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A B S T R A C T

Label enhancement (LE) aims to enrich logical labels into their corresponding label distributions. But existing
LE algorithms fail to fully leverage the structural information in the feature space to improve LE learning.
To address this key issue, we first apply manifold learning to map the relatedness between low-dimensional
feature samples to the label space. Based on the smoothness assumption of manifolds, the implicit correlation
between low-dimensional feature and label spaces effectively promotes the LE process, enabling the learning
model to accurately capture the mapping relationship between feature and label manifolds. This leads to
an LE based on feature representation (LEFR) algorithm. We also propose an LE algorithm based on graph
convolutional network (GCN), called LE-GCN. Inspired by the relationship between threshold connections and
label connections, we extend GCN to the LE field for the first time to fully exploit the hidden relationships
between nodes and labels. By enhancing node information with threshold connections and label connections,
the label learning accuracy reaches a new level. Experiments on real-world datasets show that our LEFR and
LE-GCN outperform several state-of-the-art LE algorithms.
1. Introduction

In the past few years, learning with ambiguity has become a re-
search hotspot in the field of machine learning and data mining. A
large number of studies have shown that multi-label learning (MLL)
is an effective learning method [1], but there still exist many chal-
lenges that remain to be tackled for this important learning paradigm.
Although the importance of each label is typically considered to be
equal in diverse MLL applications, that is, the contribution degree of
each label to the example is assumed to be equal, the importance of
different labels to the example is often different for many real-world
problems. For example, expressions usually contain several different
emotional components. In some cases, we not only need to know the
several emotional components that the expression contains, but also
need to understand the strength of these emotional components in the
expression.

To address this critical issue, Geng [2] proposed a novel label
distribution learning (LDL) paradigm. The key idea underpinning LDL
is as follows. The description degree of all the labels related to an
instance constitutes a real-valued vector called label distribution, which
describes the instance more comprehensively than the logical labels.
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LDL methods have been successfully applied to many problems, such
as age estimation [3], emotion classification [4], soft video parsing [5],
person re-identification [6], etc. In order to apply the LDL method
to fully learn label information, we firstly need to obtain the label
distributions of the dataset. However, instances in real life are often
annotated with logical labels instead of label distributions, and man-
ually annotating instances with label distributions is time-consuming
and costly. Getting the label distributions of the dataset is often very
difficult in most training sets [7].

Although most real-life data are labeled with logical labels [8], the
supervision information in the data follows certain label distribution.
The method of recovering this hidden supervision information is called
label enhancement (LE) [7]. LE is the process of transforming the
original logical labels in the training samples to label distributions. It
uses the label correlation implicit in the data to effectively strengthen
the supervision information of the examples, and thus enables the LDL
to obtain better prediction results. This process is illustrated in Fig. 1.
This landscape image contains complete information about the sample.
But the logical labeling only assigns value of 1 to some important
information, such as ‘mountain’ and ‘building’, and it may ignore/miss
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Fig. 1. An example of label enhancement. Some labels, such as ‘lake’ and ‘snow’, are missing (false negative). LE methods can pay special attention to recover these missing labels.
relatively important information like ‘lake’ and ‘snow’. LE can enhance
the important information within samples by assigning a descriptive
measure to each label based on its significance.

Effective LE methods should be capable of mining the low-
dimensional topological structure information of the feature space,
transferring the sample correlation information to the label space, and
enhancing the logical labels into label distributions. In this context, this
paper proposes an LE method based on feature representation, referred
to as LEFR. First, we use the manifold learning method, known as local
tangent space alignment (LTSA) [9], to obtain the low-dimensional
structure of data points, and construct a new similarity matrix to map
the correlation of samples in the low-dimensional feature space onto
the label space. The initial label distributions can be obtained through
this manifold learning process. Then, the label distribution prediction
model is constructed based on the manifold structure. According to
the smoothness property of manifold, the implicit correlation in the
low-dimensional feature space and label space effectively facilitates the
LE process, and the learning model can accurately capture the map-
ping relationship between the feature manifold space and label space.
The experimental results show that the proposed LEFR model outper-
forms several state-of-the-art techniques, in terms of label distribution
prediction performance.

The traditional graph similarity matrix is based on the co-occurrence
probability matrix between labels or established according to the index
relationship between nodes but nodes and labels are not combined to
construct a graph [10,11]. In the work [12], for example, each node
and the label are fully connected, and there is no information to be
exploited. By extending the graph convolutional network (GCN) [13] to
the LE field for the first time, this paper also proposes an LE algorithm
based on GCN, called LE-GCN. Our inspiration is the relationship be-
tween the threshold connection and the label connection. Specifically,
the feature nodes of the original samples are connected through a
distance threshold, the hidden relationship between the feature nodes
is extracted, and the feature nodes and their corresponding marked
nodes are connected to fully mine the hidden relationship between
the nodes and the markers. This realizes the information reshaping of
feature space and label space. Then the information is injected into
the GCN. The GCN uses this reshaping information to aggregate and
update the training sample node information, and obtain a new feature
node. We design an objective function to optimize our GCN output.
The distance between the predicted label distributions obtained by
the GCN using the reshaping information and label propagation (LP)
constitutes this objective function, thereby obtaining the prediction
score corresponding to each instance label.

In summary, our main contributions are as follows.

1. The first proposed LE method, called the LEFR, builds a frame-
work based on feature representations and applies manifold
2

learning to extract underlying low-dimensional feature infor-
mation. Intermediate label distributions are obtained via LP.
A novel sample similarity matrix mines relationships between
sample feature and label spaces. By combining low-dimensional
feature space, label information and estimated distributions, an
enhanced label distribution prediction model is established and
trained via gradient descent optimization to achieve accurate
predictions.

2. The second proposed LE algorithm, referred to as LE-GCN, em-
ploys the GCN to determine feature node connection thresholds
based on similarity attributes and enable information reshaping
between the feature and label spaces, which allows LE-GCN to
generate accurate label distributions. LE-GCN includes virtual
label nodes and weighted edges between samples and their
corresponding single labels. Effective information propagation is
enabled by GCN within the feature space, where feature repre-
sentations are transformed and passed between connected nodes.
Subsequently, under the operation of LP, the high-quality prop-
agated feature information is accurately converted into label
distribution representations.

3. The experimental results validate that both LEFR and LE-GCN
outperform the existing state-of-the-art LE methods, in terms of
label recovery and label prediction performance. In particular,
the proposed LE-GCN achieves the best label recovery accuracy,
owing to its GCN propagation mechanism which iteratively con-
verts the feature space information propagation driven by the
virtual labels into label distribution representations. The pro-
posed LEFR attains the best label prediction accuracy through its
natural integration of manifold space, label space and similarity
weights as well as optimization with an effective quasi-Newton
method.

The rest of this paper is organized as follows. The related work is
presented in Section 2. Our proposed two algorithms are detailed in
Section 3. The results of comparative experiments under different tasks
are reported in Section 4. The paper is concluded in Section 5.

2. Survey of existing LE algorithms

The existing LE algorithms can be divided into the three categories.
The first category is the LE based on fuzzy theory, which utilizes the
fuzzy mathematics to construct the fuzzy membership degree of each
label class through fuzzy operation or fuzzy clustering. Typical fuzzy-
based LE methods include the fuzzy clustering-based LE algorithm [14]
and kernel-based LE algorithm [15]. It is worth noting that the purpose
of this type of methods is generally to introduce ambiguity into the
originally logical labels. But it is not clear how this can enhance the
logical label into a label distribution. Another category is the graph-
based LE, which uses graph models to represent topological structures
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of instances, and enhances logical labels into label distributions by
establishing the relationship between the instance correlations and
the label correlations. Typical graph-based LE methods include the LE
based on label propagation (LP) [1], the LE based on manifold learning
(ML) [16], the graph Laplacian-based LE (GLLE) [7], the LE with
sample correlations (LESC) [17], and the privileged LE with multi-label
learning (PLEML) [18]. The third category includes the generative LE
methods. LEVI [19] and GLEMR [20] consider the label distribution as
a latent variable and infer the approximate posterior density of the label
distribution based on the variational lower bound to improve recovery
performance. ConLE [21] integrates features and logical labels into a
unified projection space, and employs an adversarial learning strategy
to bring the features and logical labels of the same instance closer in
the projection space.

We first introduce the following variables. Let 𝑿 = [𝒙1 𝒙2 ⋯𝒙𝑛] ∈
𝑚×𝑛 be the feature matrix of instances, where 𝑛 is the number of

nstances and 𝑚 is the feature dimension. Further let the logical label
ector of instance 𝒙𝑖 be given by 𝒚𝑖 =

[

𝑦𝑖,1 𝑦𝑖,2 ⋯ 𝑦𝑖,𝑐
]T ∈ {0, 1}𝑐 , where

is the number of labels, 𝑦𝑖,𝑘 =1 if the label 𝑦𝑖,𝑘 is relevant to 𝒙𝑖, and
therwise 𝑦𝑖,𝑘=0. The logic label matrix is defined by 𝒀 =

[

𝒚1 𝒚2 ⋯ 𝒚𝑛
]

.
Moreover, let 𝒅𝑖 = 𝒅𝒚𝑖

𝒙𝑖 =
[

𝑑𝑦𝑖,1𝒙𝑖 𝑑𝑦𝑖,2𝒙𝑖 ⋯ 𝑑𝑦𝑖,𝑐𝒙𝑖
]T represent the unknown

ground-truth label distribution of 𝒙𝑖.

2.1. LE based on label propagation (LP)

Zhang et al. [1] applied the LP method in semi-supervised learning
to LE. A fully associative graph = ( , ) is first constructed using all
the training instances, where each vertex of the graph is an instance,
i.e.,  = {𝒙𝑖}𝑛𝑖=1, and  denotes the set of edges. According to , the
feature similarity matrix 𝑾 =

[

𝑤𝑖,𝑗
]

𝑛×𝑛 between the instances is defined
as

𝑤𝑖,𝑗 =

⎧
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⎨
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⎩
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⎟
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⎠

, 𝑖 ≠ 𝑗,

0, 𝑖 = 𝑗,

1 ≤ 𝑖, 𝑗 ≤ 𝑛, (1)

where 𝜏 is a hyperparameter. The LP matrix 𝑷 is constructed from 𝑾
as 𝑷 =�̄�− 1

2 𝑾 �̄�− 1
2 , where the diagonal matrix �̄�=diag

{

𝑑1,… , 𝑑𝑛
}

and
he diagonal element 𝑑𝑖=

∑𝑛
𝑗=1 𝑤𝑖,𝑗 is the sum of all the elements in the

𝑖th row of 𝑾 . Let 𝑭 =
[

𝑓𝑖,𝑗
]

𝑛×𝑐 be the label importance matrix, whose
initial state is defined as 𝑭 (0) = 𝒀 T. At the 𝑡th iteration, 𝑭 is updated
according to 𝑷 as

𝑭 (𝑡) = 𝛼𝑷𝑭 (𝑡−1) + (1 − 𝛼)𝒀 T, (2)

where 𝛼∈(0, 1) is the balancing parameter which controls the fraction
f the information inherited from the LP matrix and the logical label
atrix. Clearly,

(𝑡) = (𝛼𝑷 )𝑡𝒀 T + (1 − 𝛼)
𝑡−1
∑

𝑖=0
(𝛼𝑷 )𝑖𝒀 T, (3)

and 𝑭 (𝑡) converges to

𝑭⋆ = (1 − 𝛼)(𝑰𝑛 − 𝛼𝑷 )−1𝒀 T, (4)

where 𝑰𝑛 denotes the (𝑛 × 𝑛) identity matrix. Each row of 𝑭⋆ is then
normalized to obtain the estimated label distribution

𝑑
𝑦𝑖,𝑗
𝒙𝑖 =

𝑓⋆
𝑖,𝑗

∑𝑐
𝑘=1 𝑓

⋆
𝑖,𝑘

, 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑐. (5)

The LE algorithm based on LP represents the topological structure
between instances by using graph model. It first constructs a LP matrix
based on the correlation between examples, and then uses the different
path weights in the propagation process to make the description degree
of different labels different, to reflect the inter-label relationship em-
bedding in the training data. However, this LP algorithm imposes high
3

complexity, as it calculates the paired distances in the whole feature
space. The more serious point is that this LP algorithm is essentially
the propagation of logical label and uses the normalization to force
the logical label to be the label distribution, which cannot reflect
the essence of LE: namely, ability to predict the label distribution of
unknown instances through the relationship between known instances.

2.2. LE algorithm based on manifold learning (ML)

Hou et al. [16] proposed an LE method based on the manifold
learning (ML). Similar to the LE based on LP, a fully connected graph
 = ( , ) is constructed using the training examples. Again let 𝑾 =
[

𝑤𝑖,𝑗
]

𝑛×𝑛 be the weight matrix, with 𝑤𝑖,𝑗 representing the weight of
the edge connecting 𝒙𝑖 and 𝒙𝑗 . To explore the local topological struc-
ture in the training set, the local topological structure between the
examples, namely, 𝑾 , is obtained by solving a quadratic programming
problem according to the locally linear embedding [22]. The matrix
𝑾 is used to describe the local reconstruction relationship between
the examples. This local reconstruction relationship between exam-
ples is migrated to the label space, and the label distributions can
be reconstructed/estimated by solving anther quadratic programming
problem.

The ML establishes the relationship between instances’ correlation
and labels’ correlation based on the smoothness hypothesis. It needs
to reconstruct the structural information in the label space from the
feature space, and then through the quadratic programming to solve
the label distribution estimation. These two steps need to construct
the separate objective functions, and they are solved separately, which
inevitably reduces the effectiveness and the prediction accuracy of the
algorithm. Like the LP algorithm [1], the ML itself has no direct ability
to predict the label distribution of new sample unseen in training.

2.3. Graph Laplacian-based LE (GLLE)

Given the training feature matrix 𝑿, to recover the label distribution
matrix 𝑫 =

[

𝒅1 ⋯𝒅𝑛
]

from the logical label matrix 𝒀 , GLLE [7]
constructs the model

𝒅𝑖 = 𝜴T𝜑(𝒙𝑖) + 𝒃 = �̄�𝝓𝑖, (6)

by solving the optimization problem

min
�̄�

𝐿
(

�̄�
)

+ 𝜆𝛯
(

�̄�
)

. (7)

where 𝜴 =
[

𝝎1 ⋯𝝎𝑐
]

is a weight matrix, 𝒃 ∈ R𝑐 is a bias vector, and
𝜑(𝒙) is a nonlinear transformation of 𝒙, while �̄�=

[

𝜴T 𝒃
]

, 𝝓𝑖=
[

𝜑(𝒙𝑖) 1
]

and 𝜆 is a hyperparameter. The least squares (LS) loss function 𝐿(⋅) is
chosen to be

𝐿
(

�̄�
)

=
𝑛
∑

𝑖=1

‖

‖

�̄�𝝓𝑖−𝒚𝑖‖‖
2 = tr

(

(

�̄�𝜱−𝒀
)T(�̄�𝜱−𝒀

)

)

, (8)

where 𝜱 =
[

𝝓1 ⋯𝝓𝑛
]

. To mine the hidden label importance from
the training examples by exploiting the topological information of the
feature space, the authors of [7] specified the local similarity matrix
𝑨 =

[

𝑎𝑖,𝑗
]

𝑛×𝑛 with

𝑎𝑖,𝑗 =

⎧

⎪

⎨

⎪

⎩

exp

(

−
‖

‖

‖

𝒙𝑖−𝒙𝑗
‖

‖

‖

2

2𝜎2

)

, if 𝒙𝑗 ∈ 𝑲(𝑖),

0, otherwise,
(9)

where 𝑲(𝑖) denotes the set of 𝒙𝑖’s 𝐾-nearest neighbors, and 𝜎 is the
width parameter. The cost function 𝛯(⋅) is used to mine hidden label’s
importance. According to the smoothness assumption [23], the points
close to each other are more likely to share a label. This intuition leads
to:

𝛯
(

�̄�
)

=
∑

𝑎𝑖,𝑗
‖

‖

‖

𝒅𝑖 − 𝒅𝑗
‖

‖

‖

2
= tr

(

𝑫𝑮𝑫T)tr
(

�̄�𝜱𝑮�̄�T𝜱T), (10)

𝑖,𝑗
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Fig. 2. An overall framework diagram of the two proposed LE algorithms. LEFR is shown in the left and middle parts, and LE-GCN is illustrated in the right and middle parts.
where 𝑮 = �̄� − 𝑨 is the graph Laplacian, and the diagonal matrix
�̄� = diag

{

�̄�1,… , �̄�𝑛
}

has the diagonal elements �̄�𝑖 =
∑𝑛

𝑗=1 𝑎𝑖,𝑗 , 1 ≤
𝑖 ≤ 𝑛. The optimization problem (7) is solved by an effective quasi-
Newton method called BFGS [24] to determine the best parameter �̄�⋆.
Finally, the label distribution 𝒅𝑖 can be generated and normalized by
the softmax normalization [7].

Unlike the LP algorithm [1], which imposes high complexity by
calculating the distances between all the samples, GLLE calculates the
distances between the instance and its 𝐾 nearest neighbors. GLLE also
integrates the topological information of the feature space and the loss
function that predicts the label distribution into a single combined
objective function, thus, avoiding the need to solve the problem in two
steps, as in the case of the ML algorithm [16]. Moreover, since during
the LE enhance process, GLLE builds a label predictor model, it has the
ability to directly predict the label distribution of new sample unseen
in training. However, GLLE has a natural ‘defect’. The first loss function
in its objective function constructs a weighted linear model based on
the logical label of instances, which directly approximates the predicted
label distribution. This does not conform to the ‘physical’ interpretation
of label distribution, which indicates the extent to which original label
describe instances.

2.4. LE with sample correlations (LESC)

The LE with sample correlations (LESC) via low-rank representation
algorithm [17] obtains the label distribution by exploiting the low-rank
representation to excavate the global information in the feature space,
which is different from GLLE [7] that exploits the local similarity.
Similar to GLLE, the LS loss function is adopted as the first term
of the optimization objective function. The difference is that LESC
adopts the low-rank representation to construct the second term of the
optimization formula. The minimized low-rank representation of the
feature space is obtained by seeking the low-rank representation among
the feature matrix to excavate the global structure of the feature space.
Finally, the BFGS algorithm [24] is adopted to solve this optimization
and hence to obtain the label distributions.

However, it is difficult to determine the convergence of BFGS ap-
plied to the LESC optimization problem. A common practice is to
manually set the number of iterations. This is time consuming for large
size problems. Like GLLE [7], during the LE process, LESC builds a
label predictor model and therefore has the ability to predict the label
distribution of new sample unseen in training.

2.5. Privileged LE with multi-label learning (PLEML)

Zhu et al. [18] proposed a privileged LE method with MLL (PLEML).
First, it applies an MLL model to generate an auxiliary information for
LE. Second, PLEML adopts the learning using privileged information
(LUPI) paradigm [25], which is supplied by a teacher about instances
4

at the training stage, to make reasonable use of additional information.
Finally, PLEML applies the RSVM+ [25] as the final prediction model,
which is a support vector machine discriminative model implementing
LUPI.

Although PLEML first utilizes the labels’ correlation in the label
space to generate the auxiliary label distribution, the algorithm is
divided into two steps, and the label information is lost to a certain
extent. Hence, PLEML does not make full use of the correlation between
examples in the feature space, and the effect of this is to make the
algorithm suboptimal. Since during the LE enhance process, PLEML
builds a label predictor model, it has the ability to directly predict the
label distribution of new sample unseen in training.

3. Our proposed approaches

First, we define the generic LE problem. Given the training set
ll = {𝑿, 𝒀 }, LE recovers the label distribution 𝒅𝑖 = 𝒅

𝒚𝑖
𝒙𝑖

of 𝒙𝑖 from the
logical label 𝒚𝑖 and converts ll to the dataset with label distributions
̂ld = {𝑿, �̂�}, where the estimated label distributions �̂� =

[

𝒅
𝒚1
𝒙1

⋯𝒅
𝒚𝑛
𝒙𝑛

]

satisfy 𝑑
𝑦𝑖,𝑗
𝒙𝑖 ∈[0, 1] and ∑𝑐

𝑗=1 𝑑
𝑦𝑖,𝑗
𝒙𝑖 =1, 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 ≤ 𝑐. The goal

is to make the estimated label distribution set �̂� as close as possible
to the unknown true label distribution set 𝑫=

[

𝒅1 ⋯𝒅𝑛
]

. Fig. 2 depicts
the overall framework of the two proposed LE algorithms. Both LEFR
and LE-GCN first learn low-dimensional representations. Specifically,
LEFR applies manifold learning on feature embeddings to implicitly
correlate the feature and label spaces (Left part of Fig. 2), while LE-
GCN constructs a graph representation of samples, labels and their
relationships, and utilizes GCNs to propagate and transform features
on this graph structure (Right part of Fig. 2). Next, they leverage LP
on the learned embeddings to recover label distributions (Middle part
of Fig. 2). In particular, LEFR incorporates LP as the loss function
to obtain the estimated label distributions from the representations
learned, while LE-GCN iterates LP to estimate label distributions on the
representations extracted. Both the algorithms then use the enhanced
training data to learn a predictive model (Middle part of Fig. 2), by
employing a logistic regression classifier as the predictor for label
distribution predictions. We now detail our two proposed approaches.

3.1. LEFR approach

(1) Sample correlation via low dimensional feature representation: In
real-world data, the samples with similar features usually share the
labels that are similar to each other. This indicates that the label
estimation of a sample should not only be determined by its own
feature-label annotation but also be influenced by its neighbors. The
feature correlation between samples and its neighbors leads to sample
correlation, which implicitly smooths their label annotation. In order
to consider the sample correlation of label space and feature space,
we build a new similarity matrix during the process of the LP in the
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graph model. Our method learns the subspace of manifold learning to
build the prediction target, i.e., label distribution. Therefore, we need
to use low-dimensional feature representation to analyze the sample
correlation.

(1.1) We obtain the low-dimensional feature representation by the
LTSA algorithm [9], with the following two stages.

(1.1a) Extract local information: Build the local neighborhood 𝑿𝑖=
[

𝒙𝑖1 ⋯𝒙𝑖𝑘
]

∈R𝑚×𝑘 of each 𝒙𝑖 with its 𝑘-nearest neighbors, according to
the Euclidean distance metric. Then obtain the approximate representa-
tion of the local tangent space coordinates of each local neighborhood.
Let 𝑽 𝑖 =

[

𝒗1 𝒗2 ⋯ 𝒗𝑑
]

∈ R𝑚×𝑑 be the matrix composed of the singular
vectors corresponding to the first 𝑑 maximum singular values of the
covariance matrix of 𝑿𝑖

(

𝑰𝑘 −
1
𝑘𝟏𝑘𝟏

T
𝑘

)

. Then 𝜣𝑖=𝑽 T
𝑖 𝑿𝑖

(

𝑰𝑘 −
1
𝑘𝟏𝑘𝟏

T
𝑘

)

∈
𝑑×𝑘 is the local tangent space matrix of the neighborhood.
(1.1b) Local coordinate alignment to global low-dimensional co-

rdinates: Let 𝑻 𝑖 =
[

𝒕𝑖1 𝒕𝑖2 ⋯ 𝒕𝑖𝑘
]

∈ R𝑑×𝑘 be the 𝑑-dimensional global
mbedding coordinates of 𝑿𝑖. Align the local tangent space coordi-
ates and the global low-dimensional coordinates by minimizing the
lignment error:

min
‖

‖

‖

‖

𝑻 𝑖

(

𝑰𝑘 −
1
𝑘
𝟏𝑘𝟏T𝑘

)

−𝑳𝑖𝜣𝑖
‖

‖

‖

‖

= tr
(

𝑻𝑸𝑻 T), (11)

here 𝑳𝑖=𝑻 𝑖

(

𝑰𝑘 −
1
𝑘𝟏𝑘𝟏

T
𝑘

)

𝜣†
𝑖 , 𝑸=

∑𝑛
𝑖=1 𝑺 𝑖𝑩𝑖𝑩T

𝑖 𝑺
T
𝑖 in which 𝑺 𝑖 ∈ R𝑛×𝑘

is the 0–1 selection matrix such that 𝑻 𝑖 = 𝑻𝑺 𝑖 and 𝑩𝑖 is given by

𝑩𝑖 =
(

𝑰𝑘 −
1
𝑘
𝟏𝑘𝟏T𝑘

)(

𝑰𝑘 −𝜣†
𝑖𝜣𝑖

)

, (12)

hile the global low-dimensional coordinates 𝑻 = [𝒕1 𝒕2 ⋯ 𝒕𝑛] are
omposed of the 𝑑-dimensional eigenvectors of 𝑸. 𝑻 reflects the in-
ormation of the feature structure.
(1.2) We construct a new sample similarity matrix 𝑨. In order

o consider the sample correlation of label space through the topo-
ogical information of feature space, 𝑨 is constructed by using the
ow-dimensional coordinates 𝒕𝑖.

Specifically, let =( , ) represent the graph of the training set ll.
he sample similarity of neighboring samples in the low-dimensional
eature space can be represented as:

𝑖,𝑗 =

⎧

⎪

⎨

⎪

⎩

exp
(

− ‖𝒕𝑖−𝒕𝑗‖2

2

)

, 𝑖 ≠ 𝑗,

0, 𝑖 = 𝑗,
1 ≤ 𝑖, 𝑗 ≤ 𝑛. (13)

he sample similarity matrix 𝑨=
[

𝑎𝑖,𝑗
]

𝑛×𝑛 is constructed via the topolog-
cal information of feature space, i.e., the low-dimensional coordinates
𝑖. According to the smooth property, the manifold structure in the
eature space is retained in the label space. Thus we can use the
imilarity between the samples in the feature space to guide the label
rediction in the label space.
(1.3) After obtaining 𝑨, the LP matrix is constructed as 𝑷 =

̄ −
1
2 𝑨�̄�− 1

2 , where the diagonal matrix �̄� = diag
{

�̄�1, �̄�2,… , �̄�𝑛
}

with
�̄�𝑖 =

∑𝑛
𝑗=1 𝑎𝑖,𝑗 . Let 𝑭 =

[

𝑓𝑖,𝑗
]

𝑛×𝑐 denote the label importance matrix.
Based on the training set, the initial label importance matrix is set to
𝑭 (0) = 𝒀 T. At the 𝑡th iteration, 𝑭 is updated according to the iterative
formula similar to (2), and 𝑭 (𝑡) converges to 𝑭⋆, which takes the
form similar to (4). The solution 𝑭⋆ is normalized to obtain the label
distributions 𝑑

𝑦𝑖,𝑗
𝒙𝑖 according to the formula of (5).

It is worth emphasizing that although the LE based on LP [1] looks
similar to the LEFR in converting the logical labels of the training set
into label distributions, the two algorithms are fundamentally different.
Firstly, the LP matrix 𝑷 of our LEFR is very different from that of the LE
based on LP. Secondly and more importantly, our LEFR builds a label
distribution prediction model during the LE process, and it is capable
of predicting the label distribution of a new sample.

(2) Construct label distribution prediction model via manifold structure:
The label distribution estimate 𝑑

𝑦𝑖,𝑗
𝒙𝑖 for the training data together with

the manifold structure are used to construct the label distribution
prediction model. Define a linear regression function 𝒇 (𝒙 )=𝑾 T𝒙 +𝒃,
5

𝑖 𝑖
where 𝑾 ∈ R𝑚×𝑐 is the projection matrix and 𝒃 ∈ R𝑐×1 is the bias.
Our goal is to determine the optimal (𝑾 , 𝒃), which can generate an
accurate label distribution according to the instance 𝒙𝑖. For notational
convenience, express 𝒇 (𝒙𝑖)= �̄� �̄�𝑖, where �̄� =

[

𝑾 T 𝒃
]

and �̄�T𝑖 =
[

𝒙T𝑖 1
]

.
his leads to the optimization problem:

min
�̄�

𝛺(�̄� )=
𝑛
∑

𝑖=1

‖

‖

�̄� �̄�𝑖 − 𝒅𝑖
‖

‖

2+𝜆1‖‖�̄� ‖

‖

2+𝜆2𝛹 (�̄� ), (14)

here the regularization parameters 𝜆1 and 𝜆2 balance the regression
rror, the norm of �̄� and the manifold smoothness function 𝛹 (�̄� ).
ince the ground-truth label distribution is unknown, we substitute
𝑖 in (14) by the label distribution estimate 𝒅𝑖 =

[

𝑑𝑦𝑖,1𝒙𝑖 𝑑𝑦𝑖,2𝒙𝑖 ⋯ 𝑑𝑦𝑖,𝑐𝒙𝑖
]T

btained in (1.3). Then we use the topology information of feature
pace to mine the sample label distribution hidden in the manifold
pace to define the regularization term, 𝛹 (�̄� ), so as to enhance the
ogical label into the label distribution. More specifically, since the
eature space and label space should have the similar local topological
tructure, by defining the feature matrix �̄� =

[

�̄�1 �̄�2 ⋯ �̄�𝑛
]

∈ R(𝑚+1)×𝑛

nd noting the alignment matrix 𝑸∈R𝑛×𝑛 given in (11), the manifold
moothness regularization function can be chosen as

(�̄� ) = tr
(

�̄� �̄�𝑸�̄�T�̄� T
)

. (15)

Therefore, our method constructs the label distribution prediction
odel by minimizing the ridge regression errors while simultane-

usly preserving the manifold smoothness, namely, by minimizing the
omposite loss function:

(�̄� ) =
𝑛
∑

𝑖=1

‖

‖

‖

�̄� �̄�𝑖 − 𝒅𝑖
‖

‖

‖

2
+ 𝜆1 ‖‖�̄� ‖

‖

2 + 𝜆2tr
(

�̄� �̄�𝑸�̄�T�̄� T
)

. (16)

hus our method is a semi-supervised learning based on manifold regu-
arization. The unlabeled instances help to identify the low-dimensional
anifold structure, along which the labels can be assumed to change

moothly. In other words, we use the manifold regularization to ex-
loit the geometry of the marginal distribution, as estimated by the
nlabeled data.
(3) Prediction model optimization: We utilize the quasi-Newton

ethod, BFGS [24], to minimize the objective function 𝛺(�̄� ). Express
(�̄� ) equivalently as

(�̄� ) =tr
(

(

�̄� �̄� − �̂�
)(

�̄� �̄� − �̂�
)T

)

+ 𝜆1tr
(

�̄� �̄� T
)

+ 𝜆2tr
(

�̄� �̄�𝑸�̄�T�̄� T
)

, (17)

here �̂� =
[

𝒅1 𝒅2 ⋯𝒅𝑛
]

. The gradient of 𝛺(�̄� ) is

𝛺(�̄� ) = 2�̄� �̄��̄�T − 2�̂��̄�T + 2𝜆1�̄� + 2𝜆2�̄� �̄�𝑸T�̄�T. (18)

FGS iteratively optimizes 𝛺(�̄� ) based on gradient descent.
When the optimal prediction model parameter �̄� ∗ is determined,

he label distribution estimate for the new test instance 𝒙 can be
enerated through the linear regression function 𝒇 (𝒙) = �̄� ∗�̄� with
̄ T =

[

𝒙T 1
]

.

.2. LE-GCN approach

Unlike the traditional graph model, where nodes and labels are not
ombined to construct the graph [10,11], we fully explore the corre-
pondence (matching) between each instance and label by reformulat-
ng the LE task as an instance-label matching selection problem, and
ropose a novel LE deep learning model based on GCN, as illustrated
n Fig. 3.
(1) We first represent each example feature as a node, and the

eature nodes of the original samples are connected through a distance
hreshold 𝜀𝑖,𝑗 > 𝜀, calculated according to

𝑖,𝑗 = exp

⎛

⎜

⎜

⎜

−
‖

‖

‖

𝒙𝑖 − 𝒙𝑗
‖

‖

‖

2

2

⎞

⎟

⎟

⎟

, 𝑖 ≠ 𝑗, (19)
⎝ ⎠
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Fig. 3. Architecture of the proposed LE-GCN model.
to extract the hidden relationship between the feature nodes. Also
the logical label information of each sample is used as a node. The
label nodes are initialized with the random label feature matrix and
they are fully connected. Then the sample feature nodes and their
corresponding label nodes are connected, to fully mine the hidden
relationship between the feature nodes and label nodes. Specifically, if
the sample belongs to a certain class, we connect its feature node to the
corresponding label node; otherwise the two nodes are not connected.
Thus, the information between the feature space and label space is
reconstructed via the node-label matrix, i.e., the connection matrix of
nodes and labels.

(2) Next, the node-label matrix is injected into the GCN model and
is processed as follows.

(2.1) The GCN preprocesses the node-label matrix, i.e., the node-
label information, by adding self-connection to the node-label matrix,
and hence the diagonal elements of the node-label matrix are all 1.

(2.2) A linear transformation transforms the input sample node
features, which are subjected to structural dimension reduction. Specif-
ically, the feature matrix of the nodes is linearly transformed, and
the features are transformed to the output dimension. Then the node
features are normalized.

(2.3) The GCN aggregates the neighbor node features according to

𝒙′ (𝑖) = 𝑚𝑒𝑎𝑛
({

𝒙𝑗 ,∀𝑗 ∈  (𝑖)
})

, (20)

where  (𝑖) denotes the node 𝑖’s neighbors, and hence 𝒙′ (𝑖)
∈ R𝑚×1 is

the average of the adjacent nodes’ features of instance 𝒙𝑖 ∈ R𝑚×1. A
brand new feature matrix is obtained, which is the output of this layer
of the GCN, according to

𝒙′𝑖 = 𝑾 1𝒙𝑖 +𝑾 2𝒙′ (𝑖), (21)

where 𝑾 1,𝑾 2 ∈ R𝑐×𝑚 and both obey the Kaiming uniform [26], while
𝒙′𝑖 ∈ R𝑐×1.

(2.4) Finally, a new feature matrix 𝑳′ ∈ R𝑛×𝑐 is obtained, and each
row of 𝑳′ is constituted by 𝒍′T𝑖 that is the output of this layer of the
GCN given by

𝒍′𝑖 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑

(

𝒙′𝑖
‖𝒙′𝑖‖2

)

. (22)

The new feature matrix 𝑳′ is then used in the following updating

𝑳′ = 𝛼𝑷𝑳′ + (1 − 𝛼)𝒀 T, (23)

where 𝑷 ∈ R𝑛×𝑛 is the probability transition matrix defined in Sec-
tion 2.1. Inspired by the LP method of Section 2.1, the features are
normalized to become the estimated label distributions 𝒅𝑖, 1 ≤ 𝑖 ≤ 𝑛.
The essence of this step is to map the features onto labels, and the
theoretical basis of this is the smoothness property, i.e., the labels with
similar features are also similar.

The GCN uses this reconstruction information to achieve the ag-
gregation and updating of the training sample node information, to
obtain new feature nodes and realize the LP, corresponding to the
predicted label distribution. The distance between the predicted label
distributions obtained by the GCN using the reshaping information
and the LP constitutes the objective function, thereby obtaining the
prediction score corresponding to each instance label. Steps (1) and
6

Table 1
Complexity comparison of various LE algorithms
for LE, where 𝐼irwls is the number of iterations for
the IRWLS algorithm [27], 𝐼iteration is the number
of iterations of LP [1], 𝐼SVM is the number of
iterations for the SVM algorithm and 𝐼bfgs is the
number of iterations for the BFGS algorithm [24].

LP [1] 𝖮
(

𝑛2 × 𝑚 × (1 + 𝐼iteration) + 𝑛3
)

ML [16] 𝖮
(

𝑛 + 𝐼irwls × 𝑛3
)

GLLE [7] 𝖮
(

𝑛2 × (𝑚 + 𝐼bfgs)
)

LESC [17] 𝖮
(

𝑛2 × (𝑚 + 𝐼bfgs)
)

PLEML [18] 𝖮
(

𝑛2 × (𝑚 + 𝐼bfgs + 𝐼SVM)
)

LEFR 𝖮
(

𝑛2 × (𝑚 + 𝐼bfgs) + 𝑛3
)

LE-GCN 𝖮
(

𝑛3 + 𝐼iteration × 𝑛2 × 𝑐
)

(2) constitute the process of enhancing the logical labels into label
distributions. Fig. 4 depicts the flow chart of this LE process.

(3) To predict the label distribution of new sample unseen in
training, a label predictor model is constructed based on the enhanced
training dataset

{

𝑿, �̂�
}

. We employ a logistic regression classifier,
similar to 𝒇 (𝒙) = �̄� �̄� used in LEFR, as the label predictor, and
optimize the predictor’s parameters [7]. However, we note that the
gradient of the objective function is impacted by the LP process in
LE-GCN, and this affects the performance of optimizing the label pre-
dictor. It is worth noting that the label predictor of LEFR is inte-
grated/constructed/optimized within the LE process, while the label
predictor of LE-GCN has to be constructed and optimized separately
after the LE process.

3.3. Complexity analysis

The computational complexity of the LEFR for LE consists of three
parts as summarized below.

Step 1. The procedure of the incremental feature extraction has the
complexity on the order of 𝖮

(

𝑛2 × 𝑚
)

.

Step 2. Construct the LP matrix has the complexity on the order of
𝖮
(

𝑛3
)

.

Step 3. Let the number of iterations for the BFGS algorithm [24] be
upper bounded by 𝐼bfgs. Since the complexity per iteration of the BFGS
optimization is 𝖮

(

𝑛2
)

, the complexity of Step 3 is 𝖮
(

𝐼bfgs × 𝑛2
)

.
The computational complexity of the LE-GCN for LE consists of two

parts as summarized below.

Step 1. Construct the LP matrix has the complexity on the order of
𝖮
(

𝑛3
)

.

Step 2. Let the number of iterations for (23) be upper bounded by
𝐼iteration. Since the complexity per iteration of the (23) is 𝖮

(

𝑛2 × 𝑐
)

, the
complexity of Step 2 is 𝖮

(

𝐼iteration × 𝑛2 × 𝑐
)

.
Table 1 compares the LE complexity of our LEFR and LE-GCN with

those of the five benchmarks.

4. Experimental evaluation

4.1. Description of experimental system

(1) Datasets: 13 real-world datasets from [2] are used in our ex-
periments, including two facial expression datasets, one natural scene
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Fig. 4. Flow chart of the label enhancement process by the proposed LE-GCN algorithm.
Fig. 5. Flow chart of the label distribution prediction process.
dataset and ten biological yeast experiment datasets. The two facial
expression datasets are collected from facial expression images, and
the natural scene dataset is collected from natural scene images and
movies, while the ten datasets of Yeast-alpha to Yeast-spoem are col-
lected from the records of 10 biological experiments on the budding
yeast genes. These datasets are chosen because they all provide the
ground-truth label distributions. As a basic task of LE learning is to
estimate the label distributions from the logical labels, we need the
true logical labels, which are obtained from the ground-truth label
distributions via binarization.

(2) Evaluation measures: To evaluate the accuracy of estimated/
predicted label distribution, a natural choice of measure is the average
distance or similarity between the estimated label distribution and the
ground-truth label distribution. We select six metrics to reflect LE and
label prediction performance from various aspects in semantics [28],
namely, Chebyshev distance (Cheb), Clark distance (Clark), Kullback–
Leibler divergence (KL), Canberra distance (Canber), Cosine correlation
coefficient (Cosine) and intersection similarity (Inter). The first four
metrics are distance metrics and the last two are similarity metrics.

(3) Benchmarks: We compare our LEFR and LE-GCN with the five
state-of-the-art LE algorithms, and they are: the LE algorithm based
on label propagation (LP) [1], the LE algorithm based on manifold
learning (ML) [16], the graph Laplacian-based LE algorithm (GLLE) [7],
the LE algorithm using privileged information (PLEML) [18], and the
LE algorithm with sample correlations via low-rank representation
(LESC) [17].

(4) Experiment procedures: There are two sets of experiments to
evaluate an LE method’s label distribution recovery performance and
label predictive performance, respectively.

(4.1) In the first set of experiments for recovery performance, there
is no need to divide the dataset into training set and test set. We apply
LE algorithms to the whole dataset to recover the label distributions
from the logical labels. Then the recovered or estimated label distribu-
tions are compared with the ground-truth label distributions using the
six evaluation metrics.

(4.2) The second set of experiments is for label predictive per-
formance to further test the effectiveness of LDL after the LE pre-
processing on the logical-labeled datasets. To predict the label distri-
bution of new sample unseen in training, a label predictor is required.
7

Most LE algorithms considered already train such parametric label
predictor models during or after the LE process. The LP [1] and ML [16]
only recover the label distributions from the logical labels for the train-
ing set during the LE process, and therefore label predictors are trained
for them using the enhanced training dataset based on the maximum
entropy model optimization [2]. The trained label predictor models are
tested on the new test dataset, and the label distribution predictions
are compared with the ground-truth label distributions. Ten-fold cross
validation is conducted for each algorithm and the average results are
recorded. Fig. 5 depicts the label distribution prediction or LDL flow
chart, where the connection with the label distribution recovery or LE
can be clearly seen.

(4.3) We now list the algorithmic parameters. For our LEFR, 𝜆1=0.5
and 𝜆2 is selected from {0.0001, 0.001,… , 10}. For our LE-GCN, the
distance threshold 𝜀 = 0.8226, and 𝛼 = 0.7560. For LP and ML, 𝛼 = 0.5,
and for ML the number of nearest neighbors is set to 𝑘 = 𝑐 + 1. For
GLLE, 𝜆 is selected from {0.01, 0.1,… , 100}, and the number of nearest
neighbors is set to 𝑘 = 𝑐 + 1. For PLEML, 𝜆1 and 𝜆2 are selected
from {2−4, 2−3,… , 28}, 𝛾 = 0.1 and 𝐶 = 0.1. For LESC, 𝜆1 and 𝜆2 are
selected from {0.0001, 0.001,… , 10}. The best algorithmic parameter
combination is used. Source codes with data are available.1

4.2. Label recovery experimental results

For the label distribution recovery experiments, we present the
quantitative results of the 7 LE algorithms using the 6 evaluation met-
rics in Tables 2 to 7, respectively, where the notation ‘↓’ after a metric
indicates ‘the smaller the better’, while ‘↑’ after a metric means ‘the
larger the better’. The rank of every algorithm for each dataset is also
listed in the bracket, and the last row of each table presents the average
ranking performance over the 13 datasets, where the numerical value
before the bracket is the average ranking value and the number in the
bracket is again the rank. The experimental results of Tables 2 to 7 show
that our LE-GCN attains the best recovery performance on average,
and our LEFR achieves the second best performance, while the existing

1 https://github.com/code-opensource/LEFR-and-LE-GCN

https://github.com/code-opensource/LEFR-and-LE-GCN
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Table 2
Label distribution recovery performance measured by Chebyshev distance ↓.

dataset LP ML GLLE PLEML LESC LEFR LE-GCN

Yeast-alpha 0.0400(7) 0.0387(6) 0.0192(5) 0.0137(1.5) 0.0169(4) 0.0137(1.5) 0.0146(3)
Yeast-cdc 0.0420(6) 0.0475(7) 0.0217(5) 0.0167(3) 0.0198(4) 0.0166(2) 0.0149(1)
Yeast-cold 0.1370(7) 0.1207(6) 0.0650(5) 0.0540(3) 0.0572(4) 0.0518(2) 0.0472(1)
Yeast-diau 0.0990(6) 0.2011(7) 0.0530(5) 0.0415(2) 0.0419(3) 0.0404(1) 0.0451(4)
Yeast-dtt 0.1280(7) 0.1073(6) 0.0518(5) 0.0372(2) 0.0466(4) 0.0381(3) 0.0308(1)
Yeast-elu 0.0440(6) 0.0499(7) 0.0221(5) 0.0165(2.5) 0.0208(4) 0.0165(2.5) 0.0154(1)
Yeast-heat 0.0860(6) 0.0915(7) 0.0478(5) 0.0433(2) 0.0466(4) 0.0440(3) 0.0314(1)
Yeast-spo 0.0900(6) 0.0953(7) 0.0608(4) 0.0603(3) 0.0609(5) 0.0596(2) 0.0429(1)
Yeast-spo5 0.1140(6) 0.1514(7) 0.0980(5) 0.0921(2) 0.0933(4) 0.0924(3) 0.0718(1)
Yeast-spoem 0.1630(7) 0.1319(6) 0.0870(2.5) 0.1170(5) 0.0870(2.5) 0.0885(4) 0.0527(1)
SBU_3DFE 0.1230(4.5) 0.1868(7) 0.1230(4.5) 0.1228(2.5) 0.1231(6) 0.1228(2.5) 0.1142(1)
SJAFFE 0.1070(6) 0.2188(7) 0.0845(3) 0.0885(4) 0.0692(1) 0.0824(2) 0.0940(5)
Natural_Scene 0.2750(2) 0.2990(3) 0.3353(4.5) 0.3384(6) 0.3417(7) 0.2679(1) 0.3353(4.5)

Average Rank 5.8846(6) 6.3846(7) 4.5000(5) 2.9615(3) 4.0385(4) 2.2692(2) 1.9615(1)
Table 3
Label distribution recovery performance measured by Clark distance ↓.

dataset LP ML GLLE PLEML LESC LEFR LE-GCN

Yeast-alpha 0.4322(6) 0.6025(7) 0.3304(5) 0.2147(1) 0.2823(4) 0.2158(2) 0.2372(3)
Yeast-cdc 0.3803(6) 0.5593(7) 0.3018(5) 0.2191(3) 0.2727(4) 0.2189(2) 0.2072(1)
Yeast-cold 0.1805(6) 0.3224(7) 0.1738(5) 0.1465(3) 0.1552(4) 0.1413(2) 0.1236(1)
Yeast-diau 0.2841(5) 0.7276(7) 0.2964(6) 0.2222(2) 0.2302(3) 0.2139(1) 0.2482(4)
Yeast-dtt 0.1902(6) 0.2953(7) 0.1413(5) 0.1012(2) 0.1278(4) 0.1036(3) 0.0839(1)
Yeast-elu 0.3642(6) 0.5340(7) 0.2845(5) 0.2042(2) 0.2617(4) 0.2044(3) 0.1872(1)
Yeast-heat 0.2144(6) 0.3823(7) 0.2082(5) 0.1871(2) 0.2037(4) 0.1893(3) 0.1362(1)
Yeast-spo 0.5585(7) 0.4030(6) 0.2618(5) 0.2558(3) 0.2596(4) 0.2536(2) 0.1841(1)
Yeast-spo5 0.2741(6) 0.3015(7) 0.1943(5) 0.1855(2.5) 0.1871(4) 0.1855(2.5) 0.1435(1)
Yeast-spoem 0.2718(7) 0.2036(6) 0.1321(4) 0.1757(5) 0.1295(2) 0.1311(3) 0.0818(1)
SBU_3DFE 0.5810(6) 0.7861(7) 0.3818(5) 0.3689(3) 0.3785(4) 0.3628(2) 0.3194(1)
SJAFFE 0.3140(3) 0.8055(7) 0.3633(5) 0.3775(6) 0.2763(1) 0.3091(2) 0.3171(4)
Natural_Scene 2.4828(7) 2.4520(2) 2.4609(4) 2.4659(6) 2.4649(5) 2.3839(1) 2.4603(3)

Average Rank 5.9231(6) 6.4615(7) 4.9231(5) 3.1154(3) 3.6154(4) 2.1923(2) 1.7692(1)
Table 4
Label distribution recovery performance measured by Canberra metric ↓.

dataset LP ML GLLE PLEML LESC LEFR LE-GCN

Yeast-alpha 1.7068(6) 2.0181(7) 1.1135(5) 0.6981(2) 0.9514(4) 0.6812(1) 0.7500(3)
Yeast-cdc 1.3532(6) 1.7591(7) 0.9442(5) 0.6545(3) 0.8405(4) 0.6544(2) 0.6367(1)
Yeast-cold 0.3241(6) 0.5598(7) 0.3016(5) 0.2527(3) 0.2680(4) 0.2434(2) 0.2138(1)
Yeast-diau 0.6425(5) 1.6538(7) 0.6734(6) 0.4772(2) 0.5021(3) 0.4556(1) 0.5523(4)
Yeast-dtt 0.3560(6) 0.5070(7) 0.2458(5) 0.1747(3) 0.2229(4) 0.1742(2) 0.1430(1)
Yeast-elu 1.2612(6) 1.6263(7) 0.8692(5) 0.6014(2) 0.7906(4) 0.6026(3) 0.5563(1)
Yeast-heat 0.4706(6) 0.7826(7) 0.4203(5) 0.3741(3) 0.4110(4) 0.3734(2) 0.2734(1)
Yeast-spo 1.2341(7) 0.8440(6) 0.5422(5) 0.5281(3) 0.5329(4) 0.5236(2) 0.3696(1)
Yeast-spo5 0.4013(6) 0.4664(7) 0.3018(5) 0.2849(3) 0.2884(4) 0.2848(2) 0.2214(1)
Yeast-spoem 0.3655(7) 0.2800(6) 0.1840(5) 0.1837(4) 0.1801(2) 0.1827(3) 0.1123(1)
SBU_3DFE 1.2463(6) 1.6593(7) 0.8409(5) 0.7866(3) 0.8039(4) 0.7817(2) 0.6813(1)
SJAFFE 1.0708(6) 1.6894(7) 0.7518(4) 0.7876(5) 0.5606(1) 0.6279(2) 0.6430(3)
Natural_Scene 6.7810(3) 6.7217(2) 6.8511(4) 6.8717(6) 6.8780(7) 6.6936(1) 6.8566(5)

Average Rank 5.8462(6) 6.4615(7) 4.9231(5) 3.2308(3) 3.7692(4) 1.9231(2) 1.8462(1)
Table 5
Label distribution recovery performance measured by Kullback–Leibler divergence ↓.

dataset LP ML GLLE PLEML LESC LEFR LE-GCN

Yeast-alpha 0.1210(7) 0.0550(6) 0.0130(5) 0.0057(2) 0.0080(4) 0.0053(1) 0.0063(3)
Yeast-cdc 0.1110(7) 0.0609(6) 0.0140(5) 0.0073(3) 0.0100(4) 0.0057(1) 0.0058(2)
Yeast-cold 0.1030(6) 0.5560(7) 0.0190(5) 0.0135(3) 0.0150(4) 0.0121(2) 0.0090(1)
Yeast-diau 0.1270(6) 0.1934(7) 0.0270(5) 0.0158(2) 0.0170(3) 0.0155(1) 0.0178(4)
Yeast-dtt 0.1030(7) 0.0648(6) 0.0130(5) 0.0066(2) 0.0100(4) 0.0073(3) 0.0044(1)
Yeast-elu 0.1090(7) 0.0567(6) 0.0130(5) 0.0064(2) 0.0090(4) 0.0071(3) 0.0053(1)
Yeast-heat 0.0890(7) 0.0656(6) 0.0170(5) 0.0134(2) 0.0155(4) 0.0150(3) 0.0070(1)
Yeast-spo 0.0840(6) 0.5320(7) 0.0290(5) 0.0271(3) 0.0280(4) 0.0154(2) 0.0128(1)
Yeast-spo5 0.0420(6) 0.0811(7) 0.0340(5) 0.0299(3) 0.0310(4) 0.0157(1) 0.0172(2)
Yeast-spoem 0.0670(6) 0.5030(7) 0.0270(3.5) 0.0459(5) 0.0270(3.5) 0.0206(2) 0.0110(1)
SBU_3DFE 0.1050(6) 0.2489(7) 0.0690(4) 0.0659(3) 0.0692(5) 0.0610(2) 0.0572(1)
SJAFFE 0.0770(6) 0.2513(7) 0.0500(5) 0.0494(4) 0.0290(1) 0.0400(2) 0.0424(3)
Natural_Scene 1.5950(5) 2.2757(6) 2.6630(7) 0.9787(1) 1.1663(4) 1.1032(3) 0.9941(2)

Average Rank 6.3077(6) 6.5385(7) 4.9615(5) 2.6923(3) 3.7308(4) 2.0000(2) 1.7692(1)
8
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Table 6
Label distribution recovery performance measured by Cosine coefficient ↑.

dataset LP ML GLLE PLEML LESC LEFR LE-GCN

Yeast-alpha 0.9814(6) 0.9530(7) 0.9876(5) 0.9944(2) 0.9905(4) 0.9945(1) 0.9940(3)
Yeast-cdc 0.9828(6) 0.9468(7) 0.9875(5) 0.9930(3) 0.9896(4) 0.9932(2) 0.9945(1)
Yeast-cold 0.9847(5) 0.9429(7) 0.9827(6) 0.9873(3) 0.9859(4) 0.9882(2) 0.9913(1)
Yeast-diau 0.9805(5) 0.8427(7) 0.9750(6) 0.9854(2) 0.9844(3) 0.9864(1) 0.9836(4)
Yeast-dtt 0.9835(6) 0.9515(7) 0.9884(5) 0.9937(3) 0.9901(4) 0.9938(2) 0.9960(1)
Yeast-elu 0.9829(6) 0.9489(7) 0.9879(5) 0.9906(3) 0.9896(4) 0.9980(1) 0.9948(2)
Yeast-heat 0.9861(4) 0.9454(7) 0.9845(6) 0.9872(3) 0.9851(5) 0.9878(2) 0.9934(1)
Yeast-spo 0.9386(6) 0.8397(7) 0.9747(4) 0.9747(4) 0.9747(4) 0.9754(2) 0.9883(1)
Yeast-spo5 0.9686(6) 0.9359(7) 0.9713(5) 0.9736(2) 0.9732(4) 0.9734(3) 0.9847(1)
Yeast-spoem 0.9503(6) 0.8530(7) 0.9782(3) 0.9620(5) 0.9780(4) 0.9785(2) 0.9916(1)
SBU_3DFE 0.9220(6) 0.8435(7) 0.9304(5) 0.9344(2) 0.9319(3) 0.9305(4) 0.9425(1)
SJAFFE 0.9410(6) 0.8231(7) 0.9594(3) 0.9576(5) 0.9731(1) 0.9614(2) 0.9588(4)
Natural_Scene 0.7264(5) 0.6610(7) 0.7789(2) 0.7738(3) 0.7602(4) 0.7792(1) 0.6705(6)

Average Rank 5.6154(6) 7.0000(7) 4.6154(5) 3.0769(3) 3.6923(4) 1.9231(1) 2.0769(2)
Table 7
Label distribution recovery performance measured by intersection similarity ↑.

dataset LP ML GLLE PLEML LESC LEFR LE-GCN

Yeast-alpha 0.9074(6) 0.8898(7) 0.9386(5) 0.9615(2) 0.9473(4) 0.9616(1) 0.9587(3)
Yeast-cdc 0.9122(6) 0.8836(7) 0.9376(5) 0.9569(3) 0.9445(4) 0.9570(2) 0.9583(1)
Yeast-cold 0.9213(6) 0.8646(7) 0.9250(5) 0.9376(3) 0.9338(4) 0.9400(2) 0.9467(1)
Yeast-diau 0.9128(5) 0.7557(7) 0.9052(6) 0.9335(2) 0.9301(3) 0.9367(1) 0.9234(4)
Yeast-dtt 0.9134(6) 0.8779(7) 0.9393(5) 0.9570(2) 0.9448(4) 0.9560(3) 0.9649(1)
Yeast-elu 0.9120(6) 0.8839(7) 0.9383(5) 0.9575(3) 0.9439(4) 0.9576(2) 0.9605(1)
Yeast-heat 0.9237(6) 0.8718(7) 0.9310(5) 0.9385(2) 0.9324(4) 0.9380(3) 0.9553(1)
Yeast-spo 0.8184(6) 0.7614(7) 0.9105(5) 0.9130(3) 0.9121(4) 0.9137(2) 0.9402(1)
Yeast-spo5 0.8855(6) 0.7486(7) 0.9020(5) 0.9079(2) 0.9067(4) 0.9076(3) 0.9282(1)
Yeast-spoem 0.8367(6) 0.7681(7) 0.9130(2.5) 0.9109(5) 0.9130(2.5) 0.9115(4) 0.9473(1)
SBU_3DFE 0.8096(6) 0.7414(7) 0.8531(5) 0.8570(3) 0.8542(4) 0.8589(2) 0.8745(1)
SJAFFE 0.8361(6) 0.7251(7) 0.8757(4) 0.8718(5) 0.9050(1) 0.8922(2) 0.8901(3)
Natural_Scene 0.4512(5) 0.3307(7) 0.5226(2) 0.5214(3) 0.5107(4) 0.5656(1) 0.4151(6)

Average Rank 5.8462(6) 7.0000(7) 4.5769(5) 2.9231(3) 3.5769(4) 2.1538(2) 1.9231(1)
Fig. 6. Comparison of label distribution recovery results measured by Cheb↓.
state-of-the-art PLEML is only the third best. Specifically, of the total
of 78 cases, our LE-GCN ranks the 1st in 65.4% and the 2nd in 5.1%,
while our LEFR ranks the 1st in 24.4% cases and the 2nd in 50.0%.

Figs. 6 to 11 depict the histograms of the LE recovery performance
measured by the 6 metrics, which again show that our LEFR and LE-
GCN have the second highest average ranking and the highest average
ranking, respectively.

4.3. Label predictive experimental results

For the LDL prediction experiments, we present the quantitative
results of the 7 LE algorithms as measured by the 6 metrics in
Tables 8 to 13, respectively. In terms of LDL predictive performance,
our LEFR is the clear winner, ranking the best, and PLEML ranks the
second best, while our LE-GCN ranks the third best. Specifically, of the
total 78 cases, our LEFR ranks the 1st in 82.1% and the 2nd in 9.0%,
9

and our LE-GCN ranks the 1st in 15.4% and the 2nd in 1.3%, while
PLEML ranks the 1st in 3.8% and the 2nd in 87.2%. Later the reliable
statistical test results will demonstrate that our LE-GC actually achieves
better label distribution prediction performance than PLEML.

4.4. Statistical validation of experimental results

In the label distribution recovery experimental results of
Tables 2 to 7, our LE-GCN exhibits the best performance over our LEFR
and the five benchmarks, while in the label distribution prediction
experimental results of Tables 8 to 13, our LEFR achieves the best
performance, in comparison with our LE-GCN and the five benchmarks.
We now apply statistical tests to validate the statistical significance of
these results.

(1) Wilcoxon signed-rank test: To show the overall statistical relation-
ships among the 7 LE algorithms on 13 datasets in the label distribution
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Fig. 7. Comparison of label distribution recovery results measured by Canber↓.
Fig. 8. Comparison of label distribution recovery results measured by Clark↓.
Fig. 9. Comparison of label distribution recovery results measured by KL↓.
recovery experiments, Wilcoxon signed-rank test [29] is employed as
the statistical test to validate whether our LE-GCN algorithm performs
significantly better than the other five existing LE algorithms and our
LERF, in terms of each evaluation metric. Table 14 summarizes the
statistical test results for the label distribution recovery experiments,
where the 𝑝-values for the corresponding tests are shown in the brack-
ets. As validated by Wilcoxon signed-rank test results of Tables 14, it
is statistically significant that our LE-GCN outperforms the other six
algorithms, in terms of all the six metrics, with one exception, namely,
for the Cosine coefficient metric, the performance of our LE-GCN and
our LEFR are statistically tied. The statistical test results hence clearly
10
validate the effectiveness of our LE-GCN algorithm in enhancing logical
labels into label distributions.

We also employ Wilcoxon signed-rank test for validating the sta-
tistical relationship between our LEFR and the other six algorithms
in the label distribution prediction experiments, and the test results
are summarized in Table 15. Our LEFR achieves statistically superior
performance over all the other six algorithms in all the metrics, with
one exception that for the KL divergence, our LEFR and PLEML are sta-
tistically tied. Therefore, the statistical test results convincingly confirm
that our LEFR algorithm achieves the best label distribution prediction
performance.
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Fig. 10. Comparison of label distribution recovery results measured by Cosine↑.
Fig. 11. Comparison of label distribution recovery results measured by Inter↑.
Table 8
Label distribution predictive performance measured by Chebyshev distance ↓.

dataset LP ML GLLE PLEML LESC LEFR LE-GCN

Yeast_alpha 0.0871(4) 0.0885(7) 0.0874(5.5) 0.0202(2) 0.0874(5.5) 0.0133(1) 0.0333(3)
Yeast_cdc 0.0937(6) 0.0951(7) 0.0935(5) 0.0232(2) 0.0934(4) 0.0165(1) 0.0304(3)
Yeast_cold 0.1558(4) 0.1605(7) 0.1561(5) 0.0649(2) 0.1562(6) 0.0554(1) 0.0933(3)
Yeast_diau 0.1283(4) 0.1408(7) 0.1292(6) 0.0484(2) 0.1285(5) 0.0409(1) 0.0909(3)
Yeast_dtt 0.1478(4) 0.1537(7) 0.1494(5) 0.0500(2) 0.1498(6) 0.0372(1) 0.0621(3)
Yeast_elu 0.0944(4) 0.0972(7) 0.0949(6) 0.0237(2) 0.0948(5) 0.0164(1) 0.0319(3)
Yeast_heat 0.1351(5) 0.1391(7) 0.1350(4) 0.0532(2) 0.1353(6) 0.0431(1) 0.0584(3)
Yeast_spo 0.1445(7) 0.1435(4) 0.1442(5.5) 0.0683(2) 0.1442(5.5) 0.0613(1) 0.0710(3)
Yeast_spo5 0.1742(6) 0.1791(7) 0.1741(5) 0.1001(2) 0.1738(4) 0.0955(1) 0.1108(3)
Yeast_spoem 0.1492(6) 0.1521(7) 0.1488(5) 0.0936(2) 0.1486(4) 0.0923(1) 0.0955(3)
SBU_3DFE 0.1637(6) 0.1677(7) 0.1630(5) 0.1382(2) 0.1622(4) 0.1379(1) 0.1429(3)
SJAFFE 0.2393(5) 0.2425(7) 0.2394(6) 0.1168(2) 0.2383(4) 0.1169(3) 0.1146(1)
Natural_scene 0.3916(4) 0.4035(7) 0.3922(5) 0.3702(2) 0.3923(6) 0.3712(3) 0.3658(1)

Average Rank 5.0000(4.5) 6.7692(7) 5.2308(6) 2.0000(2) 5.0000(4.5) 1.3077(1) 2.6923(3)
(2) Bayesian signed-rank test: To further discover to what extent our
LE-GCN performs better than our LEFR and the other five LE algorithms
in the label distribution recovery experiments, Bayesian signed-rank
test [30] is employed as the statistical test. Table 16 summarizes the
statistical test results, where numerical values a, b, and c in the brackets
[a, b, c] are the probabilities of the control algorithm being [WIN,
TIE, LOSE] over the comparing algorithm. The prior default is that
the performance of the two algorithms are the same. Prior strength
is the strength of this null hypothesis, which means that this null
hypothesis is established with a probability of 0.6. The performance of
two algorithms are similar if the difference between two algorithms’
11
results is less than rope = 0.0001. As validated by Bayesian signed-
rank test results of Tables 16, it is statistically significant that our
LE-GCN algorithm outperforms the other six algorithms in all the
six metrics. Observe that the winning probabilities of LE-GCN over
PLEML are bigger than those of LE-GCN over LEFR, with one exception
in the KL divergence. This implicitly validates that statistically our
LEFR outperforms PLEML. Compared with Wilcoxon signed-rank test,
Bayesian signed-rank test provides more statistical details.

Bayesian signed-rank test is also employed to validate the statistical
relationship between our LEFR and the other six algorithms in the label
distribution prediction experiments, and Table 17 lists the test results.
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Table 9
Label distribution predictive performance measured by Clark distance ↓.

Dataset LP ML GLLE PLEML LESC LEFR LE-GCN

Yeast_alpha 0.8263(4) 0.8468(7) 0.8304(5) 0.3051(2) 0.8312(6) 0.2128(1) 0.5715(3)
Yeast_cdc 0.7659(5) 0.7863(7) 0.7667(6) 0.2914(2) 0.7654(4) 0.2160(1) 0.4074(3)
Yeast_cold 0.3867(6) 0.4049(7) 0.3866(5) 0.1734(2) 0.3863(4) 0.1504(1) 0.2298(3)
Yeast_diau 0.5429(5) 0.5896(7) 0.5444(6) 0.2536(2) 0.5424(4) 0.2185(1) 0.5364(3)
Yeast_dtt 0.3656(4) 0.3789(7) 0.3694(5) 0.1326(2) 0.3701(6) 0.1011(1) 0.1695(3)
Yeast_elu 0.7320(4) 0.7577(7) 0.7365(6) 0.2773(2) 0.7361(5) 0.2033(1) 0.3916(3)
Yeast_heat 0.4885(4) 0.5123(7) 0.4932(5) 0.2263(2) 0.4944(6) 0.1859(1) 0.2398(3)
Yeast_spo 0.5254(5) 0.5276(7) 0.5253(4) 0.2867(2) 0.5258(6) 0.2597(1) 0.3094(3)
Yeast_spo5 0.3444(6) 0.3559(7) 0.3441(5) 0.2021(2) 0.3433(4) 0.1936(1) 0.2171(3)
Yeast_spoem 0.2311(5.5) 0.2363(7) 0.2311(5.5) 0.1389(2) 0.2307(4) 0.1370(1) 0.1418(3)
SBU_3DFE 0.5457(5) 0.5822(7) 0.5464(6) 0.4102(2) 0.5445(4) 0.4047(1) 0.4340(3)
SJAFFE 0.9152(6) 0.9348(7) 0.9148(5) 0.4453(3) 0.9107(4) 0.4336(2) 0.4274(1)
Natural_scene 2.5017(4) 2.5184(7) 2.5025(6) 2.4822(1) 2.5023(5) 2.4832(2) 2.4845(3)

Average Rank 4.8846(5) 7.0000(7) 5.3462(6) 2.0000(2) 4.7692(4) 1.1538(1) 2.8462(3)
Table 10
Label distribution predictive performance measured by Canberra metric ↓.

Dataset LP ML GLLE PLEML LESC LEFR LE-GCN

Yeast_alpha 2.8993(4) 2.9761(7) 2.9151(5) 1.0221(2) 2.9180(6) 0.6940(1) 1.6690(3)
Yeast_cdc 2.4757(5) 2.5471(7) 2.4791(6) 0.8936(2) 2.4751(4) 0.6422(1) 1.3134(3)
Yeast_cold 0.6893(4) 0.7184(7) 0.6901(6) 0.2994(2) 0.6899(5) 0.2594(1) 0.4032(3)
Yeast_diau 1.2345(4) 1.3368(7) 1.2391(6) 0.5482(2) 1.2349(5) 0.4670(1) 1.2020(3)
Yeast_dtt 0.6576(4) 0.6848(7) 0.6663(5) 0.2302(2) 0.6680(6) 0.1734(1) 0.2935(3)
Yeast_elu 2.2941(4) 2.3732(7) 2.3084(6) 0.8324(2) 2.3061(5) 0.6001(1) 1.1890(3)
Yeast_heat 1.0314(4) 1.0798(7) 1.0398(5) 0.4613(2) 1.0427(6) 0.3716(1) 0.4822(3)
Yeast_spo 1.1121(5.5) 1.1151(7) 1.1113(4) 0.5935(2) 1.1121(5.5) 0.5367(1) 0.6486(3)
Yeast_spo5 0.5415(6) 0.5588(7) 0.5412(5) 0.3098(2) 0.5403(4) 0.2967(1) 0.3392(3)
Yeast_spoem 0.3176(6) 0.3245(7) 0.3173(5) 0.1935(2) 0.3168(4) 0.1907(1) 0.1974(3)
SBU_3DFE 1.1285(5) 1.2042(7) 1.1305(6) 0.8944(2) 1.1257(4) 0.8827(1) 0.9046(3)
SJAFFE 1.9610(6) 1.9755(7) 1.9585(5) 0.9116(3) 1.9512(4) 0.8948(2) 0.8666(1)
Natural_scene 7.0606(4) 7.1244(7) 7.0628(6) 6.9858(2) 7.0618(5) 6.9913(3) 6.8938(1)

Average Rank 4.7308(4) 7.0000(7) 5.3846(6) 2.0769(2) 4.8846(5) 1.2308(1) 2.6923(3)
Table 11
Label distribution predictive performance measured by Kullback–Leibler divergence ↓.

Dataset LP ML GLLE PLEML LESC LEFR LE-GCN

Yeast_alpha 0.1221(4) 0.1262(7) 0.1228(5) 0.0115(2) 0.1231(6) 0.0055(1) 0.0342(3)
Yeast_cdc 0.1266(5.5) 0.1305(7) 0.1266(5.5) 0.0128(2) 0.1263(4) 0.0071(1) 0.0233(3)
Yeast_cold 0.0410(5) 0.0839(7) 0.0411(6) 0.0106(1) 0.0384(4) 0.0135(2) 0.0319(3)
Yeast_diau 0.1257(5) 0.1431(7) 0.1266(6) 0.0202(2) 0.1255(4) 0.0152(1) 0.0809(3)
Yeast_dtt 0.1071(4) 0.1115(7) 0.1083(5) 0.0112(2) 0.1089(6) 0.0065(1) 0.0169(3)
Yeast_elu 0.1215(4) 0.1263(7) 0.1226(6) 0.0121(2) 0.1224(5) 0.0063(1) 0.0234(3)
Yeast_heat 0.1216(4) 0.1302(7) 0.1230(5) 0.0196(2) 0.1235(6) 0.0132(1) 0.0221(3)
Yeast_spo 0.1114(7) 0.1076(5) 0.1102(6) 0.0532(4) 0.0524(3) 0.0384(2) 0.0365(1)
Yeast_spo5 0.1190(6) 0.1266(7) 0.1186(5) 0.0347(2) 0.1181(4) 0.0318(1) 0.0395(3)
Yeast_spoem 0.0559(7) 0.0374(4) 0.0546(6) 0.0537(5) 0.0223(2) 0.0220(1) 0.0292(3)
SBU_3DFE 0.1398(5.5) 0.1570(7) 0.1398(5.5) 0.0832(1) 0.1388(4) 0.0833(2) 0.1095(3)
SJAFFE 0.3648(6) 0.3745(7) 0.3643(5) 0.0731(2) 0.3595(4) 0.0735(3) 0.0720(1)
Natural_scene 1.3053(4) 1.3671(7) 1.3079(5.5) 1.1630(2) 1.3079(5.5) 1.1749(3) 1.0148(1)

Average Rank 5.1538(5) 6.6154(7) 5.5000(6) 2.2308(2) 4.4231(4) 1.5385(1) 2.5385(3)
Table 12
Label distribution predictive performance measured by Cosine coefficient ↑.

Dataset LP ML GLLE PLEML LESC LEFR LE-GCN

Yeast_alpha 0.8824(4) 0.8801(7) 0.8820(5) 0.9881(2) 0.8818(6) 0.9945(1) 0.9729(3)
Yeast_cdc 0.8844(6) 0.8822(7) 0.8846(5) 0.9869(2) 0.8848(4) 0.9931(1) 0.9768(3)
Yeast_cold 0.9151(5) 0.9128(7) 0.9151(5) 0.9817(2) 0.9151(5) 0.9866(1) 0.9682(3)
Yeast_diau 0.9002(5) 0.8888(7) 0.8997(6) 0.9806(2) 0.9003(4) 0.9858(1) 0.9345(3)
Yeast_dtt 0.9218(4) 0.9181(7) 0.9208(5) 0.9888(2) 0.9205(6) 0.9937(1) 0.9840(3)
Yeast_elu 0.8894(4) 0.8856(7) 0.8886(6) 0.9875(2) 0.8888(5) 0.9938(1) 0.9772(3)
Yeast_heat 0.9062(4) 0.9021(7) 0.9060(5) 0.9807(2) 0.9057(6) 0.9873(1) 0.9782(3)
Yeast_spo 0.8929(7) 0.8936(4) 0.8933(5) 0.9683(2) 0.8931(6) 0.9739(1) 0.9654(3)
Yeast_spo5 0.9172(6) 0.9138(7) 0.9174(5) 0.9691(2) 0.9176(4) 0.9720(1) 0.9645(3)
Yeast_spoem 0.9381(6) 0.9365(7) 0.9384(5) 0.9745(3) 0.9386(4) 0.9754(1) 0.9751(2)
SBU_3DFE 0.8717(6) 0.8648(7) 0.8722(5) 0.9189(2) 0.8732(4) 0.9191(1) 0.8987(3)
SJAFFE 0.7689(7) 0.7734(4) 0.7698(6) 0.9306(3) 0.7719(5) 0.9325(1.5) 0.9325(1.5)
Natural_scene 0.5429(4) 0.5209(7) 0.5419(5.5) 0.5787(2) 0.5419(5.5) 0.5745(3) 0.6294(1)

Average Rank 5.2308(5) 6.5385(7) 5.2692(6) 2.1538(2) 4.9615(4) 1.1923(1) 2.6538(3)
12
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Table 13
Label distribution predictive performance measured by intersection similarity ↑.

Dataset LP ML GLLE PLEML LESC LEFR LE-GCN

Yeast_alpha 0.8298(4) 0.8259(7) 0.8290(5) 0.9423(2) 0.8289(6) 0.9616(1) 0.9122(3)
Yeast_cdc 0.8269(5) 0.8226(7) 0.8268(6) 0.9399(2) 0.8271(4) 0.9577(1) 0.9124(3)
Yeast_cold 0.8288(4) 0.8230(7) 0.8286(5.5) 0.9253(2) 0.8286(5.5) 0.9359(1) 0.8965(3)
Yeast_diau 0.8212(4) 0.8065(7) 0.8205(6) 0.9227(2) 0.8211(5) 0.9350(1) 0.8380(3)
Yeast_dtt 0.8372(4) 0.8304(7) 0.8350(5) 0.9424(2) 0.8346(6) 0.9571(1) 0.9274(3)
Yeast_elu 0.8288(4) 0.8232(7) 0.8278(6) 0.9399(2) 0.8280(5) 0.9576(1) 0.9151(3)
Yeast_heat 0.8269(4) 0.8201(7) 0.8261(5) 0.9229(2) 0.8257(6) 0.9388(1) 0.9192(3)
Yeast_spo 0.8117(7) 0.8118(6) 0.8121(4) 0.9010(2) 0.8119(5) 0.9114(1) 0.8926(3)
Yeast_spo5 0.8257(6) 0.8209(7) 0.8258(5) 0.8998(2) 0.8261(4) 0.9044(1) 0.8892(3)
Yeast_spoem 0.8507(6) 0.8479(7) 0.8511(5) 0.9063(2) 0.8513(4) 0.9076(1) 0.9045(3)
SBU_3DFE 0.7953(5.5) 0.7864(7) 0.7953(5.5) 0.8397(2) 0.7964(4) 0.8417(1) 0.8326(3)
SJAFFE 0.6759(7) 0.6788(4) 0.6765(6) 0.8455(3) 0.6780(5) 0.8494(2) 0.8531(1)
Natural_scene 0.3549(5) 0.3513(7) 0.3549(5) 0.3658(2) 0.3549(5) 0.3636(3) 0.4357(1)

Average Rank 5.0385(5) 6.6923(7) 5.3077(6) 2.0769(2) 4.9615(4) 1.2308(1) 2.6923(3)
Table 14
Wilcoxon signed-rank test for label recovery performance of LE-GCN versus five benchmarks and LEFR (significance level 𝛼 = 0.05, 𝑝-values shown in the brackets).

LE-GCN
versus

Evaluation metric

Chebyshev Clark Canberra KL divergence Cosine Intersection similarity

LP WIN[0.000244140625] WIN[0.000244140625] WIN[0.000244140625] WIN[0.000244140625] WIN[0.000244140625] WIN[0.000244140625]
ML WIN[0.000244140625] WIN[0.000244140625] WIN[0.000244140625] WIN[0.000244140625] WIN[0.000244140625] WIN[0.000244140625]
GLLE WIN[0.000244140625] WIN[0.000244140625] WIN[0.000244140625] WIN[0.000244140625] WIN[0.000244140625] WIN[0.000244140625]
PLEML WIN[0.00341796875] WIN[0.00244140625] WIN[0.021484375] WIN[0.03417047269] WIN[0.039794921875] WIN[0.039794921875]
LESC WIN[0.000244140625] WIN[0.000244140625] WIN[0.000244140625] WIN[0.000732421875] WIN[0.000244140625] WIN[0.000244140625]
LEFR WIN[0.00244140625] WIN[0.001220703125] WIN[0.006103515625] WIN[0.039794921875] TIE[0.339599609375] WIN[0.026611328125]
Table 15
Wilcoxon signed-ranks test for label prediction performance of LEFR versus five benchmarks and LE-GCN (significance level 𝛼 = 0.05, 𝑝-values shown in the brackets).

LEFR
versus

Evaluation metric

Chebyshev Clark Canberra KL divergence Cosine Intersection similarity

LP WIN[0.000244140625] WIN[0.000244140625] WIN[0.000244140625] WIN[0.000244140625] WIN[0.000244140625] WIN[0.000244140625]
ML WIN[0.000244140625] WIN[0.000244140625] WIN[0.000244140625] WIN[0.000244140625] WIN[0.000244140625] WIN[0.000244140625]
GLLE WIN[0.000244140625] WIN[0.000244140625] WIN[0.000244140625] WIN[0.000244140625] WIN[0.000244140625] WIN[0.000244140625]
PLEML WIN[0.001708984375] WIN[0.00048828125] WIN[0.000732421875] TIE[0.057373046875] WIN[0.00244140625] WIN[0.001220703125]
LESC WIN[0.000244140625] WIN[0.000244140625] WIN[0.000244140625] WIN[0.000244140625] WIN[0.000244140625] WIN[0.000244140625]
LE-GCN WIN[0.00244140625] WIN[0.001220703125] WIN[0.006103515625] WIN[0.039794921875] WIN[0.034170472692] WIN[0.026611328125]
Table 16
Bayesian signed-rank test for label recovery performance of LE-GCN versus five benchmarks and LEFR (rope=0.0001, default prior strength is 0.6).

LE-GCN
versus

Evaluation metric

Chebyshev Clark Canberra KL divergence Cosine Intersection similarity

LP [0.99624, 2e−05, 0.00374] [1.0, 0.0, 0.0] [1.0, 0.0, 0.0] [1.0, 0.0, 0.0] [0.98732, 0.0, 0.01268] [0.99998, 0.0, 2e−05]
ML [0.99998, 0.0, 2e−05] [1.0, 0.0, 0.0] [1.0, 0.0, 0.0] [1.0, 0.0, 0.0] [1.0, 0.0, 0.0] [1.0, 0.0, 0.0]
GLLE [0.99932, 0.0, 0.00068] [1.0, 0.0, 0.0] [1.0, 0.0, 0.0] [1.0, 0.0, 0.0] [0.98564, 0.0, 0.01436] [0.98726, 0.0, 0.01274]
PLEML [0.99662, 0.0, 0.00338] [0.99666, 0.0, 0.00334] [0.99226, 0.0, 0.00774] [0.98162, 0.0, 0.01838] [0.97052, 0.0, 0.02948] [0.95934, 0.0, 0.04066]
LESC [0.98772, 0.0, 0.01228] [0.9998, 0.0, 0.0002] [0.99912, 0.0, 0.00088] [0.99788, 0.0, 0.00212] [0.90586, 0.0, 0.09414] [0.96962, 0.0, 0.03038]
LEFR [0.91436, 0.0, 0.08564] [0.90826, 0.0, 0.09174] [0.85384, 0.0, 0.14616] [0.99824, 0.0, 0.00176] [0.92958, 0.0, 0.07042] [0.92752, 0.0, 0.07248]
Table 17
Bayesian signed-rank test for label prediction performance of LEFR versus five benchmarks and LE-GCN (rope=0.0001, default prior strength is 0.6).

LEFR
versus

Evaluation metric

Chebyshev Clark Canberra KL divergence Cosine Intersection similarity

LP [1.0, 0.0, 0.0] [1.0, 0.0, 0.0] [1.0, 0.0, 0.0] [1.0, 0.0, 0.0] [1.0, 0.0, 0.0] [1.0, 0.0, 0.0]
ML [1.0, 0.0, 0.0] [1.0, 0.0, 0.0] [1.0, 0.0, 0.0] [1.0, 0.0, 0.0] [1.0, 0.0, 0.0] [1.0, 0.0, 0.0]
GLLE [1.0, 0.0, 0.0] [1.0, 0.0, 0.0] [1.0, 0.0, 0.0] [1.0, 0.0, 0.0] [1.0, 0.0, 0.0] [1.0, 0.0, 0.0]
PLEML [0.9999, 0.0, 0.0001] [1.0, 0.0, 0.0] [1.0, 0.0, 0.0] [0.98122, 0.0, 0.01878] [0.99978, 0.0, 0.00022] [0.99998, 0.0, 2e−05]
LESC [1.0, 0.0, 0.0] [1.0, 0.0, 0.0] [1.0, 0.0, 0.0] [1.0, 0.0, 0.0] [1.0, 0.0, 0.0] [1.0, 0.0, 0.0]
LE-GCN [0.9999, 0.0, 0.0001] [1.0, 0.0, 0.0] [0.99946, 0.0, 0.00054] [0.9808, 0.0, 0.0192] [0.98574, 0.0, 0.01426] [0.98886, 0.0, 0.01114]
As confirmed clearly by the test results of Table 17, it is statistically
significant that our LEFR outperforms the other six algorithms. The
test results also show that our LE-GCN statistically outperforms PLEML,
since the winning probabilities of LEFR over PLEML are either equal to
or bigger than those of LEFR over LE-GCN. Therefore, the statistical test
results convincingly demonstrate that our LEFR achieves the best label
13
distribution prediction performance, while our LE-GCN is the second
best.

5. Conclusions

First we have proposed a new LE method based on feature repre-

sentation, called LEFR. Specifically, we have developed a framework
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that excavates the underlying reduced-dimensional feature information
via a manifold learning and obtains the predicted label distribution
during the intermediate procedure via label propagation. A new sample
similarity matrix has been proposed to mine the correlation between
the sample feature space and the sample label space. By combining
the rich label information in low-dimensional feature space and the
label distribution information estimated, an enhanced label distribution
prediction model has been established, which can be trained through
gradient descent optimization to yield the accurate label distribution
prediction. Second, a novel LE method based on the graph convolu-
tional network, named LE-GCN, has been designed. According to the
similarity property, the connection threshold of the feature node has
been determined, and the information reshaping of feature space and
label space has been achieved. This has enabled LE-GCN to produce
the accurate label distribution estimation. Experiments involving 13
real-word datasets have demonstrated the superior performance of our
proposed LEFR and LE-GCN algorithms over several existing state-of-
the-art LE algorithms, in terms of label enhancement learning and label
distribution prediction.

Of particularly interesting observation is as follows. Our LE-GCN at-
tains the best label distribution recovery performance with our LEFR as
a close second best. In the label distribution prediction experiments by
contrast, our LEFR is a clear winner, while our LE-GCN can only attain
the second best. The superior LE capability of the proposed LE-GCN
comes from its deep information mining structure which fully exploits
the hidden relationships between feature nodes and labels. However,
the optimization of the logistic regression based label predictor model
for LE-GCN exhibits suboptimal behavior. Further research is warranted
to investigate alternative label predictor form in order to fulfill the full
potential of this new LE-GCN structure.

CRediT authorship contribution statement

Chao Tan: Writing – review & editing, Writing – original draft,
alidation, Methodology, Investigation, Funding acquisition, Formal
nalysis, Data curation, Conceptualization. Sheng Chen: Writing –

review & editing, Supervision, Formal analysis. Xin Geng: Resources,
Funding acquisition, Conceptualization. Yunyao Zhou: Visualization,
Software, Data curation. Genlin Ji: Resources, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

This work was supported by National Natural Science Foundation
of China under Grant 61702270, 41971343 and 62076063. This work
was also supported by Industry Projects in Jiangsu S & T Pillar Pro-
gram under Grant BE2023089 and Key Project of Natural Science
Research in Jiangsu Provincial Colleges and Universities under Grant
21KJA520002. Dr Tan would like to thank the sponsorship of Chinese
Scholarship Council for funding her research at School of Electronics
14

and Computer Science, University of Southampton, UK.
References

[1] M.L. Zhang, et al., Leveraging implicit relative labeling-importance information
for effective multi-label learning, IEEE Trans. Knowl. Data Eng. 33 (5) (2021)
2057–2070.

[2] X. Geng, Label distribution learning, IEEE Trans. Knowl. Data Eng. 28 (7) (2016)
1734–1748.

[3] X. Geng, Q. Wang, Y. Xia, Facial age estimation by adaptive label distribution
learning, in: Proc. 22nd Int. Conf. Pattern Recognition, Stockholm, Sweden, 2014,
pp. 4465–4470.

[4] Y. Zhou, H. Xue, X. Geng, Emotion distribution recognition from facial expres-
sions, in: Proc. 23rd ACM Int. Conf. Multimedia, Brisbane, Australia, 2015, pp.
1247–1250.

[5] X. Geng, M. Ling, Soft video parsing by label distribution learning, in: Proc.
AAAI 2017, San Francisco, CA, USA, 2017, pp. 1331–1337.

[6] L. Qi, et al., Label distribution learning for generalizable multisource person
re-identification, IEEE Trans. Inf. Forensics Secur. 17 (2022) 3139–3150.

[7] N. Xu, Y.P. Liu, X. Geng, Label enhancement for label distribution learning, IEEE
Trans. Knowl. Data Eng. 33 (4) (2021) 1632–1643.

[8] G. Tsoumakas, I. Katakis, Multi-label classification: An overview, Int. J. Data
Warehous. Min. 3 (3) (2009) 1–13.

[9] Z. Zhang, H. Zha, Principal manifolds and nonlinear dimension reduction via
local tangent space alignment, SIAM J. Sci. Comput. 26 (1) (2002) 313–338.

[10] T. Chen, et al., Learning semantic-specific graph representation for multi-label
image recognition, in: Proc. ICCV 2019, Vol. 2, Seoul, South Korea, 2019, pp.
522–531.

[11] R. You, et al., Cross-modality attention with semantic graph embedding for
multi-label classification, in: Proc. AAAI 2020, New York, NY, USA, 2020, pp.
12709–12716.

[12] Y. Wu, et al., GM-MLIC: Graph matching based multi-label image classification,
in: Proc. IJCAI 2021, Montreal, QC, Canada, 2021, pp. 1179–1185.

[13] Z. Chen, X. Wei, P. Wang, Y. Guo, Multi-label image recognition with graph
convolutional networks, in: Proc. CVPR 2019, Long Beach, CA, USA, 2019, pp.
5177–5186.

[14] N.E. Gayar, F. Schwenker, G. Palm, A study of the robustness of knn classifiers
trained using soft labels, in: Proc. ANNPR 2006, Vol. 2, Ulm, Germany, 2006,
pp. 67–80.

[15] X. Jiang, Z. Yi, J.C. Lv, Fuzzy SVM with a new fuzzy membership function,
Neural Comput. Appl. 15 (3) (2006) 268–276.

[16] P. Hou, X. Geng, M.-L. Zhang, Multi-label manifold learning, in: Proc. AAAI
2016, Phoenix, AZ, USA, 2016, pp. 1680–1686.

[17] H. Tang, et al., Label enhancement with sample correlations via low-rank
representation, in: Proc. AAAI 2020, New York, NY, USA, 2020, pp. 5932–5939.

[18] W. Zhu, X. Jia, W. Li, Privileged label enhancement with multi-label learning,
in: Proc. IJCAI-PRICAI 2020, Yokohama, Japan, 2021, pp. 2376–2382.

[19] N. Xu, et al., Variational label enhancement, IEEE Trans. Pattern Anal. Mach.
Intell. 45 (5) (2023) 6537–6551.

[20] Y. Lu, et al., Generative label enhancement with gaussian mixture and partial
ranking, in: Proc. AAAI 2023, Washington, DC, USA, 2023, pp. 8975–8983.

[21] Y. Wang, et al., Contrastive label enhancement, in: Proc. IJCAI 2023, Macao,
SAR, China, 2023, pp. 4353–4361.

[22] S.T. Roweis, L.K. Saul, Nonlinear dimensionality reduction by locally linear
embedding, Science 290 (5500) (2000) 2323–2326.

[23] X. Zhu, Semi-Supervised Learning with Graphs (Ph.D. thesis) CMU-LTI-05-192,
School of Computer Science, Carnegie Mellon University, USA, 2005.

[24] J. Nocedal, S.J Wright, Numerical Optimization, Springer, New York, NY, USA,
2006.

[25] V. Vapnik, A. Vashist, A new learning paradigm: Learning using privileged
information, Neural Netw. 22 (5–6) (2009) 544–557.

[26] K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpassing human-
level performance on ImageNet classification, in: Proc. ICCV 2015, Santiago,
Chile, 2015, pp. 1026–1034.

[27] F. Párez-Cruz, A. Navia-Vázquez, P.L. Alarcón-Diana, A. Artés-Rodríguez, An
IRWLS procedure for SVR, in: Proc. 10th European Signal Processing Conf,
Tampere, Finland, 2000, pp. 1–4.

[28] S. Cha, Comprehensive survey on distance/similarity measures between proba-
bility density functions, Int. J. Math. Models Methods Appl. Sci. 1 (4) (2007)
300–307.

[29] J. Demšar, Statistical comparisons of classifiers over multiple data sets, J. Mach.
Learn. Res. 7 (1) (2006) 1–30.

[30] A. Benavoli, G. Corani, J. Demšar, M. Zaffalon, Time for a change: A tutorial for
comparing multiple classifiers through Bayesian analysis, J. Mach. Learn. Res.
18 (77) (2017) 1–36.

Chao Tan received the B.E. and M.E. degree in Computer Science and Technology
from Southeast University in 2005 and 2009, respectively, and received the Ph.D.
degree in Computer Science and Technology from Tongji University in 2015. She joined
the Nanjing Normal University as a lecturer in 2015 and is an associate professor in
the School of Computer and Electronic Information/School of Artificial Intelligence

http://refhub.elsevier.com/S0031-3203(24)00198-5/sb1
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb1
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb1
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb1
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb1
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb2
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb2
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb2
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb3
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb3
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb3
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb3
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb3
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb4
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb4
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb4
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb4
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb4
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb5
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb5
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb5
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb6
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb6
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb6
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb7
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb7
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb7
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb8
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb8
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb8
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb9
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb9
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb9
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb10
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb10
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb10
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb10
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb10
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb11
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb11
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb11
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb11
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb11
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb12
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb12
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb12
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb13
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb13
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb13
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb13
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb13
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb14
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb14
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb14
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb14
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb14
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb15
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb15
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb15
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb16
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb16
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb16
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb17
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb17
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb17
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb18
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb18
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb18
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb19
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb19
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb19
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb20
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb20
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb20
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb21
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb21
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb21
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb22
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb22
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb22
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb23
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb23
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb23
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb24
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb24
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb24
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb25
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb25
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb25
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb26
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb26
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb26
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb26
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb26
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb27
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb27
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb27
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb27
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb27
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb28
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb28
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb28
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb28
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb28
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb29
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb29
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb29
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb30
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb30
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb30
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb30
http://refhub.elsevier.com/S0031-3203(24)00198-5/sb30


Pattern Recognition 152 (2024) 110447C. Tan et al.
at present. She has worked as a postdoctoral researcher in Southeast University. Her
research interests generally focus on machine learning, multi-label manifold learning
and data mining.

Sheng Chen received his BEng degree from the East China Petroleum Institute,
Dongying, China, in 1982, and his Ph.D. degree from the City University, London, in
1986, both in control engineering. In 2005, he was awarded the higher doctoral degree,
Doctor of Sciences (DSc), from the University of Southampton, Southampton, UK.
From 1986 to 1999, He held research and academic appointments at the Universities
of Sheffield, Edinburgh and Portsmouth, all in UK. Since 1999, he has been with
the School of Electronics and Computer Science, the University of Southampton, UK,
where he holds the post of Professor in Intelligent Systems and Signal Processing.
Dr Chen’s research interests include neural network and machine learning, adaptive
signal processing, wireless communications, modeling and identification of nonlinear
systems, evolutionary computation methods and optimization. He has published over
700 research papers. Dr. Chen is a Fellow of the United Kingdom Royal Academy
of Engineering, a Fellow of IEEE, a fellow of IET, a Distinguished Adjunct Professor
at King Abdulaziz University, Jeddah, Saudi Arabia, and an original ISI highly cited
researcher in engineering (March 2004). Professor Chen has 15,100+ Web of Science
citations with h-index 54 and 20,500+ Google Scholar citations with h-index 75.
15
Xin Geng received the B.Sc. and M.Sc. degrees in Computer Science from Nanjing
University, China, in 2001 and 2004, respectively, and the Ph.D. degree from Deakin
University, Australia in 2008. He is currently a professor in the school of Computer
Science and Engineering and the dean of the graduate school at Southeast University.
His research interests include pattern recognition, machine learning, and computer
vision. He has published more than 40 refereed papers and holds four patents in these
areas. He is member of the IEEE.

Yunyao Zhou is currently an undergraduate student in the School of Computer and
Electronic Information/School of Artificial Intelligence at Nanjing Normal University.
His research interests include machine learning and graph mining.

Genlin Ji received the B.E. and M.E. degree in Computer Science and Technology from
Nanjing University of Aeronautics and Astronautics in 1986 and 1989, respectively,
and received the Ph.D. degree in Computer Science and Technology from Southeast
University in 2004. He is now a professor in the School of Computer and Electronic
Information/School of Artificial Intelligence at Nanjing Normal University. His research
interests generally focus on data mining and its application.


	Label enhancement via manifold approximation and projection with graph convolutional network
	Introduction
	Survey of Existing LE Algorithms
	LE based on label propagation (LP)
	LE algorithm based on manifold learning (ML)
	Graph Laplacian-based LE (GLLE)
	LE with sample correlations (LESC)
	Privileged LE with multi-label learning (PLEML)

	Our Proposed Approaches
	LEFR approach
	LE-GCN approach
	Complexity analysis

	Experimental Evaluation
	Description of experimental system
	Label recovery experimental results
	Label predictive experimental results
	Statistical validation of experimental results

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


