PSO Aided OFR Based RBF Classifier

Experimental Results

Conclusions

(ロ) (同) (三) (三) (三) (○) (○)

Radial Basis Function Classifier Construction Using Particle Swarm Optimisation Aided Orthogonal Forward Regression

Sheng Chen¹, Xia Hong², Chris J. Harris¹

¹School of Electronics and Computer Science University of Southampton, Southampton SO17 1BJ, UK E-mails: {sqc,cjh}@ecs.soton.ac.uk

²School of Systems Engineering University of Reading, Reading RG6 6AY, UK E-mail: x.hong@reading.ac.uk

International Joint Conference on Neural Networks 2010

PSO Aided OFR Based RBF Classifier

Experimental Results

Conclusions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Outline

Motivations

- Existing Approaches
- Our Novelty
- PSO Aided OFR Based RBF Classifier
 - Tunable RBF Modelling
 - PSO Aided OFR Algorithm
- Experimental Results
 - Breast Cancer Data
 - Diabetes Data
 - Thyroid Data

Motivations ●○○○ PSO Aided OFR Based RBF Classifier

Experimental Results

Conclusions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Outline

Motivations

- Existing Approaches
- Our Novelty
- PSO Aided OFR Based RBF Classifier
 Tunable RBF Modelling
 PSO Aided OFR Algorithm
- 3 Experimental Results
 - Breast Cancer Data
 - Diabetes Data
 - Thyroid Data

Experimental Results

(ロ) (同) (三) (三) (三) (○) (○)

Existing RBF Classifiers

- Nonlinear optimisation ⇒ optimise all RBF classifier's parameters: centres, variances or covariances and weights
 - Very "sparse" (small size), but all problems associated with "nonlinear" optimisation
- Linear optimisation ⇒ set RBF centres to training data and fix a variance: seek a "linear" subset classifier
 - Orthogonal least squares forward selection:
 - Sparse, good performance, and efficient construction
 - Need to specify RBF variance (via cross validation)
 - Sparse kernel modelling methods:
 - Sparse (though not as sparse as OLS), good performance
 - Need to specify kernel variance and other hyperparameters (via cross validation)

PSO Aided OFR Based RBF Classifier

Experimental Results

Conclusions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Outline

1 Motivations

- Existing Approaches
- Our Novelty
- PSO Aided OFR Based RBF Classifier
 Tunable RBF Modelling
 PSO Aided OFR Algorithm
- 3 Experimental Results
 - Breast Cancer Data
 - Diabetes Data
 - Thyroid Data

Motivations	
0000	

Experimental Results

Conclusions

(ロ) (同) (三) (三) (三) (○) (○)

Combined Linear/Nonlinear Learning

- Linear approach ⇒ state-of-the-art efficient ROLS-LOO, but fixed bases and a common RBF variance
- Nonlinear approach ⇒ optimise all parameters, but a too large and complex nonlinear optimisation
- Combined linear/nonlinear approach:
 - Retain advantage of linear optimisation → use orthogonal forward regression to add RBF bases one by one
 - Have tunable RBF bases for enhanced modelling capability → use nonlinear optimisation
- Each stage of OFR, optimise one tunable base, i.e. determine RBF base's centre and covariance
 - How efficient this combined RBF classifier modelling, in comparison with state-of-the-art ROLS-LOO?

PSO Aided OFR Based RBF Classifier

Experimental Results

Conclusions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Outline

Motivations

- Existing Approaches
- Our Novelty
- PSO Aided OFR Based RBF Classifier
 - Tunable RBF Modelling
 - PSO Aided OFR Algorithm
- 3 Experimental Results
 - Breast Cancer Data
 - Diabetes Data
 - Thyroid Data

PSO Aided OFR Based RBF Classifier

Experimental Results

Conclusions

Tunable-RBF Classifier

- **Two-class** training set $D_N = {\{\mathbf{x}_k, y_k\}_{k=1}^N}$, where $\mathbf{x}_k \in \mathcal{R}^m$ is pattern vector and $y_k \in {\{\pm 1\}}$ class label
- Construct **RBF classifier** as linear combiner of RBF bases $\{g_i(\mathbf{x}_k)\}_{i=1}^{M}$

$$\hat{y}_k = f^{[M]}(\mathbf{x}_k) = \sum_{i=1}^M w_i g_i(\mathbf{x}_k)$$

where w_i are weights, with estimated class label

$$\tilde{y}_k = \operatorname{sgn}(\hat{y}_k)$$

• Generic **RBF** base is given by

$$g_i(\mathbf{x}) = \mathcal{K}\left(\sqrt{\left(\mathbf{x} - \mu_i
ight)^T \mathbf{\Sigma}_i^{-1} \left(\mathbf{x} - \mu_i
ight)}
ight)$$

where μ_i : *i*th centre vector, Σ_i : *i*th diagonal covariance matrix, and $K(\bullet)$: chosen basis function

PSO Aided OFR Based RBF Classifier

Experimental Results

Conclusions

Orthogonal Decomposition

- **Regression** model on training set D_N : $\mathbf{y} = \mathbf{G}_M \mathbf{w}_M + \mathbf{e}$
- Orthogonal decomposition of regression matrix, $\mathbf{G}_M = \mathbf{P}_M \mathbf{A}_M$:

$$\mathbf{A}_{M} = \begin{bmatrix} 1 & \alpha_{1,2} & \cdots & \alpha_{1,M} \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \alpha_{M-1,M} \\ 0 & \cdots & 0 & 1 \end{bmatrix}$$

 $\mathbf{P}_M = [\mathbf{p}_1 \ \mathbf{p}_2 \cdots \mathbf{p}_M]$ is orthogonal, $\mathbf{A}_M \mathbf{w}_M = \mathbf{\theta}_M$, and equivalently:

$\mathbf{y} = \mathbf{G}_{\mathbf{M}}\mathbf{w}_{\mathbf{M}} + \mathbf{e} \Leftrightarrow \mathbf{y} = \mathbf{P}_{\mathbf{M}}\boldsymbol{\theta}_{\mathbf{M}} + \mathbf{e}$

After *n*th stage of OFR, *n* bases are constructed G_n = [g₁ ··· g_n] with corresponding P_n = [p₁ ··· p_n] and A_n, while *k*th row of P_n is denoted as [p₁(k) ··· p_n(k)]

PSO Aided OFR Based RBF Classifier

Experimental Results

Conclusions

LOO Classification

Define leave-one-out n-term classifier's output

$$\hat{y}_k^{[n,-k]} = f^{[n,-k]}(\mathbf{x}_k)$$

• LOO signed decision variable $s_k^{[n,-k]} = y_k \hat{y}_k^{[n,-k]} = \phi_k^{[n]} / \eta_k^{[n]}$ with $\eta_k^{[n]} = \eta_k^{[n-1]} - p_n^2(k) / (\mathbf{p}_n^T \mathbf{p}_n + \lambda)$ $\phi_k^{[n]} = \phi_k^{[n-1]} + y_k \theta_n p_n(k) - p_n^2(k) / (\mathbf{p}_n^T \mathbf{p}_n + \lambda)$

where λ is a regularisation parameter

LOO misclassification rate can then be computed efficiently

$$J_n = \frac{1}{N} \sum_{k=1}^{N} \mathcal{I}_d \left(\boldsymbol{s}_k^{[n,-k]} \right)$$

where indicator $\mathcal{I}_d(y) = 1$ if $y \leq 0$ and $\mathcal{I}_d(y) = 0$ if y > 0

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

PSO Aided OFR Based RBF Classifier

Experimental Results

Conclusions

Nonlinear Optimisation in OFR

 At *n*th stage of OFR, determine *n*th RBF base, i.e. its nonlinear parameters μ_n, Σ_n, by solving nonlinear optimisation

$$\min_{\boldsymbol{\mu}_n,\boldsymbol{\Sigma}_n} J_n(\boldsymbol{\mu}_n,\boldsymbol{\Sigma}_n)$$

 For LOO criterion *J_n*, there exists an "optimal" model size *M*: for *n* ≤ *M*, *J_n* decreases as model size *n* increases while

$$J_M \leq J_{M+1}$$

Thus, OFR construction procedure is automatically terminated when above condition holds, yielding an *M*-base model

• We propose to use particle swarm optimisation,

ŀ

A population based stochastic optimisation method inspired by social behaviour of bird flocks or fish schools (Swarm Intelligence)

PSO Aided OFR Based RBF Classifier

Experimental Results

Conclusions

Outline

Motivations

- Existing Approaches
- Our Novelty
- PSO Aided OFR Based RBF Classifier
 Tunable RBF Modelling
 PSO Aided OFR Algorithm
- 3 Experimental Results
 - Breast Cancer Data
 - Diabetes Data
 - Thyroid Data

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲目 ● ● ●

PSO Aided OFR Based RBF Classifier

Experimental Results

Conclusions

Particle Swarm Optimisation

• Solving generic optimisation

$$\mathbf{u}_{\mathrm{opt}} = \arg\min_{\mathbf{u}\in \prod\limits_{j=1}^{m'} \mathbf{P}_j} F(\mathbf{u})$$

 $\mathbf{u} = [u_1 \cdots u_{m'}]^T$ is parameter vector to be optimised, $F(\bullet)$ is cost, and search space

$$\prod_{j=1}^{m'} \mathsf{P}_j = \prod_{j=1}^{m'} [P_{j,\min}, P_{j,\max}]$$

• A swarm of particles,

 $\{\mathbf{u}_{i}^{l}\}_{i=1}^{S}$, are evolved in search space, where *S* is swarm size and *l* denotes iteration index

PSO Aided OFR Based RBF Classifier

Experimental Results

Conclusions

PSO Algorithm Adopted

- Each particle remembers its best position visited cognitive information, pb^l_i, 1 ≤ i ≤ S
- Every particle knows best position visited among entire swarm – social information, gb^l
- Each particle has a **velocity** $\mathbf{v}_i^{(l)}$ to direct its "flying", and

$$\mathbf{v}_{i}^{(l)} \in \prod_{j=1}^{m'} V_{j} = \prod_{j=1}^{m'} [-V_{j,\max}, V_{j,\max}]$$

In our application, m['] = 2m, each u^l_i contains a candidate solution for (μ_n, Σ_n), and cost function F(u) = J_n(μ, Σ)

Experimental Results

PSO Procedure

- a) Swarm initialisation: Set iteration index *I* = 0 and randomly generate {**u**_i^{*l*}} }^S_{i=1} in search space ^{m'}_{i=1} P_j
- b) Swarm evaluation: Particle u^l_i has cost F(u^l_i), based on which pb^l_i, 1 ≤ i ≤ S, and gb^l are updated
- c) Swarm update: Velocities and positions are updated

$$\mathbf{v}_{i}^{l+1} = w_{1} * \mathbf{v}_{i}^{l} + rand() * c_{1} * (\mathbf{pb}_{i}^{l} - \mathbf{u}_{i}^{l}) + rand() * c_{2} * (\mathbf{gb}^{l} - \mathbf{u}_{i}^{l})$$
$$\mathbf{u}_{i}^{l+1} = \mathbf{u}_{i}^{l} + \mathbf{v}_{i}^{l+1}$$

d) Termination: If maximum number of iterations *I*_{max} is reached, terminate with solution gb<sup>*I*_{max}); otherwise, *I* = *I* + 1 and goto b)
</sup>

PSO Aided OFR Based RBF Classifier

Experimental Results

Conclusions

(日) (日) (日) (日) (日) (日) (日)

PSO Algorithmic Parameters

- Inertial weight w_I = rand(), other alternative is w_I = 0 or w_I set to a small positive constant
- Time varying acceleration coefficients

 $c_1 = (0.5 - 2.5) * I/I_{max} + 2.5, \ c_2 = (2.5 - 0.5) * I/I_{max} + 0.5$

- Initially, large cognitive component and small social component help particles to exploit better search space
- Later, small cognitive component and large social component help particles to converge quickly to a minimum
- S = 10 to 20 appropriate for small to medium size problems, and empirical results suggest $I_{max} = 20$ is often sufficient
- Search space is specified by problem, velocity space can be determined with V_{j,max} = 0.5 * (P_{j,max} P_{j,min})

PSO Aided OFR Based RBF Classifier

Experimental Results

Conclusions

(ロ) (同) (三) (三) (三) (○) (○)

Computational Complexity

 Let complexity of evaluating cost function once be C_{single} ⇒ total complexity in determining one RBF node is

$$C_{\text{total}} = I_{\text{max}} \times S \times C_{\text{single}}$$

- Complexity of one LOO cost evaluation and associated column orthogonalisation is order of N ⇒ C_{single} = O(N)
- Complexity of **PSO-aided OFR** in constructing *M* tunable-bases

$$C_{\text{PSO-OFR}} = (M + 1) \times I_{\text{max}} \times S \times \mathcal{O}(N)$$

 Complexity of ROLS-LOO in selecting M['] fixed-bases from N-candidate set is

$$C_{\text{ROLS}} = (M^{'} + 1) \times N \times \mathcal{O}(N)$$

• PSO-aided OFR is generally simpler for large data set: M < M', typically $l_{max} \times S \le 400$: when $N \ge 400$, $C_{PSO-OFR} < C_{ROLS}$

PSO Aided OFR Based RBF Classifier

Experimental Results

Conclusions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Outline

Motivations

- Existing Approaches
- Our Novelty

PSO Aided OFR Based RBF Classifier
 Tunable RBF Modelling
 PSO Aided OFR Algorithm

3 Experimental Results

- Breast Cancer Data
- Diabetes Data
- Thyroid Data

Experimental Results

Breast Cancer Data Set

Average classification test error rate in % over 100 realizations

method	RBF type	test error rate	model size
RBF-Network	tunable	$\textbf{27.64} \pm \textbf{4.71}$	5
AdaBoost RBF-Network	tunable	$\textbf{30.36} \pm \textbf{4.73}$	5
LP-Reg-AdaBoost (-"-)	tunable	$\textbf{26.79} \pm \textbf{6.08}$	5
QP-Reg-AdaBoost (-"-)	tunable	$\textbf{25.91} \pm \textbf{4.61}$	5
AdaBoost-Reg (-"-)	tunable	$\textbf{26.51} \pm \textbf{4.47}$	5
SVM with RBF-Kernel	fixed	$\textbf{26.04} \pm \textbf{4.74}$	unavailable
Kernel Fisher Discriminant	fixed	24.77 ± 4.63	200
ROLS-LOO	fixed	$\textbf{25.74} \pm \textbf{5.00}$	$\textbf{6.0} \pm \textbf{2.0}$
PSO OFR-LOO	tunable	$\textbf{23.04} \pm \textbf{3.41}$	$\textbf{2.8}\pm\textbf{0.9}$

Data and first 7 results from:

http://ida.first.fhg.de/projects/bench/benchmarks.htm

PSO OFR-LOO: S = 10 and $I_{max} = 20$ with complexity of $760 \cdot O(200)$

ROLS-LOO: with complexity of $1400 \cdot \mathcal{O}(200)$, given RBF variance

PSO Aided OFR Based RBF Classifier

Experimental Results

Conclusions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Outline

Motivations

- Existing Approaches
- Our Novelty

PSO Aided OFR Based RBF Classifier
 Tunable RBF Modelling
 PSO Aided OFR Algorithm

Experimental Results
 Breast Cancer Data

- Diabetes Data
- Thyroid Data

Experimental Results

Diabetis Data Set

Average classification test error rate in % over 100 realizations

method	RBF type	test error rate	model size
RBF-Network	tunable	$\textbf{24.29} \pm \textbf{1.88}$	15
AdaBoost RBF-Network	tunable	$\textbf{26.47} \pm \textbf{2.29}$	15
LP-Reg-AdaBoost (-"-)	tunable	24.11 ± 1.90	15
QP-Reg-AdaBoost (-"-)	tunable	$\textbf{25.39} \pm \textbf{2.20}$	15
AdaBoost-Reg (-"-)	tunable	$\textbf{23.79} \pm \textbf{1.80}$	15
SVM with RBF-Kernel	fixed	$\textbf{23.53} \pm \textbf{1.73}$	unavailable
Kernel Fisher Discriminant	fixed	$\textbf{23.21} \pm \textbf{1.63}$	468
ROLS-LOO	fixed	$\textbf{23.00} \pm \textbf{1.70}$	6.0 ± 1.0
PSO OFR-LOO	tunable	21.87 ± 1.24	$\textbf{3.5}\pm\textbf{1.4}$

Data and first 7 results from:

http://ida.first.fhg.de/projects/bench/benchmarks.htm

PSO OFR-LOO: S = 10 and $I_{max} = 20$ with complexity $900 \cdot O(468)$

ROLS-LOO: with complexity $3276 \cdot \mathcal{O}(468)$, given RBF variance

PSO Aided OFR Based RBF Classifier

Experimental Results

Conclusions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Outline

Motivations

- Existing Approaches
- Our Novelty
- PSO Aided OFR Based RBF Classifier
 Tunable RBF Modelling
 PSO Aided OFR Algorithm

3 Experimental Results

- Breast Cancer Data
- Diabetes Data
- Thyroid Data

Experimental Results

Conclusions

Thyroid Data Set

Average classification test error rate in % over 100 realizations

method	RBF type	test error rate	model size
RBF-Network	tunable	$\textbf{4.52} \pm \textbf{2.12}$	8
AdaBoost RBF-Network	tunable	$\textbf{4.40} \pm \textbf{2.18}$	8
LP-Reg-AdaBoost (-"-)	tunable	$\textbf{4.59} \pm \textbf{2.22}$	8
QP-Reg-AdaBoost (-"-)	tunable	$\textbf{4.35} \pm \textbf{2.18}$	8
AdaBoost-Reg (-"-)	tunable	$\textbf{4.55} \pm \textbf{2.19}$	8
SVM with RBF-Kernel	fixed	$\textbf{4.80} \pm \textbf{2.19}$	unavailable
Kernel Fisher Discriminant	fixed	$\textbf{4.20} \pm \textbf{2.07}$	140
ROLS-LOO	fixed	$\textbf{4.80} \pm \textbf{2.20}$	$\textbf{4.6} \pm \textbf{1.0}$
PSO OFR-LOO	tunable	$\textbf{2.48} \pm \textbf{1.41}$	$\textbf{3.5}\pm\textbf{0.8}$

Data and first 7 results from:

http://ida.first.fhg.de/projects/bench/benchmarks.htm

PSO OFR-LOO: S = 20 and $I_{max} = 20$ with complexity $1800 \cdot O(140)$

ROLS-LOO: with complexity 784 $\cdot O(140)$, given RBF variance

PSO Aided OFR Based RBF Classifier

Experimental Results

Conclusions

- We have developed a PSO aided OFR based algorithm for constructing tunable RBF classifiers, which combines
 - advantages of "linear" learning (orthogonal forward regression selects RBF bases one by one), and
 - advantages of "nonlinear" learning (particle swarm optimisation optimises one base at each OFR stage)
- Compared with best ROLS-LOO algorithm for selecting subset RBF model from full fixed-base candidate set, the proposed method offers:
 - better test performance, smaller classifier size, and lower complexity in classifier construction process