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Abstract— We consider nonlinear detection in rank-deficient
multiple-antenna assisted beamforming systems. By exploiting the
inherent symmetry of the underlying optimal Bayesian detection
solution, a symmetric radial basis function (RBF) detector is
proposed and two adaptive algorithms are developed for training
the proposed RBF detector. The first adaptive algorithm, referred
to as the nonlinear least bit error, is a stochastic approximation to
the Parzen window estimation of the detector output’s probability
density function while the second algorithm is based on a cluster-
ing. The proposed adaptive solutions are capable of providing a
signal to noise ratio gain in excess of 8 dB against the theoretical
linear minimum bit error rate benchmarker, when supporting
four users with the aid of two receive antennas or five users
employing three antenna elements.

I. INTRODUCTION

Adaptive beamforming is capable of separating user signals
transmitted on the same carrier frequency, and thus provides
a practical means of supporting multiusers in a space-division
multiple-access scenario [1]–[10]. Classically, this is achieved
by a linear beamformer based on the minimum mean square
error (L-MMSE) solution [1],[2],[7],[8],[11]. The L-MMSE
beamforming requires that the number of users supported
is no more than the number of receive antenna elements.
If this condition is not met, the system is referred to as
overloaded or rank-deficient. The optimal solution for the
linear beamforming has been shown to be the minimum bit
error rate (L-MBER) design [12],[13] which outperforms the
L-MMSE one and is capable of operating in hostile rank-
deficient scenarios. However, digital communication signal
detection can be viewed as a classification problem [14]-
[16], where the receiver detector simply classifies the received
multidimensional channel-impaired signal into the most-likely
transmitted symbol constellation point or class. Both the radial
basis function (RBF) network [17]-[19] and other kernel
models [20]-[25] have been applied to solve this nonlinear
detection problem. All these nonlinear detectors attempt to
approximate the underlying optimal Bayesian solution.
The standard RBF or kernel modelling technique constitutes a
black-box approach that seeks to extract a model representa-
tion from the available training data. Adopting this black-box
modelling approach is appropriate, if no a priori information
exists regarding the underlying data generating mechanism.
If however there exists some a priori information concerning
the system to be modelled, this a priori information should
be incorporated into the modelling process. Many real-life

phenomena exhibit inherent properties, such as symmetry,
but these properties are often hard to infer from the data
with the aid of black-box models. In regression modelling,
the symmetric properties of the underlying system have been
exploited by imposing symmetry in both RBF networks and
least squares support vector machines [26],[27]. By imposing
symmetry on the model’s structure, it is easier to extract the
inherent symmetry properties of the underlying system from
noisy training data and this leads to substantial improvements
in the achievable regression modelling performance. In this
paper, we propose a symmetric RBF detector for multiple-
antenna aided beamforming systems.
The optimal Bayesian nonlinear detection solution has an
inherent symmetry because the signal states corresponding to
the different signal classes are distributed symmetrically. This
symmetric property is difficult to infer from noisy training data
using a standard RBF model. In fact, previous studies [16]-[25]
have shown that a standard RBF detector typically requires
significantly more RBF centres than the number of channel
output states in order to approximate the Bayesian detector
using noisy training data, and often there is a performance
difference between such a RBF detector and the optimal
Baysian solution. In contrast to the standard RBF model, the
proposed symmetric RBF model is capable of approaching
the optimal Bayesian performance accurately, despite using
channel-impaired training data and despite using no more
RBF centres than the number of channel output states. The
advantage of the proposed symmetric RBF detector is demon-
strated in challenging detection scenarios, where the number
of users supported is almost twice the number of antenna
array elements. Two adaptive algorithms are developed to
update the symmetric RBF detector’s parameters on a sample-
by-sample basis for the sake of maintaining a low real-time
computational complexity. The first adaptive algorithm is a
stochastic learning algorithm, referred to as the nonlinear
least bit error rate (NLBER), which directly minimises an
approximate detection error probability or bit error rate (BER).
The second adaptive algorithm is based on the enhanced κ-
means clustering algorithm [16].

II. MULTIPLE ANTENNA ASSISTED BEAMFORMING

The system supports M users, where each user transmits on
the same carrier frequency of ω = 2πf , and the receiver
is equipped with a linear antenna array consisting of L



uniformly spaced elements. Further assume that the channel is
non-dispersive. Then the symbol-rate complex-valued received
signal samples can be expressed as

xl(k) =
M∑

i=1

Aibi(k)ejωtl(θi) + nl(k) = x̄l(k) + nl(k), (1)

for 1 ≤ l ≤ L, where tl(θi) is the relative time delay at
array element l for source i, with θi being the direction of
arrival for source i, nl(k) is the Gaussian white noise with
E[|nl(k)|2] = 2σ2

n, Ai is the channel coefficient of user i, and
bi(k) is the k-th symbol of user i, taking values from a binary
phase shift keying (BPSK) symbol set, i.e. bi(k) ∈ {±1}.
Source 1 is the desired user and the rest of the sources are
the interfering users. The desired user’s signal-to-noise ratio
is given by SNR= |A1|2σ2

b/2σ2
n, where σ2

b = 1 is the BPSK
symbol energy, and the desired signal-to-interferer i ratio is
defined by SIRi = |A1|2/|Ai|2, for 2 ≤ i ≤ M . The received
signal vector x(k) = [x1(k) · · ·xL(k)]T can be expressed as

x(k) = Pb(k) + n(k) = x̄(k) + n(k), (2)

where n(k) = [n1(k) · · ·nL(k)]T and the system matrix P
is given by P = [A1s1 · · ·AMsM ] with the steering vector of
source i given by si =

[
ejωt1(θi) · · · ejωtL(θi)

]T
, and the trans-

mitted BPSK symbol vector by b(k) = [b1(k) · · · bM (k)]T .
Traditionally, a linear beamforming receiver, yLin(k) =
θT x(k), is adopted to detect the desired user’s signal [1],[7]
with the associated decision given by

b̂1(k) = sgn(<[yLin(k)]) =
{

+1, <[yLin(k)] ≥ 0,
−1, <[yLin(k)] < 0,

(3)

where θ = [θ1 · · · θL]T denotes the complex-valued linear
beamformer’s weight vector and <[•] the real part. Classically,
the L-MMSE solution for the weight vector of the linear beam-
former is regarded as the optimal design [1],[2],[7],[8],[11].
The L-MMSE technique requires that the number of users M
is no higher than the number of antenna array elements L. The
optimal weight vector designed for the linear beamformer is
known to be the L-MBER solution [12],[13] which directly
minimises the BER of the linear beamformer and is capable
of operating in rank-deficient scenarios.
However, the optimal multiple antenna aided beamforming
detector is nonlinear [16],[25]. Let us denote the Nb = 2M

combinations of b(k) as bq , 1 ≤ q ≤ Nb, and the first
element of bq , related to the desired user, as bq,1. The noiseless
channel output x̄(k) takes values from the finite signal set
x̄(k) ∈ X 4

= {x̄q = Pbq, 1 ≤ q ≤ Nb}, which can be divided
into two subsets conditioned on the value of b1(k) as

X (±) 4= {x̄i ∈ X , 1 ≤ i ≤ Nsb : b1(k) = ±1}, (4)

where the size of X (+) and X (−) is Nsb = Nb/2 = 2M−1. Let
the conditional probabilities of receiving x(k) given b1(k) =
±1 be p±(x(k)) = p(x(k)|b1(k) = ±1). According to Bayes
decision theory [28], the optimal detection strategy is

b̂1(k) =
{

+1, if p+(x(k)) ≥ p−(x(k)),
−1, if p+(x(k)) < p−(x(k)). (5)

If we introduce the real-valued Bayesian decision variable

yBay(k) = fBay(x(k))
4
=

1
2
p+(x(k))− 1

2
p−(x(k)), (6)

the optimal detection rule (5) is equivalent to b̂1(k) =
sgn(yBay(k)). Decision variable (6) can be expressed as

yBay(k) =
Nb∑
q=1

sgn(bq,1)βqe
− ‖x(k)−x̄q‖2

2σ2
n (7)

where βq denotes the a priori probability of x̄q . Since all
the x̄q are equiprobable, βq = β = 1

Nb(2πσ2
n)L . The two

subsets X (+) and X (−) are distributed symmetrically, namely,
for any signal state x̄(+)

i ∈ X (+) there exists a signal state
x̄(−)

i ∈ X (−) satisfying x̄(−)
i = −x̄(+)

i . Given this symmetry,
the optimal Bayesian detector (7) can be characterised as

yBay(k) =
Nsb∑
q=1

βq

(
e
− ‖x(k)−x̄

(+)
q ‖2

2σ2
n − e

− ‖x(k)+x̄
(+)
q ‖2

2σ2
n

)
, (8)

where x̄(+)
q ∈ X (+). The Bayesian detector has odd symmetry,

as fBay(−x(k)) = −fBay(x(k)). This symmetry is hard to
infer from the noisy data by a standard RBF detector.

III. SYMMETRIC RADIAL BASIS FUNCTION DETECTOR

Consider the training of the RBF detector of the form

yRBF(k) = fRBF(x(k);w) =
nc∑

i=1

θiφi(x(k)), (9)

based on the training data set DK = {x(k), b1(k)}K
k=1, where

f(•; •) is a real-valued nonlinear mapping realised by the RBF
network, θi is the ith real-valued RBF weight, φi(•) denotes
the response of the i-th RBF node, nc is the number of RBF
nodes used, and w denotes the vector of all the adjustable
parameters of the RBF detector. We propose to adopt the
following symmetric RBF node

φi(x)
4
= ϕ(x; ci, σ

2
i )− ϕ(x;−ci, σ

2
i ), (10)

where ci is the ith complex-valued RBF centre, σ2
i the ith

real-valued RBF variance, and ϕ(•) the classic RBF function.
In this study we adopt the Gaussian RBF function

ϕ(x; ci, σ
2) = e−

‖x−ci‖2
σ2 . (11)

The symmetric RBF network (9) with the node structure (10)
has an inherently odd symmetry. A standard RBF model with
the RBF node defined by φi(x)

4
= ϕ(x; ci, σ

2
i ), by contrast,

cannot guarantee odd symmetry, particularly when the RBF
centres are generated from noisy training data.

A. The nonlinear least bit error rate algorithm

Let us define the signed decision variable ys(k) =
sgn(b1(k))yRBF(k) and denote the probability density func-
tion (PDF) of ys(k) as py(ys). Then the error probability of
the nonlinear detector (9) is given by

PE(w) = Prob{ys(k) < 0} =
∫ 0

−∞
py(ys) dys. (12)



The MBER solution for the detector’s parameter vector w is
defined as the one that minimises PE(w). The problem with
this approach is that the PDF of ys(k) is unknown. However,
it may be sufficiently accurately estimated using the Parzen
window method [29]-[31]. Given a block of training data DK ,
a Parzen window estimate of py(ys) is readily given as

p̃y(ys) =
1

K
√

2πρ

K∑

k=1

e
− (ys−sgn(b1(k))yRBF(k))2

2ρ2 , (13)

where ρ2 is the chosen kernel variance. With this estimated
PDF, the estimated or approximate BER is given by

P̃E(w) =
∫ 0

−∞
p̃y(ys) dys =

1
K

K∑

k=1

Q (g̃k(w)) , (14)

where Q(u) is the usual Gaussian error function and g̃k(w) =
sgn(b1(k))yRBF(k)/ρ. An approximate MBER solution for w
can be obtained by minimising P̃E(w).
In order to derive a sample-by-sample adaptive algorithm,
consider a “single-sample PDF estimate” of py(ys) given by

p̃y(ys, k) =
1√
2πρ

e
− (ys−sgn(b1(k))yRBF(k))2

2ρ2 . (15)

Conceptually, given this instantaneous PDF “estimate” we
have a single-sample BER “estimate” P̃E(w, k) = Q (g̃k(w)).
Using the instantaneous gradient ∇P̃E(w, k) gives rise to the
following stochastic adaptive algorithm

w(k) = w(k − 1) +
µ√
2πρ

e
− y2

RBF(k)

2ρ2 sgn(b1(k))

×∂fRBF(x(k);w(k − 1))
∂w

, (16)

which we refer to as the NLBER algorithm. The step size
µ and kernel variance ρ2 should be chosen appropriately to
achieve a desired convergence performance, both in terms
of convergence speed and steady-state BER misadjustment.
For the symmetric RBF detector (9) using the Gaussian RBF
function of (11), the derivatives of the RBF detector’s output
with respect to the RBF detector’s parameters are given by

∂fRBF
∂θi

= e
− ‖x(k)−ci‖2

σ2
i − e

− ‖x(k)+ci‖2
σ2

i ,

∂fRBF
∂σ2

i

= θi

(
e
− ‖x(k)−ci‖2

σ2
i

‖x(k)−ci‖2
(σ2

i )
2 − e

− ‖x(k)+ci‖2
σ2

i
‖x(k)+ci‖2

(σ2
i )

2

)
,

∂fRBF
∂ci

= θi

(
e
− ‖x(k)−ci‖2

σ2
i

x(k)−ci

σ2
i

+ e
− ‖x(k)+ci‖2

σ2
i

x(k)+ci

σ2
i

)
.

B. The clustering algorithm

Let σ̂2
n be an estimated σ2

n and set all the RBF variances
σ2

i = 2σ̂2
n. Further assume that nc = Nsb and set all the

RBF weights βi to a same positive value. Then in order
for the symmetric RBF detector (9) to realise the Bayesian
solution, we have to choose the RBF centres ci, 1 ≤ i ≤ Nsb,

TABLE I
NUMBER OF ANTENNA ARRAY ELEMENTS, NUMBER OF USERS SUPPORTED

AND LOCATIONS OF USERS IN TERMS OF ANGLE OF ARRIVAL (AOA).

Example 1: two-element antenna array supporting four users
user i 1 2 3 4

AOA θ 0◦ 20◦ −30◦ −45◦

Example 2: three-element antenna array supporting five users
user i 1 2 3 4 5

AOA θ 0◦ 10◦ −17◦ 15◦ 20◦

appropriately. This task can be achieved by the enhanced κ-
means clustering algorithm [16]. Note that unlike in the single-
user case, the receiver only has access to b1(k), not b(k),
during training, and the following clustering algorithm can be
used to update the RBF centres

ci(k) = ci(k − 1) + µcMi(x̌(k))(x̌(k)− ci(k − 1)), (17)

where x̌(k) = x(k) if b1(k) = +1, x̌(k) = −x(k) if b1(k) =
−1, and µc is the step size. The membership function Mi(x)
is defined as

Mi(x) =
{

1, if v̄i‖x− ci‖2 ≤ v̄j‖x− cj‖2, ∀j 6= i,
0, otherwise,

(18)
where v̄i is the variation of the ith cluster. In order to estimate
the associated variation v̄i, the following updating rule is used

v̄i(k) = µv v̄i(k−1)+(1−µv)Mi(x̌(k))‖x̌(k)−ci(k−1)‖2,
(19)

where µv is a constant slightly less than 1.0. The initial
variations v̄i(0), ∀i, are set to the same small number.

IV. SIMULATION STUDY

Two simulated beamforming systems, as listed in Table I, were
used. The array element spacing was half of the wavelength.
The simulated narrowband channels were Ai = 1 + j0, 1 ≤
i ≤ M , and the desired user and all the interfering users had
equal signal power. Therefore SIRi = 0 dB for 2 ≤ i ≤ M .
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Fig. 1. The desired-user’s bit error rate performance for the two-element
antenna array supporting four users at the angular positions of Table I. The
NLBER-based RBF detector has nc = 8 symmetric RBF nodes.
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Fig. 2. Learning curve of the NLBER-based RBF detector averaged over 10
runs for the two-element antenna array supporting four users, where SNR=
7 dB and the RBF detector has nc = 8 symmetric RBF nodes.

-3

    

-2

    

-1

    

 0

 0  2  4  6  8  10  12  14

B
it 

E
rr

or
 R

at
e

Model Size

Linear MBER
NLBER

Bayesian

Fig. 3. The influence of the detector’s size on the bit error rate performance
of the NLBER-based symmetric RBF detector for the two-element antenna
array supporting four users, where SNR= 7 dB.

Example 1. Fig. 1 depicts the BERs of both the L-MBER
beamformer and the Bayesian detector for the desired user.
The size of the Bayesian detector is specified by the number
of symmetric signal states Nsb = 8. Given SNR= 7 dB and
detector size nc = 8, Fig. 2 shows the learning curve of
the NLBER algorithm averaged over 10 runs, where we used
the first eight data points as the initial RBF centres ci(0),
set the initial RBF weights to θi(0) = 0.1 and the initial
RBF variances to σ2

i (0) = σ2
n, for 1 ≤ i ≤ nc = 8. The

step size and kernel variance of the NLBER algorithm (16)
were chosen to be µ = 0.4 and ρ2 = 10σ2

n. These values
were found empirically to be appropriate. The learning curve
(dashed curve) was the estimated BER P̃E(w(k)), calculated
using (14) with a block size of K = 400 and a kernel variance
of ρ2 = σ2

n. To check that the estimated BER P̃E(w(k))
gave the correct convergence trend, we also calculated the
true BER PE(w(k)) using Monte Carlo simulation for a
number of points, shown in Fig. 2 by the triangles. With the
same initial conditions, Fig. 3 illustrates the performance of
the NLBER-based detector as a function of model size nc.
For nc ≥ Nsb the symmetric RBF detector trained by the
stochastic NLBER algorithm is capable of closely approaching
the optimal Bayesian performance. The BER of the NLBER-
based symmetric RBF detector having nc = 8 RBF nodes is
depicted in Fig. 1, in comparison to the Bayesian detector.
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Fig. 5. The desired-user’s bit error rate performance for the two-element
antenna array supporting four users at the angular positions of Table I. The
clustering-based RBF detector has nc = 8 symmetric RBF nodes.

The clustering-based symmetric RBF detector was next inves-
tigated. We used the first Nsb data points as the initial centres
ci(0) and set all the RBF variances to 2σ2

n. The convergence
of the clustering algorithm (17) was assessed based on the
following Euclidean distance metric

ED(k) =
Nsb∑

i=1

‖ci(k)− x̄(+)
i ‖2. (20)

The initial clustering variations v̄i(0) were set to 0.01 and the
adaptive gain for updating the clustering variations was set to
µv = 0.995. Fig. 4 depicts the learning curves of the clustering
algorithm averaged over 5 runs for different values of step size
µc. The BER of the clustering-based symmetric RBF detector
is plotted in Fig. 5, in comparison with the two benchmark
detectors. We also studied the influence of the RBF variance.
For the same conditions in Fig. 4, it was observed that the RBF
detector achieved the Bayesian performance given the RBF
variance in the range of 0.1× 2σ2

n to 10× 2σ2
n. This confirms

that the performance of the RBF detector is insensitive to the
value of its RBF variance.
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Fig. 6. The desired-user’s bit error rate performance for the three-element
antenna array supporting five users at the angular positions of Table I. The
NLBER-based RBF detector has nc = 16 symmetric RBF nodes.
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Fig. 7. Learning curve of the NLBER-based RBF detector averaged over 10
runs for the three-element antenna array supporting five users, where SNR=
5 dB and the RBF detector has nc = 16 symmetric RBF nodes.

Example 2. The BER performance of the two benchmarkers,
the L-MBER beamformer and the Bayesian detector, are
shown in Fig. 6. The size of the Bayesian detector is Nsb = 16.
The convergence performance of the NLBER algorithm is
characterised in Fig. 7, given SNR= 5 dB and nc = 16.
Again, the learning curve of Fig. 7 was averaged over 10
runs, and we used the first 16 data points as the initial RBF
centres, set all the initial RBF weights to 0.06 and all the
initial RBF variances to 9σ2

n. The two algorithmic parameters
of the NLBER algorithm were chosen as step size µ = 0.4 and
kernel variance ρ2 = 4σ2

n. The block size used for estimating
the approximated BER P̃E(w(k)) was K = 800 with a kernel
variance of ρ2 = σ2

n. The true BER markers (triangles) in
Fig. 7 confirm that the learning curve P̃E(w(k)) correctly
indicated the convergence trend and the algorithm achieved
convergence after 3000 samples of training. Given SNR= 5 dB
and the same initial conditions as before, Fig. 8 illustrates
the influence of the number of RBF centres nc on the BER
performance of the NLBER-based symmetric RBF detector.
Using nc = 16 symmetric RBF nodes, the performance of the
NLBER-based symmetric RBF detector is compared to those

-3

    

-2

    

-1

    

 0

 0  5  10  15  20  25  30  35  40

B
it 

E
rr

or
 R

at
e

Model Size

Linear MBER
NLBER

Bayesian

Fig. 8. The influence of the detector’s size on the bit error rate performance
of the NLBER-based symmetric RBF detector for the three-element antenna
array supporting five users, where SNR= 5 dB.
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Fig. 9. Learning curve of the clustering-based RBF detector averaged over 5
runs for the three-element antenna array supporting five users, where SNR=
5 dB and the RBF detector has nc = 16 symmetric RBF nodes.

of the other two benchmarkers in Fig. 6.
For the clustering-based symmetric RBF detector, again we
used the first Nsb data points as the initial centres ci(0) and
set all the RBF variances to 2σ2

n. The convergence of the
clustering algorithm (17) averaged over 5 runs was illustrated
in Fig. 9 for the three values of the step size µc, where the
initial clustering variations v̄i(0) were again set to 0.01 and
the adaptive gain for updating the clustering variations was set
to µv = 0.995. The BER performance of the clustering-based
symmetric RBF detector is depicted in Fig. 10, in comparison
with the two benchmarkers. Finally, Fig. 11 illustrates the
influence of the detector’s size on the BER performance of
the clustering-based symmetric RBF detector.

V. CONCLUSIONS

A symmetric RBF network has been proposed for nonlinear
detection in beamforming, which substantially outperforms
previous solutions found in the literature in the challenging
scenario of supporting almost twice as many users, as the
number of antenna elements in multiple-antenna aided beam-
forming systems. Two adaptive algorithms, the clustering and
NLBER, have been derived for training the symmetric RBF
detector. It has been shown using a simulation study that
these two algorithms are capable of approaching the optimal
Bayesian detection performance. The proposed solution is
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clustering-based RBF detector has nc = 16 symmetric RBF nodes.
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capable of providing an SNR gain in excess of 8 dB against
the powerful linear minimum bit error rate benchmarker, when
supporting four users with the aid of two receive antennas or
five users employing three receive antenna elements.
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