pro- 

osed LEAML. 

. The proposed algorithm 

The goal of LDL is to build a parametric model for the label dis- 

ribution d 
y j 
x =P (y j | x ; θ j ) , 1 ≤ j ≤ c, for sample x and its c logical

abels y j . After obtaining the parameters { θ j , 1 ≤ j ≤ c} , the label

istributions d 
y ′ 

j 

x ′ of new data ( x ′ , y ′ 
j 
) can be predicted. According 

o the smooth assumption [16] , samples close to each other in the 

eature space are likely to have the same logical labels. Based on 

his property, it can be inferred that points close to each other in 

he feature space are likely to have similar numerical label vectors. 

his leads to the hypothesis that the label space and the feature 

pace have similar local topological structures. The topology of the 

eature space can be represented as a graph G = (V, E, W) , where

 ={ x i , 1 ≤ i ≤ n } is the set of vertices consisting of all the training

xamples, and E is the set of all the edges in the graph, with edge

 i, j representing the relationship between x i and x j , while W is 

haracterized by the weight matrix W = 

[
w i, j 

]
n ×n , with w i, j being 

he weight of edge e i, j . In order to estimate the local topological 

tructure of the feature space, the local neighbor information of 

ach example is used to construct the graph G. According to [15] , 

ach example can be reconstructed from its neighbors by a linear 

ombination. Therefore, the local topological structure of the fea- 

ure space can be obtained by solving the following optimization 

in 

W 

n ∑ 

i =1 

∥∥∥x i −
∑ 

j � = i 
w i, j x j 

∥∥∥2 

, (4) 

n which w i, j = 0 if x j is not an k -nearest neighbor of x i . The

bove optimization can be transformed into a quadratic program- 

ing problem 

in 

W 

W 

T G W , (5) 

here G = 

[
g i, j 

]
n ×n with g i, j = ( x i − x j ) 

T ( x i − x j ) . 
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û

d

t

t

e

c

f

b

t

3

i

h

o

n

t

m

h

t

t

c  

b

s

a

o

d

E[
t[
t i 
Since the feature space and the label space should have a sim- 

lar local topological structure, the following regularization term 

an be introduced [24] 

 = ‖ U − W U ‖ 

2 
F = tr 

(
U 

T M U 

)
, (6) 

here M = ( I −W ) T ( I −W ) , and U ∈R 

n ×c represents the numerical 

abel space, composed of the eigenvectors corresponding to the c

inimum eigenvalues of M , while I is the identity matrix of appro- 

riate dimension. To train a mapping from the logical label space 

o the numerical label space, the regression model can be obtained 

y solving the regularized optimization problem: 

in 

U 

∥∥U − Y 

T 
∥∥2 

F 
+ tr 

(
U 

T M U 

)
, (7) 

here Y = 

[
y 1 y 2 · · · y n 

]
∈R 

c×n is the logical label matrix. This op- 

imization can be solved by quadratic programming, to construct 

he label space U . 

Given the dataset of size n , the algorithm first constructs the 

raph, i.e., compute W ∈R 

n ×n . Then it needs to construct the label 

pace U ∈R 

n ×c by solving the optimization (7) , which may impose 

igh complexity, particularly for large n . Therefore, we employ in- 

remental label space construction method to construct U as de- 

cribed in the following subsection. 

.1. Manifold space enhanced feature extraction 

For the regularization term of the objective function, let v k 
e the eigenvector of M k associated with the eigenvalue λk at 

he k th iteration, namely, M k v k = λk v k . Define u k = M k v k . Then ̂

 u n = 

1 
n 

∑ n 
k =1 u k is the n th step estimate of u , which can be expressed as 

 

 n = 

1 

n 

n ∑ 

k =1 

u k = 

1 

n 

n ∑ 

k =1 

M k v k = 

n − 1 

n 

(
1 

n − 1 

n −1 ∑ 

k =1 

M k v k 
)

+ 

1 

n 

M n v n 

= 

n − 1 

n 

̂ u n −1 + 

1 

n 

M n v n , (8) 

here v n is the n th step estimate of v . Based on the statistical ef-

ciency [3] , it is easy to get λ= 

∥∥̂ u 

∥∥, v = 

̂ u ∥∥̂ u 

∥∥ , and the following

emma. 

emma 1. Let { M n } be a sequence of real matrices. If lim 

n →∞ 

M n = M ,

hen lim 

n →∞ 

1 
n 

n ∑ 

i =1 

M i = M , where M i is the estimate of M at the i th step. 

Since lim 

n →∞ 

v n = lim 

n →∞ 

̂ u n −1 ∥∥̂ u n −1 

∥∥ = v , v n can be estimated by 
̂ u n −1 ∥∥̂ u n −1 

∥∥ . 

his leads to a recursive formula for incremental estimation of the 

eature function representing the weight of the sample edge in the 

eature space 

 

 n = 

n − 1 

n 

̂ u n −1 + 

1 

n 

M n 

̂ u n −1 ∥∥̂ u n −1 

∥∥ , (9) 

here M n = ( I − W n ) T ( I − W n ) with W n been the n th-step estima- 

ion of W . Initially, we set ̂  u 1 = u 1 = M 1 v 1 , the first direction of data

pread. 

The procedure (9) estimates the first major eigenvector. For the 

otational convenience, we denote this first eigenvector by ̂  u 1 ,n . To 

ompute the other subsequent eigenvectors ̂  u j,n , 2 ≤ j ≤ c, we use 

he iterative procedure of [3] . According to [3] , it helps to generate

guiding observations’ in a complementary space for computing the 

ubsequent eigenvectors. Let z j = M [ : j] , where M [ : j] is the jth col- 

mn of M . To compute the second eigenvector, for example, we 

rst subtract from z 1 its projection onto the estimated first eigen- 

ector 

 2 = z 1 − z T 1 

̂ u 1 ,n ∥∥̂ u 1 ,n 

∥∥ ̂ u 1 ,n ∥∥̂ u 1 ,n 

∥∥ . (10) 
5 
he residual z 2 lies in the complementary space of ̂ u 1 ,n , which 

erves as the input data to the second iteration step. In this 

ay, the orthogonality is always enforced when the convergence 

s reached. This effectively exploits the sample available well and 

hus speeds up the convergence [3] . 

Combining the mechanism discussed above, we have the recur- 

ive form for incremental estimation of the c columns of U , which 

ill be used as the feature vectors in the conditional random field 

ased LE of Subsection 3.3 . 

P rocedure : Compute the first k , 1 ≤ k ≤ c, dominant eigenvec- 

ors, ̂  u 1 ,n , ̂  u 2 ,n , · · · ˆ u k,n , directly from u n , n = 1 , 2 , · · · , where ̂  u j,n −1 is

he (n − 1) th-step estimation of the jth eigenvector. Define M n,n as 

he n th-step estimation of M n = ( I − W n ) T ( I − W n ) with W n been 

he n th-step estimation of W . Actually, W n is computed via the lo- 

al linear embedding [17] , and M n = ( I − W n ) 
T ( I − W n ) then leads 

o the first estimation or the ‘initial’ value of M n,n . Further give the 

nitial conditions ̂  u j, 0 = M [:1] and z 0 ,n = M [:1] . 

For n = 1 , 2 , · · · do 

For j = 1 , 2 , · · · , min { k, n } do 

 

 j,n = 

n − 1 

n 

̂ u j,n −1 + 

1 

n 

M n,n 

̂ u j,n −1 ∥∥̂ u j,n −1 

∥∥ , (11) 

 j+1 ,n = z j,n − z T j,n 
̂ u j,n ∥∥̂ u j,n 

∥∥ ̂ u j,n ∥∥̂ u j,n 

∥∥ , (12) 

 n,n = z j+1 ,n z 
T 
j+1 ,n . (13) 

According to the statistical efficiency [3] , the estimated mean 

 

 n = 

1 
n 

∑ n 
k =1 u k is the efficient estimate of the mean of a Gaussian 

istribution [25] . Our method of using average is motivated its sta- 

istical efficiency. When ̂

 u n is drawn from a Gaussian distribution, 

he estimating ̂  u i,n has a high statistical efficiency and a fairly low 

rror variance. The c dominant eigenvectors, ̂ u j,n for 1 ≤ j ≤ c, in- 

rementally constructed by the above procedure are used as the 

eature functions to train the label distribution prediction model 

ased on the conditional random field via maximum likelihood es- 

imation in Subsection 3.4 . 

.2. Label distribution estimate via label propagation 

The LP method [26] is widely used in semi-supervised learn- 

ng. The core idea of this LP is very simple: the similar data should 

ave the same label. In each iteration of the LP process, each node 

f the graph exchanges its label information with its connected 

eighbor nodes. The idea is to select the community label that is 

he most common label among the connected nodes. As the com- 

unity label continues spreading, the nodes connected closely will 

ave a common label eventually. Our proposed algorithm extends 

his LP to the problem of label distribution prediction, to obtain 

he hidden supervisory information of labels in the data. Specifi- 

ally, inspired by the LP [26] , the label is propagated via the edges

etween samples. The greater the weight of the edge is, the more 

imilar the two samples are, and the label will propagate easier. As 

forementioned, a hidden label distribution can be defined as d 
y i 

j 
x i 

f the size n × c: 

 

y i 
j 

x i 
= 

g i, j ∑ c 
k =1 g i,k 

, 1 ≤ i ≤ n, 1 ≤ j ≤ c. (14) 

ach element g i, j represents an estimated label distribution. 

Give the multi-label training samples 
{

x i , y 
i 
}

n 
i =1 

, where y i = 

y i 
1 

y i 
2 
· · · y i c 

]
T denotes the c-dimensional logical label vector for 

he feature sample x i . We have the logical label matrix Y = 

y 1 y 2 · · · y n 
]

c×n storing all the binary labeling vectors. To estimate 

he label distribution for x , we first model the local relationship 
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mong x i and its k nearest neighbors by the linear least squares 

econstruction (4) to yield the weight matrix W = 

[
w i, j 

]
n ×n . Then 

he estimated label distribution g i = 

[
g i, 1 g i, 2 · · · g i,c 

]
T is calculated 

sing the formula: 

 i = ρy i + (1 − ρ) Y W [ : i ] , 1 ≤ i ≤ n, (15) 

here ρ is the balancing parameter and W [ : i ] is the i th column of 

 . Finally, g i is normalized according to 

 

 i, j = 

g i, j ∑ c 
l=1 g i,l 

, 1 ≤ i ≤ n, 1 ≤ j ≤ c. (16) 

Here the well-established LP is used to estimate the label dis- 

ributions associated with the extracted features. This is different 

rom the PLEA [22] and DML-R [23] . In our proposed algorithm we 

se this estimated label distribution to train the prediction model 

ased on the conditional random field and perform a maximum 

ikelihood estimation of the prediction model in Subsection 3.4 . 

.3. Prediction via estimated label distribution 

As described in Subsection 2.1 , the label distribution description 

egree d 
y 
x can be represented by the form of conditional probabil- 

ty d 
y 
x =P (y | x ) . This may be interpreted as that given an example x ,

he goal of LDL is to learn a conditional probability mass function 

 (y | x ) from x . Let f K ( x , y ) be a feature function that depends on

oth the instance x and the label y . Then the expected value of f K 
s given by the average of f K over the training set 

˜ f K = 

∑ 

y 

∫ ˜ p ( x , y ) f K ( x , y ) d x , (17) 

here ˜ p ( x , y ) is the empirical joint distribution. We utilize the 

onditional random field model [27] , which is an effective sta- 

istical learning method for labeling problem, to train the para- 

etric model of the label distribution. In the learning phase, the 

raining data set is used to obtain a conditional probability model 
 

 (y | x ) via maximum likelihood estimation. In the predicting phase, 

iven an input sequence x , the output sequence ̂ y is found with 

he largest conditional probability ̂ P (y | x ) . The main reason why 

e adopt the conditional random field model is that the maxi- 

um likelihood estimation used in the model is particularly suit- 

ble for the prediction of normal distribution. As discussed in 

ubsection 3.1 , according to the statistical efficiency [3] , ̂ u i,n cho- 

en from a Gaussian distribution has a high statistical efficiency. 

By defining the probability of a particular label sequence y i 
j 

iven observation sequence x i to be a normalized product of po- 

ential functions [27–29] , the conditional random field has the fol- 

owing parametrized form: 

 

(
y i j | x i 

)
= 

1 

Z i 
exp 

(∑ 

q 

λq 
j 
t q 
(
y i −1 

j 
, y i j , x i 

))
+ 

1 

Z i 
exp 

(∑ 

r 

μr 
j s r 

(
y i j , x i 

)
(18) 

here Z i is the normalization factor given by 

 i = 

c ∑ 

j=1 

exp 

(∑ 

q 

λq 
j 
t q 
(
y i −1 

j 
, y i j , x i 

)
+ 

∑ 

r 

μr 
j s r 

(
y i j , x i 

))
, (19) 

 q (·, ·, ·) and s r (·, ·) are the transition feature function and the state

eature function that depend on both the instance x i and the label 

 

i 
j 
, respectively, while λq 

j 
and μr 

j 
are the corresponding weights. 

oth t q (·, ·, ·) and s r (·, ·) are local features, and they can be any

eal-valued functions. 

As y i 
j 

is binary, the transition feature function can be repre- 

ented as: 

 q 

(
y i −1 

j 
, y i j , x i 

)
= 

{
f q ( x i , y 

i 
j 
) , y i −1 

j 
= y i 

j 
= 1 , 

0 , y i −1 
j 

= y i 
j 
= 0 . 

(20) 
6 
hat is, the feature of x i is extracted only when the label value is 

. Similarly the state feature function can be represented as: 

 r 

(
y i j , x i 

)
= 

{
f r ( x i , y 

i 
j 
) , y i 

j 
= 1 , 

0 , y i 
j 
= 0 . 

(21) 

t can be seen that both the transition feature functions and the 

tate feature functions can be represented by the ‘unified’ feature 

unctions of x i , denoted as f l ( x i , y 
i 
j 
) , 1 ≤ l ≤ k . In the same way,

ll the corresponding weights, λq 
j 

and μr 
j 
, can be unified as θ l 

j 
, 

 ≤ l ≤ k = c. According to [4,7] , the features are further expressed

s f l ( x i , y 
i 
j 
) = y i 

j ̂
 f l ( x i ) , where ̂ f l ( x i ) is the class-independent lth

eature function. Thus, our model (18) can be re-expressed as 

 

(
y j 

i 
| x i ; θ j 

)
= 

1 

Z i 
exp 

( 

c ∑ 

l=1 

(θ l 
j · y i j ) ̂

 f l ( x i ) 

) 

, (22) 

 i = 

c ∑ 

j=1 

exp 

( 

c ∑ 

l=1 

(θ l 
j · y i j ) ̂

 f l ( x i ) 

) 

, (23) 

here 1 ≤ j ≤ c, 1 ≤ i ≤ n , and θ j = 

[
θ1 

j 
θ2 

j 
· · · θ c 

j 

]
T . 

The features extracted lies in the feature space of x i , which in 

act can be given by the k eigenvectors ̂ u l,n , 1 ≤ l ≤ k = c, incre-

entally extracted in Subsection 3.1 . Specifically, arrange these c

igenvectors into the matrix form 

 

 n = [ ̂  u 1 ,n ̂ u 2 ,n · · ·̂ u c,n ] ∈ R 

n ×c . (24) 

hen the i th row of ̂ U n 

 

 n [ i : ] = [ ̂  u 1 ,n [ i ] ̂ u 2 ,n [ i ] · · ·̂ u c,n [ i ] ] , (25) 

here ̂  u l,n [ i ] denotes the i th element of ̂  u l,n , forms the feature vec-

or 
[̂ f 1 ( x i ) 

̂ f 2 ( x i ) · · · ̂ f c ( x i ) 
]

extracted for x i . Therefore, our model 

ecomes 

 

(
y j 

i 
| x i ; θ j 

)
= 

1 

Z i 
exp 

( 

c ∑ 

l=1 

(θ l 
j · y i j ) ̂  u l,n [ i ] 

) 

, (26) 

 i = 

c ∑ 

j=1 

exp 

( 

c ∑ 

l=1 

(θ l 
j · y i j ) ̂  u l,n [ i ] 

) 

. (27) 

.4. Optimization model 

Substituting (26) into (1) and recognizing 
∑ c 

j=1 d 
y i 

j 
x i 

=1 yields the 

arget function of θ= 

{
θ j , 1 ≤ j ≤ c 

}
 ( θ)= 

n ∑ 

i =1 

c ∑ 

j=1 

d 
y i 

j 

x i 
ln P 

(
y j 

i 
| x i ; θ j 

)
= 

n ∑ 

i =1 

c ∑ 

j=1 

d 
y i 

j 

x i 

c ∑ 

l=1 

(θ l 
j · y i j ) ̂  u l,n [ i ] 

−
n ∑ 

i =1 

ln 

( 

c ∑ 

j=1 

exp 

( 

c ∑ 

l=1 

(θ l 
j · y i j ) ̂  u l,n [ i ] 

) ) 

. (28) 

he target function (28) contains the unknown true label distribu- 

ions d 
y i 

j 
x i 

. In Subsection 3.2 , we have estimated the label distribu- 

ions ̃  g i, j via LP, which contains more supervisory information than 

he logical label set. We can use this estimated label distribution 

ia LP to train the prediction model to obtain the label distribu- 

ion predictor. Specifically, we can substitute the estimated ̃

 g i, j for 

 

y i 
j 

x i 
in (28) to arrive at the empirical target function 

 

 ( θ) = 

n ∑ 

i =1 

c ∑ 

j=1 ̃

 g i, j 

c ∑ 

l=1 

(θ l 
j · y i j ) ̂  u l,n [ i ] −

n ∑ 

i =1 

ln 

(
c ∑ 

j=1 

exp 

( c ∑ 

l=1 

(θ l 
j · y i j ) ̂  u l,n [ i ] 

))
. 

(29) 
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A gradient-descent iterative optimization algorithm, called the 

mproved iterative scaling (IIS) [30] , can be applied to find the pa- 

ameters θ by solving the nonlinear equation associated with the 

ower bound of ˜ T ( θ+ �θ) −˜ T ( θ) . Once θ j , 1 ≤ j ≤ c, are obtained,

 

(
y ′ 

j 
| x ′ ; θ j 

)
can be used to predict for the unknown true label dis- 

ributions d 
y ′ 

j 

x ′ for new sample ( x ′ , y ′ 
j 
) . 

The proposed LEAML is summarized in Algorithm 1 . The com- 

lgorithm 1 Label enhancement algorithm based on manifold 

earning. 

nput: Multi-label training sample set 
{
x i ∈ R 

q , y i = 

[
y 1 

i 
· · · y c 

i 

]
T ∈ 

{ 0 , 1 } c }n 

i =1 
. 

utput: Label distribution estimates ̂ d 
y 

j 
i 

x i 
= P 

(
y 

j 
i 
| x i ;θ j 

)
, 1 ≤ j ≤ c, 

1 ≤ i ≤ n . 

1: Step 1 . Manifold space enhanced feature extraction: 

2: After preprocessing, eigenvectors ̂ u j,n , z j,n obtainedfrom mani- 

fold space are enhanced in iteration procedure (11) to (13) of- 

Subsection 3.1, to get k eigenvectors ̂ u l,n incrementally, for 1 ≤
l ≤ k = c. 

3: Step 2 . Label distribution estimation via LP: 

4: Obtain estimated label distribution ̃  g i via label propagation(15) 

and (16) of Subsection 3.2. 

5: Step 3 . Prediction from conditional random field: 

6: Form empirical target function (29) with 

˜ g i, j estimatedin Step 

2 and ̂ u l,n extracted in Step 1 . 

7: Use IIS iterative algorithm to optimize target function (29)to 

find label distributions’ parameters θ. 

8: return d 
y ′ 

j 

x ′ ← P 
(
y ′ 

j 
| x 

′ ;θ j 

)
, 1 ≤ j ≤ c,for new sample (x 

′ , y ′ 
j 
) . 

utational complexity of this LEAML consists of three parts as sum- 

arized below. 

Step 1 . The procedure of the incremental feature extraction has 

he complexity on the order of O 

(
n × c 3 

)
. 

Step 2 . According to [26] , the label propagation has the linear 

omplexity O 

(
n 
)
. Hence, the complexity of Step 2 is O 

(
n 
)
. 

Step 3 . Let the number of iterations for the IIS algorithm [30] be

pper bounded by I iis . Since the complexity per iteration of the IIS 

ptimization is O 

(
c 2 × n 2 

)
, the complexity of Step 3 is O 

(
I iis × c 2 ×

 

2 
)
. 

.5. Comparison with existing state-of-the-arts 

We now compare our LEAML algorithm with the latest LE ap- 

roaches to emphasize its novel contributions. 

With the exception of the MDLRML [21] , PLEA [22] and LDML- 

 [23] , most existing label learning methods assume that the nu- 

erical label should be sufficiently close to the original logical la- 

el, and choose the difference between the logical labels and the 

redicted label distributions as the loss function. This principle 

owever is not consistent with the ‘physics’ of the label distribu- 

ion, which represents the degree to which the original label de- 

cribes the instance. Similar to the MDLRML, PLEA and LDML-R, 

ur LEAML directly utilizes the physical interpretation of the label 

istribution, namely, the conditional probability of the label given 

he instance, to build the label distribution model, specifically, a 

onditional random field based prediction model. 

Graph semi-supervised learning methods, such as the LP 

13] and the GLLE [18] , are conceptually appearing, and it is easy 

o explore the properties of these algorithms through the analy- 

is of the matrix operations involved. However, in the label prop- 

gation from the logical label space to the numerical label space, 

hese algorithms need to solve the regularized optimization involv- 
7 
ng the label matrix variable. This imposes considerable computa- 

ional complexity, particularly for large-scale data. Therefore, we 

ntroduce incremental label learning in our LEAML to reduce the 

omplexity in the label propagation stage. 

Many existing label learning methods, such as the ML [15] , the 

DLRML [21] , the PLEA [22] and the LDML-R [23] , typically uti- 

ize the hypothesis of manifold that the data in the same mani- 

old structure should have the same labels. Our proposed method 

lso exploits the local topology of the feature space to obtain the 

elative label importance, and uses the distribution to train the 

rediction model of label distribution. With the exception of the 

LEA and LDML-R, the existing multi-label distribution learning 

lgorithms either directly fit the label distribution model or use 

he maximum entropy model to train the parameters of the label 

istribution model. By contrast, our algorithm build an enhanced 

aximum entropy model with the enriched label information in 

he manifold space and the estimated enhanced distribution infor- 

ation of labels, to train the label distribution prediction model’s 

arameters. 

Next we emphasize the differences between the proposed 

EAML algorithm and our previous MDLRML, PLEA and LDML-R. 

he MDLRML [21] is very different from the PLEA, LDML-R and 

EAML. It first performs the feature extraction based on the lo- 

al tangent space alignment algorithm (LTSA) [31] . Then based on 

he extracted features and their corresponding logical labels, it en- 

ances the logical labels into the label distributions using multi- 

utput regression with sigmoid function. The PLEA [22] also first 

xtracts accurate and reduced-dimension features based on the 

TSA. However, it next estimates the label distributions associ- 

ted with the extracted features based on regression. Then using 

he extracted reduced-dimensional features and their associated 

abel distribution estimates to form the enhanced maximum en- 

ropy model, the unknown label distributions are estimated with 

nhanced accuracy. The LDML-R first extracts reduced-dimension 

eatures in the feature manifold space using the locally linear em- 

edding ML algorithm [17] . It next uses the LTSA based regression 

o learn the unknown label distributions associated with the ex- 

racted reduced-dimension features. Like the PLEA, it then forms 

he enhanced maximum entropy model to estimate the unknown 

abel distributions. The proposed LEAML has similar three-step 

lgorithmic procedure as the PLEA and LDML-R. However, from 

ubsection 3.1 , the LEAML extracts the features in a different way 

ith incremental learning for reducing complexity. Moreover, from 

ubsection 3.2 , the LEAML estimates the label distributions us- 

ng the LP method, which imposes lower complexity. Basically, the 

LEA and LDML-R focus on LDL, not on label enhancement as our 

EAML approach. In the next section, the extensive experimen- 

al results demonstrate that the proposed LEAML outperforms the 

LEA and LDML-R. 

Table 1 compares the complexity of our LEAML with those of 

he seven benchmarks. It can be seen that the complexity of our 

EAML is lower than those of the PLEA, LDML-R, LP and ML. It is 

ess straightforward from Table 1 to draw the conclusion whether 

ur LEAML has lower or higher complexity than the MDLRML, GLLE 

nd LESC. The MDLRML [21] has a two-step algorithmic procedure 

nd our past experience suggests that it is computationally very 

fficient. It is known that the BFGS algorithm used by GLLE and 

ESC for nonlinear gradient descent optimization converges very 

lowly. In the next section, we will use the runtime performance 

o measure the complexity. 

. Experimental evaluation 

All the experiments are carried out on Matlab 2019b, running 

n a PC with i5-6200 2.30 GHz processor of 4 cores and 8GB of 
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Table 1 

Complexity comparison of various LE algorithms, where k is 

the number of nearest neighbors, f is the number of fea- 

tures, I iis is the number of iterations for the IIS [22] , I irwls 

is the number of iterations for the iterative reweighed least 

squares [32] , I iteration is the number of iterations of LP [13] 

and I bfgs is the number of iterations for the BFGS algorithm 

[20] . 

Our LEAML O 
(
c 3 × n + n + I iis × c 2 × n 2 

)
PLEA [22] O 

(
n × k 3 + I irwls × n 3 + I iis × c × k × n 2 

)
MDLRML [21] O 

(
c × n × k 3 + I irwls × n 3 

)
LDML-R [23] O 

(
d × n 3 + I irwls × n 3 + I iis × c × k × n 2 

)
LP [13] O 

(
n 2 × f + n 3 + I iteration × n 2 × f ) 

ML [15] O 
(
n 2 + I irwls × n 3 

)
GLLE [18] O 

(
n 2 × f + I bfgs × n 2 

)
LESC [19] O 

(
n 2 × f + I bfgs × n 2 

)
Table 2 

Fourteen multi-label datasets with known ground-truth label dis- 

tributions from [7] used in label enhancement experiments . 

No Dataset Examples n Features q Labels c

1 SJAFFE 213 243 6 

2 Natural_scene 2000 294 9 

3 SBU_3DFE 2500 243 6 

4 Yeast_spoem 2465 24 2 

5 Yeast_alpha 2465 24 18 

6 Yeast_cdc 2465 24 15 

7 Yeast_cold 2465 24 4 

8 Yeast_diau 2465 24 7 

9 Yeast_dtt 2465 24 4 

10 Yeast_elu 2465 24 14 

11 Yeast_heat 2465 24 6 

12 Yeast_spo 2465 24 6 

13 Yeast_spo5 2465 24 3 

14 Movie 7755 1869 5 
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AM. Two sets of experiments, LE experiments and MLL experi- 

ents, are performed. 

.1. Label enhancement experiments 

.1.1. LE Datasets 

We use 14 real-world datasets from [7] in the LE experiments. 

asic attributes of these datasets are given in Table 2 . The datasets 

f Yeast-spoem to Yeast-spo5 are collected from the records of 10 

iological experiments on the budding yeast genes. The rest of the 

atasets are collected from facial expression images, natural scene 

mages and movies, respectively. These 14 datasets are labeled with 

he ground-truth label distributions, and hence they are suitable 

or evaluating the accuracy of the label distribution prediction. 
Table 3 

Label distribution recovery performance measured by Chebyshev distan

Dataset LP ML GLLE LESC 

SJAFFE 0.1070(7) 0.2188(8) 0.0845(6) 0.0692

Natural_scene 0.2750(5) 0.2990(6) 0.3353(7) 0.3417

SBU_3DFE 0.1230(5.5) 0.1868(8) 0.1230(5.5) 0.1231

Yeast_spoem 0.1630(8) 0.1319(7) 0.0870(5.5) 0.0870

Yeast_alpha 0.0400(8) 0.0387(7) 0.0192(6) 0.0169

Yeast_cdc 0.0420(7) 0.0475(8) 0.0217(6) 0.0198

Yeast_cold 0.1370(8) 0.1207(7) 0.0650(6) 0.0572

Yeast_diau 0.0990(7) 0.2011(8) 0.0530(6) 0.0419

Yeast_dtt 0.1280(8) 0.1073(7) 0.0518(6) 0.0466

Yeast_elu 0.0440(7) 0.0499(8) 0.0221(6) 0.0208

Yeast_heat 0.0860(7) 0.0915(8) 0.0478(6) 0.0466

Yeast_spo 0.0900(7) 0.0953(8) 0.0608(5) 0.0609

Yeast_spo5 0.1140(7) 0.1514(8) 0.0980(6) 0.0933

Movie 0.1517(7) 0.1933(8) 0.1211(4) 0.1395

Avg.Rank 7.0357(7) 7.5714(8) 5.7857(6) 5.4643

8 
.1.2. LE Evaluation measures 

The output of an LE algorithm is the label distribution esti- 

ate. In order to compare the estimated label distribution with the 

round-truth label distribution of the datasets, a natural evalua- 

ion measure is the average distance or similarity between the pre- 

icted label distribution and the ground-truth label distribution. As 

uggested in [7] , we select the six measures to reflect an LE algo-

ithm’s performance from different aspects in semantics [33] , and 

hey are: Chebyshev distance (Cheb) ↓ , Clark distance (Clark) ↓ , 

ullback-Leibler divergence (KL) ↓ , Canberra distance (Canber) ↓ , 

osine correlation coefficient (Cosine) ↑ , and intersection similar- 

ty (Inters) ↑ . The first four metrics are distance metrics and hence 

the smaller the better’: ‘ ↓ ’, while the last two are similarity met- 

ics and therefore ‘the larger the better’: “↑ ’. 

.1.3. Benchmarks for LE experiments and algorithmic settings 

We test the LE performance of our LEAML algorithm with the 

even existing state-of-the-art benchmarks reviewed in Section 2 , 

hich are the LP [13] , ML [15] , GLLE [18] , LESC [19] , MDLRML [21] ,

LEA [22] and LDML-R [23] 

We list the algorithmic parameter settings here. For our LEAML, 

he balancing parameter ρ in (15) is empirically chosen to be 0.5, 

nd the number of nearest neighbors for (4) is set to k = 10 . This

alue is chosen simply to be consistent with the value of k used in

he benchmark MDLRML [21] . Other algorithmic parameters of the 

DLRML are: the number of low-dimensional embeddings ̂ d = 8 , 

wo loss weightings α = β = 0 . 5 to maintain the balance of the 

wo loss terms, and the termination threshold ξ = 10 −5 . For the 

LEA [22] , the number of extracted principal features is set to 

 = 10 , which is the same as the number of nearest neighbors. 

s for the LDML-R [23] , the number of nearest neighbors in fea- 

ure extraction is set to k = 10 , and the dimension of the embedded

oordinates is given by d =8 , which are based on the experience. 

or the other LE algorithms, we use the original algorithmic set- 

ings provided by the authors in their publications. Specifically, we 

hoose the parameter of the LP [13] to be α = 0 . 5 . For the ML [15] ,

e have the number of nearest neighbors k = c + 1 , and its other

arameters are λ = 1 , ε = 0 . 01 , C 1 = 1 and C 2 = 10 . For the GLLE

18] , we choose the parameter λ from { 0 . 01 , 0 . 1 , · · · , 100 } and set

he number of nearest neighbors to k = c + 1 . As for the LESC [19] ,

he parameter λ is selected among { 0 . 0 0 01 , 0 . 0 01 , · · · , 10 } . 

.1.4. Label distribution recovery performance 

Fig. 2 depicts the flowchart of the label distribution recovery 

xperiment. As a basic task of LE is to predict the label distribu- 

ions from the logical labels, we need the true logical labels. The 

rue logical labels of the datasets are obtained from the ground- 

ruth label distributions via a binarization process. We recover the 
ce ↓ . 
MDLRML PLEA LDML-R LEAML 

(5) 0.0566(4) 0.0412(2) 0.0375(1) 0.0453(3) 

(8) 0.1317(4) 0.1106(1) 0.1257(2) 0.1316(3) 

(7) 0.0794(4) 0.0684(1) 0.0697(2) 0.0727(3) 

(5.5) 0.0096(3) 0.0099(4) 0.0046(1) 0.0077(2) 

(5) 0.0073(2) 0.0150(4) 0.0124(3) 0.0054(1) 

(5) 0.0083(2) 0.0081(1) 0.0091(4) 0.0085(3) 

(5) 0.0174(3) 0.0180(4) 0.0164(2) 0.0153(1) 

(5) 0.0205(4) 0.0194(2) 0.0195(3) 0.0183(1) 

(5) 0.0080(2) 0.0088(4) 0.0070(1) 0.0081(3) 

(5) 0.0076(1) 0.0098(4) 0.0079(2) 0.0096(3) 

(5) 0.0111(1) 0.0299(4) 0.0121(3) 0.0118(2) 

(6) 0.0277(3) 0.0338(4) 0.0274(2) 0.0170(1) 

(5) 0.0531(4) 0.0506(3) 0.0498(2) 0.0162(1) 

(5) 0.1418(6) 0.0750(1) 0.0967(2) 0.1095(3) 

(5) 3.0714(4) 2.7857(3) 2.1429(1.5) 2.1429(1.5) 
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Fig. 2. The flowchart of the label distribution recovery experiment. 

Table 4 

Label distribution recovery performance measured by Clark distance ↓ . 
Dataset LP ML GLLE LESC MDLRML PLEA LDML-R LEAML 

SJAFFE 0.3140(6) 0.8055(8) 0.3633(7) 0.2763(5) 0.2365(4) 0.1620(1) 0.1847(3) 0.1749(2) 

Natural_scene 2.4828(8) 2.4520(5) 2.4609(6) 2.4649(7) 2.0868(3) 2.0568(1) 2.0674(2) 2.0915(4) 

SBU_3DFE 0.5810(7) 0.7861(8) 0.3818(6) 0.3785(5) 0.2560(3) 0.2401(1) 0.2967(4) 0.2558(2) 

Yeast_spoem 0.2718(8) 0.2036(7) 0.1321(6) 0.1295(5) 0.0136(3) 0.0140(4) 0.0065(1) 0.0125(2) 

Yeast_alpha 0.4322(7) 0.6025(8) 0.3304(6) 0.2823(5) 0.1027(2) 0.2597(4) 0.1805(3) 0.1003(1) 

Yeast_cdc 0.3803(7) 0.5593(8) 0.3018(6) 0.2727(5) 0.1041(2) 0.1174(3) 0.1186(4) 0.0873(1) 

Yeast_cold 0.1805(7) 0.3224(8) 0.1738(6) 0.1552(5) 0.0424(3) 0.0453(4) 0.0402(1) 0.0405(2) 

Yeast_diau 0.2841(6) 0.7276(8) 0.2964(7) 0.2302(5) 0.0913(2) 0.1114(4) 0.0991(3) 0.0583(1) 

Yeast_dtt 0.1902(7) 0.2953(8) 0.1413(6) 0.1278(5) 0.0191(3) 0.0244(4) 0.0168(2) 0.0154(1) 

Yeast_elu 0.3642(7) 0.5340(8) 0.2845(6) 0.2617(5) 0.1013(1) 0.1245(4) 0.1087(3) 0.1033(2) 

Yeast_heat 0.4886(5) 0.5121(8) 0.4933(6) 0.4941(7) 0.2467(4) 0.2326(3) 0.0556(1) 0.0561(2) 

Yeast_spo 0.5585(8) 0.4030(7) 0.2618(6) 0.2596(5) 0.1221(3) 0.1503(4) 0.1215(2) 0.0757(1) 

Yeast_spo5 0.2741(7) 0.3015(8) 0.1943(6) 0.1871(5) 0.1023(3) 0.1105(4) 0.0961(2) 0.0229(1) 

Movie 0.5220(5) 0.7422(8) 0.5654(6) 0.6266(7) 0.4354(3) 0.3499(2) 0.5201(4) 0.3039(1) 

Avg.Rank 6.7857(7) 7.6429(8) 6.1429(6) 5.4286(5) 2.7857(3) 3.0714(4) 2.5000(2) 1.6429(1) 
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abel distributions from the logical labels of the 14 multi-label 

atasets of Table 2 using the 8 LE algorithms, and compare the 

stimated label distributions with the ground-truth label distribu- 

ions. Quantitative results of the 8 algorithms applied to these 14 

atasets are compared in Table 3 , 4 , 5 , 6 , Table 8 for the six metrics

easuring the distance or similarity between the truth label dis- 

ributions and the recovered label distributions, respectively. Each 

ow of the table presents the metric values attained by the 8 LE 

lgorithms together with the rankings in brackets for the corre- 

ponding dataset. We also calculate the algorithms” average rank- 

ng performance over the 14 datasets in the last row of the table, 

here the numerical value before the bracket is the average rank- 

ng value over the 14 datasets, and the number in the bracket is 

gain the rank. 

As shown in Table 3,4,5,6, Table 8 , the results clearly demon- 

trate the superior LE recovery performance of our LEAML al- 

orithm over the other 7 state-of-art LE benchmark algorithms. 

pecifically, our LEAML ranks the first in more than 83.33% of the 

xperiments across all the 14 datasets and the 6 evaluation mea- 

ures, and it ranks the second in 29.63% of the 84 cases. On av- 

rage, the proposed LEAML achieves the best label distribution re- 
n

9 
overy performance, and the LDML-R achieves the second best per- 

ormance. 

.1.5. Computational complexity comparison 

To compare the computational complexity imposed by the 8 al- 

orithms in recovering the label distributions, we record the run- 

imes of these algorithms to complete the LE learning task for each 

ataset measured in second [s]. The runtime experimental results 

re listed in Table 9 . It can be seen that the MDLRML algorithm is

he clear winner, in terms of computational complexity. The pro- 

osed LEAML algorithm has the second best runtime performance, 

lightly lower than those of the PLEA and LDML-R algorithms. 

.1.6. Statistical validation of label distribution recovery performance 

Friedman test statistically compares relative performance 

mong multiple algorithms over multiple datasets [34] . We use 

his test to validate the statistical significance of the performance 

f various algorithms given in Table 3,4,5,6, Table 8 . Table 10 lists 

he Friedman statistics F F for the label distribution recovery per- 

ormance of Table 3,4,5,6, Table 8 , with the critical value at a sig- 

ificance level of 0.05, among the 8 comparing algorithms and 14 
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Table 5 

Label distribution recovery performance measured by Canberra metric ↓ . 
Dataset LP ML GLLE LESC MDLRML PLEA LDML-R LEAML 

SJAFFE 1.0708(7) 1.6894(8) 0.7518(6) 0.5606(5) 0.4796(4) 0.3720(1) 0.3822(2) 0.3989(3) 

Natural_scene 6.7810(6) 6.7217(5) 6.8511(7) 6.8780(8) 5.3370(3) 4.9419(1) 5.0009(2) 5.3472(4) 

SBU_3DFE 1.2463(7) 1.6593(8) 0.8409(6) 0.8039(5) 0.5488(3) 0.4815(1) 0.6410(4) 0.5034(2) 

Yeast_spoem 0.3655(8) 0.2800(7) 0.1840(6) 0.1801(5) 0.0192(3) 0.0198(4) 0.0093(1) 0.0152(2) 

Yeast_alpha 1.7068(7) 2.0181(8) 1.1135(6) 0.9514(5) 0.3328(1) 0.8726(4) 0.4740(3) 0.3677(2) 

Yeast_cdc 1.3532(7) 1.7591(8) 0.9442(6) 0.8405(5) 0.3179(2) 0.3610(4) 0.3219(3) 0.2470(1) 

Yeast_cold 0.3241(7) 0.5598(8) 0.3016(6) 0.2680(5) 0.0707(3) 0.0723(4) 0.0665(2) 0.0653(1) 

Yeast_diau 0.6425(6) 1.6538(8) 0.6734(7) 0.5021(5) 0.1637(2) 0.2429(4) 0.1991(3) 0.1134(1) 

Yeast_dtt 0.3560(7) 0.5070(8) 0.2458(6) 0.2229(5) 0.0319(3) 0.0453(4) 0.0277(1) 0.0307(2) 

Yeast_elu 1.2612(7) 1.6263(8) 0.8692(6) 0.7906(5) 0.3028(2) 0.3189(4) 0.3167(3) 0.3021(1) 

Yeast_heat 0.4706(7) 0.7826(8) 0.4203(6) 0.4110(5) 0.1124(1) 0.3349(4) 0.1181(3) 0.1174(2) 

Yeast_spo 1.2341(8) 0.8440(7) 0.5422(6) 0.5329(5) 0.2344(2) 0.3379(4) 0.2365(3) 0.1578(1) 

Yeast_spo5 0.4013(7) 0.4664(8) 0.3018(6) 0.2884(5) 0.1623(4) 0.1590(3) 0.0886(2) 0.0324(1) 

Movie 0.9260(4) 1.4409(8) 1.0372(6) 1.1474(7) 0.7995(3) 0.6933(2) 0.9982(5) 0.6369(1) 

Avg.Rank 6.7857(7) 7.6429(8) 6.1429(6) 5.3571(5) 2.5714(2) 3.1429(4) 2.6429(3) 1.7143(1) 

Table 6 

Label distribution recovery performance measured by Kullback-Leibler divergence ↓ . 
Dataset LP ML GLLE LESC MDLRML PLEA LDML-R LEAML 

SJAFFE 0.0770(7) 0.2513(8) 0.0500(6) 0.0290(5) 0.0200(4) 0.0195(3) 0.0115(2) 0.0109(1) 

Natural_scene 1.5950(6) 2.2757(7) 2.6630(8) 1.1663(5) 0.5689(4) 0.3268(1) 0.3367(2) 0.5620(3) 

SBU_3DFE 0.1050(7) 0.2489(8) 0.0690(5) 0.0692(6) 0.0250(3) 0.0217(1) 0.0326(4) 0.0232(2) 

Yeast_spoem 0.0670(7) 0.5030(8) 0.0270(5.5) 0.0270(5.5) 0.0001(3.0) 0.0001(3) 0.00003(1) 0.0001(3.0) 

Yeast_alpha 0.1210(8) 0.0550(7) 0.0130(6) 0.0080(5) 0.0012(2) 0.0075(4) 0.0044(3) 0.0011(1) 

Yeast_cdc 0.1110(8) 0.0609(7) 0.0140(6) 0.0100(5) 0.0014(2) 0.0018(3.5) 0.0018(3.5) 0.0010(1) 

Yeast_cold 0.1030(7) 0.5560(8) 0.0190(6) 0.0150(5) 0.0018(4) 0.0010(3) 0.0007(1) 0.0008(2) 

Yeast_diau 0.1270(7) 0.1934(8) 0.0270(6) 0.0170(5) 0.0022(2) 0.0036(4) 0.0028(3) 0.0017(1) 

Yeast_dtt 0.1030(8) 0.0648(7) 0.0130(6) 0.0100(5) 0.0002(3) 0.0002(3) 0.0001(1) 0.0002(3) 

Yeast_elu 0.1090(8) 0.0567(7) 0.0130(6) 0.0090(5) 0.0015(2) 0.0022(4) 0.0017(3) 0.0013(1) 

Yeast_heat 0.0890(8) 0.0656(7) 0.0170(6) 0.0155(5) 0.0090(4) 0.0074(3) 0.0010(1.5) 0.0010(1.5) 

Yeast_spo 0.0840(7) 0.5320(8) 0.0290(6) 0.0280(5) 0.0060(3) 0.0077(4) 0.0049(2) 0.0019(1) 

Yeast_spo5 0.0420(7) 0.0811(8) 0.0340(6) 0.0310(5) 0.0066(3) 0.0078(4) 0.0058(2) 0.0005(1) 

Movie 0.1358(6) 0.1268(5) 0.2239(7) 0.2310(8) 0.0756(4) 0.0419(1) 0.0736(3) 0.0587(2) 

Avg.Rank 7.2143(7) 7.3571(8) 6.1071(6) 5.3214(5) 3.0714(4) 2.9643(3) 2.2857(2) 1.6786(1) 

Table 7 

Label distribution recovery performance measured by cosine coefficient ↑ . 
Dataset LP ML GLLE LESC MDLRML PLEA LDML-R LEAML 

SJAFFE 0.9410(7) 0.8231(8) 0.9594(6) 0.9731(5) 0.9797(4) 0.9901(1) 0.9890(2) 0.9888(3) 

Natural_scene 0.7264(7) 0.6610(8) 0.7789(3) 0.7602(4) 0.7555(5) 0.8920(1) 0.8905(2) 0.7446(6) 

SBU_3DFE 0.9220(7) 0.8435(8) 0.9304(6) 0.9319(5) 0.9740(3) 0.9773(1) 0.9657(4) 0.9768(2) 

Yeast_spoem 0.9503(7) 0.8530(8) 0.9780(5.5) 0.9780(5.5) 0.9998(3) 0.9998(3) 0.9999(1) 0.9998(3) 

Yeast_alpha 0.9814(7) 0.9530(8) 0.9876(6) 0.9905(5) 0.9988(2) 0.9928(4) 0.9943(3) 0.9989(1) 

Yeast_cdc 0.9828(7) 0.9468(8) 0.9875(6) 0.9896(5) 0.9982(3) 0.9982(3) 0.9982(3) 0.9989(1) 

Yeast_cold 0.9847(6) 0.9429(8) 0.9827(7) 0.9859(5) 0.9991(3) 0.9990(4) 0.9992(2) 0.9993(1) 

Yeast_diau 0.9805(6) 0.8427(8) 0.9750(7) 0.9844(5) 0.9978(2) 0.9963(4) 0.9973(3) 0.9995(1) 

Yeast_dtt 0.9835(7) 0.9515(8) 0.9884(6) 0.9901(5) 0.9998(2) 0.9986(4) 0.9999(1) 0.9997(3) 

Yeast_elu 0.9829(7) 0.9489(8) 0.9879(6) 0.9896(5) 0.9985(2) 0.9978(4) 0.9984(3) 0.9986(1) 

Yeast_heat 0.9861(5) 0.9454(8) 0.9845(7) 0.9851(6) 0.9978(3) 0.9930(4) 0.9990(1) 0.9989(2) 

Yeast_spo 0.9386(7) 0.8397(8) 0.9747(5.5) 0.9747(5.5) 0.9950(3) 0.9920(4) 0.9951(2) 0.9981(1) 

Yeast_spo5 0.9686(7) 0.9359(8) 0.9713(6) 0.9732(5) 0.9935(3) 0.9927(4) 0.9943(2) 0.9995(1) 

Movie 0.9589(4) 0.8765(8) 0.9369(5) 0.9200(7) 0.9301(6) 0.9750(2) 0.9723(3) 0.9860(1) 

Avg.Rank 6.5000(7) 8.0000(8) 5.8571(6) 5.2143(5) 3.1429(4) 3.0714(3) 2.2857(2) 1.9286(1) 
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atasets. As can be seen from Table 10 , at 0.05 significance level, all

he F F values for the six metrics are greater than the critical value, 

nd therefore the null hypothesis of indistinguishable performance 

mong the learning approaches is clearly rejected for all the eval- 

ation metrics. In other words, the average performance rankings 

or the 8 algorithms given in Table 3,4,5,6, Table 8 are statistically 

ignificant. 

Bayesian signed-rank test [35] is employed as the statistical test 

o show whether the LEAML performs significantly better than the 

ther LE algorithms, in terms of each evaluation metric. Table 11 

ummarizes the statistical test results, where the associated prob- 
10 
bilities for the corresponding tests are given respectively in the 

rackets. Specifically, a, b and c in [a, b, c] respectively represent 

he probabilities of [WIN, TIE, LOSE]. The prior default is that the 

erformance of the two algorithms is the same. Prior strength is 

he strength of this null hypothesis, which means that this null 

ypothesis is established with a probability of 0.6. The perfor- 

ance of two algorithms are similar if the difference between 

wo algorithms’ results is less than rope = 0 . 01 . The test results of

able 11 clearly validate the superior performance of our LEAML 

ver the existing state-of-art LE algorithms, in terms of LE learning 

ccuracy. 
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Table 8 

Label distribution recovery performance measured by intersection similarity ↑ . 
Dataset LP ML GLLE LESC MDLRML PLEA LDML-R LEAML 

SJAFFE 0.8361(7) 0.7251(8) 0.8757(6) 0.9050(5) 0.9141(4) 0.9355(1) 0.9344(2) 0.9320(3) 

Natural_scene 0.4512(7) 0.3307(8) 0.5226(5) 0.5107(6) 0.5751(4) 0.7278(2) 0.7257(3) 0.7561(1) 

SBU_3DFE 0.8096(7) 0.7414(8) 0.8531(6) 0.8542(5) 0.9047(3) 0.9159(1) 0.8885(4) 0.9148(2) 

Yeast_spoem 0.8367(7) 0.7681(8) 0.9109(6) 0.9130(5) 0.9904(3) 0.9901(4) 0.9954(2) 0.9955(1) 

Yeast_alpha 0.9074(7) 0.8898(8) 0.9386(6) 0.9473(5) 0.9815(1) 0.9519(4) 0.9710(3) 0.9796(2) 

Yeast_cdc 0.9122(7) 0.8836(8) 0.9376(6) 0.9445(5) 0.9786(3) 0.9758(4) 0.9787(2) 0.9834(1) 

Yeast_cold 0.9213(7) 0.8646(8) 0.9250(6) 0.9338(5) 0.9826(3) 0.9820(4) 0.9836(2) 0.9880(1) 

Yeast_diau 0.9128(6) 0.7557(8) 0.9052(7) 0.9301(5) 0.9771(2) 0.9648(4) 0.9720(3) 0.9858(1) 

Yeast_dtt 0.9134(7) 0.8779(8) 0.9393(6) 0.9448(5) 0.9920(3) 0.9887(4) 0.9930(2) 0.9933(1) 

Yeast_elu 0.9120(7) 0.8839(8) 0.9383(6) 0.9439(5) 0.9783(2) 0.9771(4) 0.9773(3) 0.9851(1) 

Yeast_heat 0.9237(7) 0.8718(8) 0.9310(6) 0.9324(5) 0.9812(2) 0.9451(4) 0.9803(3) 0.9866(1) 

Yeast_spo 0.8184(7) 0.7614(8) 0.9105(6) 0.9121(5) 0.9610(3) 0.9428(4) 0.9906(1) 0.9738(2) 

Yeast_spo5 0.8855(7) 0.7486(8) 0.9020(6) 0.9067(5) 0.9469(4) 0.9494(3) 0.9700(2) 0.9838(1) 

Movie 0.5848(7) 0.5509(8) 0.5872(6) 0.5953(5) 0.8406(4) 0.8881(2) 0.8501(3) 0.8889(1) 

Avg.Rank 6.9286(7) 8.0000(8) 6.0000(6) 5.0714(5) 2.9286(3) 3.2143(4) 2.5000(2) 1.3571(1) 

Table 9 

Computational complexity of 8 LE algorithms imposed on LE learning of 14 datasets with ground-truth label distributions measured by runtime [s] ↓ . 
Algorithms LP ML GLLE LESC MDLRML PLEA LDML-R LEAML 

Yeast-alpha 96.7089(7) 10.4143(3) 2101.2288(8) 0.6749(1) 3.3217(2) 21.2857(6) 19.0666(5) 15.7086(4) 

Yeast-cdc 91.9976(6) 28.0560(5) 2058.3899(7) 2620.3463(8) 2.6802(1) 16.2703(3) 18.1193(4) 12.1933(2) 

Yeast-cold 85.7640(6) 25.9546(5) 2098.2072(7) 2592.1138(8) 0.6458(1) 16.4845(3) 17.2280(4) 12.9326(2) 

Yeast-diau 90.4889(6) 22.2115(5) 2164.7457(7) 2587.7626(8) 2.3170(1) 17.9098(4) 17.2450(3) 16.5481(2) 

Yeast-dtt 85.0445(6) 24.5773(5) 2062.2618(7) 2568.7960(8) 2.5661(1) 17.8935(4) 17.1093(3) 12.8461(2) 

Yeast-elu 91.1003(6) 31.2115(5) 1949.0746(7) 2244.6699(8) 3.1854(1) 17.3791(3) 18.2103(4) 12.2265(2) 

Yeast-heat 88.0539(6) 33.0071(5) 2170.0425(7) 2324.9983(8) 1.8472(1) 17.9099(4) 17.2924(3) 14.5135(2) 

Yeast-spo 88.1222(6) 21.0123(5) 2113.8297(7) 2491.1317(8) 0.6969(1) 17.8956(4) 17.1597(3) 14.8390(2) 

Yeast-spo5 87.4979(6) 23.8147(5) 2234.4134(7) 2566.9491(8) 2.5439(1) 18.1495(4) 17.2504(3) 12.1442(2) 

Yeast-spoem 100.8651(6) 7.5451(2) 2053.6103(7) 2654.3258(8) 0.7449(1) 17.6775(5) 17.0937(4) 16.4845(3) 

Natural Scene 71.9972(3) 15.5970(2) 1098.1414(7) 2654.3258(8) 6.4686(1) 157.9247(4) 167.5837(5) 186.6003(6) 

Movie 2223.9369(6) 340.6105(3) 59379.0917(8) 23081.6436(7) 251.4561(2) 216.8764(1) 446.2196(4) 448.2214(5) 

SJAFFE 0.6692(2) 2.2597(3) 49.4767(8) 40.8202(7) 0.0251(1) 3.2242(4) 5.9159(5) 24.0298(6) 

SBU_3DFE 109.8430(6) 13.2224(3) 2068.8012(7) 2726.1515(8) 0.8892(1) 23.9204(4) 8.8391(2) 24.0299(5) 

Average rank 5.5714(6) 4.0000(5) 7.2143(7) 7.3571(8) 1.1429(1) 3.7857(4) 3.7143(3) 3.2143(2) 

Table 10 

Friedman statistics F F for the label distribution recovery re- 

sults in terms of each evaluation metric, with the critical 

value at a significance level of 0.05 (comparing algorithms: 8, 

datasets: 14) . 

Evaluation metric F F Critical value 

Chebyshev distance 60.1633 2.112 

Clark distance 75.1611 

Canberra distance 68.5722 

Kullback-Leibler divergence 78.7523 

cosine coefficient 55.2440 

intersectional similarity 153.6761 
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ayesian signed-rank test on the label distribution recovery performance among 8 algori

.6) . 

LEAML versus Evaluation metric 

Chebyshev Clark Canberra 

LP [1.0,0.0,0.0] [1.0,0.0,0.0] [1.0,0.0,0.0] 

ML [1.0,0.0,0.0] [1.0,0.0,0.0] [1.0,0.0,0.0] 

GLLE [1.0,0.0,0.0] [1.0,0.0,0.0] [1.0,0.0,0.0] 

LESC [1.0,0.0,0.0] [1.0,0.0,0.0] [1.0,0.0,0.0] 

MDLRML [0.99822,4e-05,0.00174] [0.99924,0.0,0.00076] [0.99466,0.0,0.00534]

PLEA [0.7511,0.0,0.2489] [0.99484,0.0,0.00516] [0.97136,0.0,0.02864]

LDML-R [0.37264,0.0,0.62736] [0.99634,0.0,0.00366] [0.95998,0.0,0.04002]

11
.2. Multilabel classification experiments 

Having establishing that statistically, the LE learning accuracy of 

he proposed LEAML algorithm is better than the existing state-of- 

he-art LE algorithms, we next evaluate the multilabel classification 

apability of our LEAML. 

.2.1. Multilabel datasets, MLL metrics and MLL benchmarks 

For this set of multilabel classification experiments, we em- 

loy the 10 real-word multilabel datasets without ground-truth la- 

el distributions from [36] . These 10 datasets are summarized in 

able 12 , where we have S: the number of examples, T : the num-

er of testing samples, dim (S) : the feature dimensions, L (S) : the

umber of class labels, LCard(S) : the label cardinality, LDen (S) : the 

abel density, DL (S) : the distinct label sets, and F (S) : the feature

ype. 
thms in terms of six evaluation metrics ( rope = 0 . 01 , and default prior strength is 

KL divergence cosine Inters 

[1.0,0.0,0.0] [1.0,0.0,0.0] [1.0,0.0,0.0] 

[1.0,0.0,0.0] [1.0,0.0,0.0] [1.0,0.0,0.0] 

[1.0,0.0,0.0] [0.99588,0.0,0.00412] [1.0,0.0,0.0] 

[1.0,0.0,0.0] [0.99942,0.0,0.00058] [1.0,0.0,0.0] 

 [0.99986,0.00014,0.0] [0.98294,0.00452,0.01254] [1.0,0.0,0.0] 

 [0.8643,0.00038,0.13532] [0.97044,0.0,0.02956] [0.99998,0.0,2e-05] 

 [0.98192,0.00114,0.01694] [0.95404,0.0057,0.04026] [0.99616,0.0,0.00384] 
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Table 12 

Characteristics of 10 real-world datasets from [36] with unknown ground-truth label distribu- 

tions used in multilabel classification experiments with MLL metrics . 

Dataset S T dim (S) L (S) LCard(S) LDen (S) DL (S) F (S) 

Emotions 415 178 72 6 1.869 0.311 27 numeric 

Medical 645 333 1449 45 1.245 0.028 94 nominal 

Cal500 250 252 68 174 26.044 0.150 502 numeric 

Birds 320 325 260 19 1.014 0.053 133 numeric 

Enron 1123 579 1001 53 3.378 0.064 753 nominal 

Yeast 1200 1217 103 14 4.237 0.303 198 numeric 

Image 1000 1000 294 5 1.236 0.247 20 numeric 

Scene 1211 1196 294 6 1.074 0.179 15 numeric 

Corel5k 2500 2500 499 374 3.522 0.009 3175 nominal 

Bibtex 3700 3695 1836 159 2.402 0.015 2856 nominal 

Table 13 

MLL performance comparison of 9 algorithms on 10 real-world datasets of Table 12 . 

Yeast Emotions Medical Cal500 Birds Image Scene Enron Corel5k Bibtex 

Algorithm Hamming Loss ↓ 
ML 0.2073 0.2388 0.0114 0.1578 0.0636 0.1642 0.0847 0.0546 0.0098 0.0126 

ML-kNN 0.1980 0.2706 0.0153 0.1416 0.0546 0.1862 0.0989 0.0620 0.0094 0.0136 

MLNB 0.2166 0.2804 0.0339 0.1395 0.0779 0.2300 0.1299 0.1145 0.0145 0.0824 

MLFE 0.2038 0.2434 0.0112 0.1549 0.0615 0.1616 0.0903 0.0543 0.0101 0.0124 

BP-MLL 0.4500 0.2987 0.0290 0.1472 0.0683 0.3056 0.2904 0.0682 0.0094 0.0160 

MDLRML 0.1910 0.2247 0.0116 0.1412 0.0514 0.1644 0.0872 0.0570 0.0156 0.0094 

PLEA 0.1945 0.2406 0.0115 0.1596 0.0645 0.1654 0.0847 0.0546 0.0098 0.0126 

LDML-R 0.1950 0.2350 0.0277 0.1489 0.0510 0.2484 0.1809 0.0668 0.0092 0.0125 

LEAML 0.1914 0.2491 0.2440 0.1413 0.0552 0.1610 0.0872 0.0554 0.0094 0.0127 

Algorithm ranking loss ↓ 
ML 0.3022 0.2228 0.1084 0.4721 0.3288 0.1467 0.0580 0.3210 0.4177 0.0897 

ML-kNN 0.1715 0.2724 0.0540 0.1928 0.3070 0.1927 0.0931 0.1220 0.2663 0.2234 

MLNB 0.2323 0.2150 0.0599 0.1927 0.2157 0.2420 0.1124 0.1768 0.1267 0.1584 

MLFE 0.1777 0.2061 0.0209 0.2089 0.3210 0.1443 0.0713 0.0958 0.3156 0.0914 

BP-MLL 0.4450 0.4803 0.2445 0.1996 0.3964 0.7956 0.5992 0.3738 0.2695 0.4764 

MDLRML 0.2937 0.1812 0.1440 0.1769 0.2916 0.1352 0.0577 0.3076 0.4303 0.1017 

PLEA 0.2904 0.2166 0.1093 0.4749 0.3865 0.1456 0.0575 0.3229 0.4439 0.0897 

LDML-R 0.3038 0.2345 0.4970 0.4836 0.4858 0.4623 0.4766 0.3124 0.4982 0.4994 

LEAML 0.2877 0.2222 0.1435 0.4654 0.2922 0.1352 0.0580 0.2951 0.4268 0.0886 

Algorithm one error ↓ 
ML 0.2857 0.5000 0.3421 0.0805 0.7895 0.2000 0.0000 0.6731 0.9360 0.3899 

ML-kNN 0.2345 0.4213 0.2492 0.1190 0.7356 0.3600 0.2425 0.3921 0.7892 0.6225 

MLNB 0.4170 0.4848 0.4234 0.1190 0.5517 0.4390 0.2851 0.5233 0.8804 0.5876 

MLFE 0.2356 0.3708 0.1471 0.1984 0.7471 0.2680 0.2157 0.2608 0.7832 0.3710 

BP-MLL 0.7034 0.7022 0.4024 0.1071 0.7989 0.6710 0.8269 0.2642 0.9716 0.4547 

MDLRML 0.0714 0.3333 0.3684 0.0747 0.3396 0.2000 0.3000 0.0639 0.7680 0.3322 

PLEA 0.1429 0.5000 0.3421 0.0776 0.4474 0.0000 0.0000 0.6923 0.9302 0.3459 

LDML-R 0.2857 0.5000 0.1421 0.1494 0.0526 0.2000 0.1667 0.0566 0.0116 0.0063 

LEAML 0.0714 0.1502 0.0000 0.1034 0.0526 0.0000 0.0000 0.0385 0.0000 0.0000 

Algorithm coverage ↓ 
ML 0.8749 0.1600 0.5236 0.2302 0.2836 0.9510 0.9282 0.4523 0.1813 0.2472 

ML-kNN 0.6414 0.2247 0.3441 0.1319 0.3606 1.0420 0.5686 0.1631 0.1978 0.5723 

MLNB 0.2499 0.2871 0.1925 0.1346 0.2695 1.2450 0.6564 0.2313 0.2102 0.3819 

MLFE 0.6503 0.1887 0.1475 0.1354 0.3763 0.8410 0.4582 0.1495 0.2238 0.2586 

BP-MLL 0.8990 0.3089 0.2955 1.3386 0.4415 2.1460 2.0761 0.2369 0.1980 0.7356 

MDLRML 0.8620 0.1480 0.0590 0.2270 0.2660 0.9350 0.1870 0.4390 0.1830 0.1980 

PLEA 0.8816 0.1570 0.0520 0.2281 0.2828 0.9512 0.9330 0.4579 0.1806 0.2457 

LDML-R 0.8629 0.1723 0.3398 0.2302 0.2704 0.9608 1.0690 0.7529 0.1866 0.3477 

LEAML 0.8636 0.1502 0.0340 0.2276 0.2649 0.9030 0.1199 0.4329 0.1748 0.2438 

Algorithm average precision ↑ 
ML 0.8228 0.7764 0.9806 0.7758 0.6430 0.8555 0.9329 0.9056 0.7059 0.9261 

ML-kNN 0.6642 0.7142 0.7695 0.5054 0.6173 0.8187 0.9108 0.5512 0.5233 0.6528 

MLNB 0.6936 0.6807 0.5227 0.5120 0.6955 0.7788 0.8993 0.5569 0.3559 0.8209 

MLFE 0.6996 0.7901 0.8745 0.5377 0.7047 0.8617 0.9385 0.6581 0.5549 0.8672 

BP-MLL 0.4297 0.5161 0.2081 0.4783 0.2460 0.5111 0.4200 0.2057 0.2012 0.0659 

MDLRML 0.8316 0.7831 0.5748 0.7883 0.6841 0.7258 0.8394 0.2130 0.3470 0.3637 

PLEA 0.5085 0.6217 0.5783 0.1815 0.1255 0.7073 0.8407 0.1890 0.0339 0.3871 

LDML-R 0.6910 0.6743 0.9597 0.8416 0.9348 0.7271 0.7892 0.9217 0.9873 0.9824 

LEAML 0.5802 0.6515 0.9597 0.8363 0.8849 0.9277 0.8395 0.9168 0.9652 0.8821 
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To evaluate multilabel classification performance, we choose the 

ve widely used MLL metrics [37] , and they are: Hamming loss ↓ ,

anking loss ↓ , one error ↓ , coverage ↓ , and average precision ↑ . 

The benchmark algorithms used in this set of multilabel clas- 

ification experiments include our previous MDLRML [21] , PLEA 

22] and LDML-R [23] as well as five existing state-of-the-art MLL 

b

12 
lgorithms, specifically, the BP-MLL [38] , the ML [15] , the ML-kNN 

39] , the MLNB [40] , and MLFE the [41] . 

.2.2. Multilabel classification performance 

The experimental results are listed in Table 13 , where bold 

lack number indicates the best performance and bold blue num- 
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Table 14 

Bayesian signed-rank test on the multilabel classification performance among the 9 algorithms in terms of five evaluation metrics ( rope = 0 . 01 , and default prior strength is 

0.6) . 

LEAML versus Evaluation metric 

Hamming loss ↓ ranking loss ↓ one error ↓ coverage ↓ average precision ↑ 
ML [0.62732, 0.0007, 0.37198] [0.92448, 0.0003, 0.07522] [0.99968, 0.00016, 0.00016] [1.0, 0.0, 0.0] [0.51918, 0.0, 0.48082] 

ML-kNN [0.93258, 0.0003, 0.06712] [0.14964, 4e-05, 0.85032] [1.0, 0.0, 0.0] [0.8928, 2e-05, 0.10718] [0.99456, 2e-05, 0.00542] 

MLNB [0.95454, 2e-05, 0.04544] [0.05134, 2e-05, 0.94864] [1.0, 0.0, 0.0] [0.79686, 0.0, 0.20314] [0.99228, 0.0, 0.00772] 

MLFE [0.75654, 0.0, 0.24346] [0.038, 2e-05, 0.96198] [1.0, 0.0, 0.0] [0.57846, 2e-05, 0.42152] [0.91942, 0.0, 0.08058] 

BP-MLL [0.97216, 0.00018, 0.02766] [0.9674, 4e-05, 0.03256] [1.0, 0.0, 0.0] [0.99764, 0.0, 0.00236] [1.0, 0.0, 0.0] 

MDLRML [0.16516, 0.00216, 0.83268] [0.5875, 0.00088, 0.41162] [0.99932, 0.00012, 0.00056] [0.86442, 0.0, 0.13558] [0.98304, 0.00032, 0.01664] 

PLEA [0.63194, 0.0008, 0.36726] [0.92612, 2e-05, 0.07386] [0.99772, 0.0015, 0.00078] [1.0, 0.0, 0.0] [0.99996, 0.0, 4e-05] 

LDML-R [0.64654, 0.0001, 0.35336] [1.0, 0.0, 0.0] [0.99998, 2e-05, 0.0] [0.99994, 0.0, 6e-05] [0.14304, 0.00036, 0.8566] 
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er indicates the second best performance. The top four ranking al- 

orithms are as follows. Our LEAML achieves the best performance 

n 17 cases and the second best performance in 11 cases. The MDL- 

ML attains the best performance in 10 cases and the second best 

erformance in 11 cases. The LDML-R has 8 cases of the best per- 

ormance and 8 cases of the second best performance. The fourth 

anking MLFE achieves the best performance in 8 cases and the 

econd best performance in 6 cases. 

.2.3. Statistical validation of multilabel classification performance 

To test the statistical relationship between LEAML and the other 

lgorithms, the results of Bayesian signed-rank test [35] are given 

n Table 14 . It can be seen that the LEAML algorithm wins over the

L, BP-MLL and PLEA in all the five metrics, while it wins over ML- 

NN, MLBN, MLFE, MDLRML and LDML-R in four metrics but loses 

o each of these competitors in one metric. The results of Bayesian 

igned-rank test thus suggest that our LEAML has statistically sig- 

ificant advantages over these benchmarks in MLL performance. 

. Conclusions 

In this paper, we have proposed a novel label enhancement 

anifold learning algorithm to solve the multi-label learning prob- 

em. Our proposed LEAML consists of three interconnected compo- 

ents. First we excavate the underlying label information contained 

n the feature space through an incremental semi-supervised sub- 

pace learning. Then we estimate the label distribution via label 

ropagation. Afterward we use the estimated label distributions 

nd extracted features to train the label distribution prediction 

odel via the conditional random field, and the maximum like- 

ihood estimation of the label distribution predictor’s parameters 

re obtained based on a gradient-descent iterative optimization 

lgorithm. Extensive experimental results involving 14 real-word 

ultilabel datasets with the ground-truth label distributions have 

onvincingly demonstrated the superior label distribution recov- 

ry performance of our proposed LEAML algorithm over the well- 

stablished state-of-the-art LE algorithms. Experimental results in- 

olving 10 real-life datasets without ground-truth label distribu- 

ions have demonstrated the excellent multilabel classification per- 

ormance of our LEAML algorithm compared with the state-of-the- 

rt MLL algorithms. 
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