
Systems & Control Letters 45 (2002) 321–329
www.elsevier.com/locate/sysconle

Two approaches based on pole sensitivity and stability radius
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Abstract

This paper compares the two approaches based on pole sensitivity and the complex stability radius measures, respectively,
for optimizing the closed-loop stability robustness of digital controllers with respect to &nite word length (FWL) errors
in &xed-point implementation. Design details and related optimization procedures are derived for the two methods. The
two measures, although derived from di4erent motivations, can both be regarded as lower-bound measures of a true but
computationally intractable FWL stability measure in some senses. An example is used to verify the theoretical analysis and
to illustrate the two designs for determining optimal FWL controller realizations. c© 2001 Elsevier Science B.V. All rights
reserved.
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1. Introduction

The current controller design methodology often
assumes that the controller is implemented exactly,
even though in reality a control law can only be real-
ized in &nite precision. It is now well-known that a de-
signed stable control system may achieve a lower than
predicted performance or even become unstable when
the control law is implemented with a &nite-precision
device. The &nite word length (FWL) e4ect on
the closed-loop stability depends on the controller
realization structure, and this property can be utilized
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jwu@iipc.zju.edu.cn (J. Wu), egli@ntu.edu.sg (G. Li).

to select controller realization in order to improve the
FWL stability robustness. Currently, two approaches
exist for determining the optimal controller realiza-
tions in &xed-point implementation, under the criteria
of the pole-sensitivity measure [3–6,11,12,16] and the
complex stability radius measure [7,8], respectively.
In the &rst approach, a suitable pole sensitivity mea-

sure is used to quantify the FWL e4ect, leading to
a non-linear optimization problem to &nd an optimal
FWL controller realization. EFcient global optimiza-
tion techniques to solve for this optimization prob-
lem are readily available [2–6,15,16]. In the second
approach [8], the complex stability radius measure is
employed to formulate an optimal FWL controller re-
alization problem that can be represented as a special
H∞ norm minimization problem and solved for with
the method of linear matrix inequality (LMI) [1,14].
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Fig. 1. Discrete-time closed-loop system with a generic
output-feedback controller.

This paper provides a comparative study on these two
alternative approaches for determining optimal FWL
controller realizations.
Detailed design procedures for the two approaches

are derived and compared. 1 It can be seen that the pole
sensitivity and complex stability radius measures are
motivated from di4erent considerations and, in par-
ticular, the optimal controller realizations obtained by
optimizing the two measures are generally di4erent.
However, the both measures involve some approxi-
mations in estimating a true stability measure and can
therefore be regarded as two “lower-bound” FWL sta-
bility measures. Our study shows that the two corre-
sponding optimal controller realizations tend to have
similar good FWL characteristics in &xed-point im-
plementation. Advantages and disadvantages of these
two alternative methods are discussed and an exam-
ple is used to illustrate the two design procedures for
obtaining optimal FWL controller realizations.

2. Problem formulation

Consider the discrete-time closed-loop control sys-
tem shown in Fig. 1, where the linear time-invariant
plant P̂ is described by{
x(k + 1) = Ax(k) + Be(k);

y(k) = Cx(k);
(1)

1 Fialho and Georgiou’s ACC99 paper [8] only contained the
two-page summary. The material for the complex stability radius
approach presented at this paper are our interpretation.

which is completely controllable with A∈Rn×n,
B∈Rn×p andC∈Rq×n; and the digital output-feedback
controller Ĉ is described by{
v(k + 1) = Fv(k) +Gy(k);

u(k) = Jv(k) +My(k)
(2)

with F∈Rm×m, G∈Rm×q, J∈Rp×m andM∈Rp×q.
Assume that a realization (F0;G0; J0;M0) of Ĉ has
been designed. It is well-known that the realizations
of Ĉ are not unique. All the realizations of Ĉ form the
set

S= {(F;G; J;M): F= T−1F0T;G = T−1G0;

J = J0T;M =M0}; (3)

where T∈Rm×m is any real-valued non-singular ma-
trix. Let wF = Vec(F), with Vec(·) de&ning the col-
umn stacking operator. Denote

w=



w1

...

wN


,



wF
wG
wJ
wM


 ; w0 ,



wF0
wG0

wJ0
wM0


 ; (4)

where N = (m + p)(m + q). We also refer to w as
a realization of Ĉ. The stability of the closed-loop
system in Fig. 1 depends on the poles of the matrix

PA(w) =

[
A + BMC BJ

GC F

]

=

[
I 0

0 T−1

]
PA(w0)

[
I 0

0 T

]
: (5)

All the di4erent realizations w inS achieve exactly the
same set of closed-loop poles if they are implemented
with in&nite precision. Since the closed-loop system
will have been designed to be stable, the eigenvalues

|
i(PA(w))|= |
i(PA(w0))|¡ 1 ∀i∈{1; : : : ; m+ n}:
(6)

When a w is implemented with a &xed-point pro-
cessor, it is perturbed into w + Qw due to the FWL
e4ect. Each element of Qw is bounded by ±�=2,
‖Qw‖∞ , max

i∈{1;:::;N}
|Qwi|6 �=2: (7)

For a &xed point processor of Bs bits, let Bs=Bi+Bf,
where 2Bi is a “normalization” factor to make the
absolute value of each element of 2−Biw no larger
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than 1. Thus, Bi are bits required for the integer part
of a number and Bf are bits used to implement the
fractional part of a number. It can easily be seen
that

�= 2−Bf : (8)

With the perturbation Qw, 
i(PA(w)) is moved to

i(PA(w + Qw)). If an eigenvalue of PA(w + Qw) is
outside the open unit disk, the closed-loop system,
designed to be stable, becomes unstable with Bs-bit
implemented w. It is therefore critical to know when
the FWL error will cause closed-loop instability. This
ultimately means that we would like to know the
largest open “sphere” in the controller perturbation
space, within which closed-loop remains stable. The
size or radius of this “sphere” is de&ned by

�0(w), inf{‖Qw‖∞: PA(w+Qw) is unstable}: (9)
The larger �0(w) is, the larger FWL error the

closed-loop stability can tolerate. Let Bmin
s be the

smallest word length, when used to implement w, can
guarantee the closed-loop stability. An estimate of
Bmin
s can be obtained as

B̂
min
s;0 = Bi + Int[− log2(�0(w))]− 1; (10)

where the integer Int[x]¿ x. It can easily be seen that
the closed-loop system remains stable if w is imple-

mented with a &xed-point processor of at least B̂
min
s;0 .

Moreover, �0(w) is a function of the controller real-
ization w, we could search for an optimal realization
that maximizes �0(w). However, it is not known how
to compute the value of �0(w) given a realization w. A
practical solution is to consider a lower bound of the
stability measure �0(w) in some sense, which is com-
putationally tractable. This in e4ect de&nes a smaller
but known stable “sphere” or region in the Qw space.
Obviously, the closer such a lower bound is to �0(w),
the better. The pole sensitivity and the complex sta-
bility radius measures can both be regarded as such
lower bounds.

3. Pole sensitivity approach

Roughly speaking, how easily the FWL error Qw
can cause a stable control system to become unstable
is determined by how close |
i(PA(w))| are to 1 and

how sensitive they are to the controller parameter per-
turbations. This leads to the following FWL stability
measure [6]:

�p(w), min
i∈{1;:::;m+n}

1− |
i(PA(w))|
�i(w)

(11)

with

�i(w),
∑

X=F;G;J;M

∥∥∥∥@|
i(PA(w))|@wX

∥∥∥∥
1
; (12)

where, for a vector x∈Cs, the 1-norm ‖x‖1 is de&ned
as

‖x‖1 ,
s∑

i=1

|xi|: (13)

The pole sensitivity measure (11) is an improved ver-
sion of the measure given in [11], that is, it is less
conservative in estimating �0(w).
De&ne a perturbation subset to the controller real-

ization w

P(w), {Qw: |
i( PA(w+Qw))|
−|
i( PA(w))|6 ‖Qw‖∞ · �i(w) ∀i}: (14)

It is straightforward to prove the following proposition.

Proposition 1. PA(w+Qw) is stable ifQw∈P(w) and
‖Qw‖∞¡�p(w).

The requirement for Qw∈P(w) is not too restricted
andP(w) exists, see the discussions in [5,16]. De&ning

�(P(w)), inf
Qw �∈P(w)

‖Qw‖∞; (15)

we have the following corollary, the proof of which
is straightforward.

Corollary 1. �p(w)6 �0(w) if �(P(w))¿�0(w).

It can be seen that �p(w) is a lower bound of �0(w),
provided that �0(w) is small enough. The assumption
of small �0(w) is generally valid, especially for control
systems with fast sampling.
The stability measure �p(w) is computationally

tractable, as it can readily be shown that [5]:

@|
i(PA(w))|
@F

= [ 0 I ]Li(w)

[
0

I

]
; (16)
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@|
i(PA(w))|
@G

= [ 0 I ]Li(w)

[
CT

0

]
; (17)

@|
i(PA(w))|
@J

= [BT 0T ]Li(w)

[
0

I

]
; (18)

@|
i(PA(w))|
@M

= [BT 0T ]Li(w)

[
CT

0

]
(19)

with

Li(w) =
Re[
∗i (PA(w))y

∗
i (PA(w))x

T
i (PA(w))]

|
i(PA(w))|
; (20)

where xi(PA(w)) and yi(PA(w)) are the right and recip-
rocal left eigenvectors related to the 
i(PA(w)), respec-
tively, ∗ denotes the conjugate operation, T the trans-
pose operator, and Re[ · ] the real part. Similar to (10),
an estimate of Bmin

s can be provided with �p(w) by

B̂
min
s;p = Bi + Int[− log2(�p(w))]− 1: (21)

Given an initial design w0, the optimal FWL con-
troller realization that maximizes the stability measure
(11) is de&ned as

wopt;p = argmax
w∈S

�p(w) (22)

and the optimization procedure to &nd a wopt;p can
readily be derived. ∀i∈{1; : : : ; m+ n}, partition

xi(PA(w0)) =

[
xi;1(PA(w0))

xi;2(PA(w0))

]
;

yi(PA(w0)) =

[
yi;1(PA(w0))

yi;2(PA(w0))

]
; (23)

where xi;1(PA(w0)); yi;1(PA(w0))∈Cn, xi;2(PA(w0)),
yi;2(PA(w0))∈Cm. It is easily seen from (5) that

xi(PA(w)) =

[
xi;1(PA(w0))

T−1xi;2(PA(w0))

]
;

yi(PA(w)) =

[
yi;1(PA(w0))

TTyi;2(PA(w0))

]
: (24)

From (16)–(19), we have

@|
i(PA(w))|
@F

= TTLi;2;2(w0)T−T; (25)

@|
i(PA(w))|
@G

= TTLi;2;1(w0)CT; (26)

@|
i(PA(w))|
@J

= BTLi;1;2(w0)TT; (27)

@|
i(PA(w))|
@M

= BTLi;1;1(w0)CT; (28)

where

Li; j; l(w0) =
Re[
∗i (PA(w0))y∗i; j(PA(w0))xTi; l(PA(w0))]

|
i(PA(w0))|
;

j; l= 1; 2: (29)

De&ne the following cost function:

f(T), min
i∈{1;:::;m+n}

1− |
i(PA(w0))|
�i(w)

= �p(w): (30)

The optimal realization problem (22) can then be
posed as the following optimization problem:

Topt;p = arg max
T∈Rm×m

det(T)�=0

f(T): (31)

Although f(T) is non-smooth and non-convex, eF-
cient global optimization methods exist for solving for
this kind of optimization problem [5,2]. With Topt;p,
the optimal realizationwopt;p can readily be calculated.

4. Complex stability radius approach

Let @E denote the unit circle in the complex
plane, and P (U) the maximal singular value of
the complex-valued matrix U. For a stable ma-
trix Ã∈C(n+m)×(n+m), i.e. |
i(Ã)|¡ 1 for i =
1; : : : ; n + m, the complex stability radius of a ma-
trix triple (Ã; B̃; C̃)∈C(n+m)×(n+m) ×C(n+m)×(p+m) ×
C(q+m)×(n+m) is de&ned as

rC(Ã; B̃; C̃) = inf{ P ((): (∈C(p+m)×(q+m);

Ã + B̃(C̃ is unstable}: (32)
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From [13,9], we have

rC(Ã; B̃; C̃) =
1

supz∈@E P (C̃(zI − Ã)−1B̃)
: (33)

De&ne the transfer function matrix Ĝ=C̃(zI−Ã)−1B̃
and the H∞-norm of Ĝ [14] as

‖Ĝ‖∞ = sup
z∈@E

P (C̃(zI − Ã)−1B̃): (34)

Then,

rC(Ã; B̃; C̃) =
1

‖Ĝ‖∞
(35)

and we have the following lemma [14; p. 158].

Lemma 1. Let #¿ 0 be a given scalar. The lin-
ear time-invariant discrete-time closed-loop transfer
function Ĝ satis�es ‖Ĝ‖∞¡# if and only if there
exists a matrix X¿ 0 such that[
X 0

0 #2I

]
¿

[
Ã B̃

C̃ 0

][
X 0

0 I

][
Ã B̃

C̃ 0

]T

: (36)

Let PA0 be the closed-loop system matrix for an ini-
tial controller realization (F0;G0; J0;M0). For (F =
T−1F0T;G=T−1G0; J=J0T;M=M0), consider the
perturbed controller[
M J

G F

]
+ (; (37)

where the perturbation matrix ( is complex-valued.
With (37), the closed-loop system matrix (5) becomes

PA=

[
In 0

0 T−1

]
PA0

[
In 0

0 T

]

+

[
B 0

0 Im

]
(

[
C 0

0 Im

]
; (38)

where Is denotes the s× s identity matrix. Denote

Ã(T) =

[
In 0

0 T−1

]
PA0

[
In 0

0 T

]
∈R(n+m)×(n+m);

(39)

B̃=

[
B 0

0 Im

]
∈R(n+m)×(p+m); (40)

C̃=

[
C 0

0 Im

]
∈R(q+m)×(n+m); (41)

Ĝ(T) = C̃(zI − Ã(T))−1B̃: (42)

Then an alternative optimal FWL realization problem
is de&ned as

max
T

rC(Ã(T); B̃; C̃) =
1

minT ‖Ĝ(T)‖∞
=

1
�
: (43)

Consider how to solve for the optimal realization
problem (43). From Lemma 1, it can be shown that
‖Ĝ(T)‖∞¡# if and only if there exists a positive
de&nite matrix X∈R(n+m)×(n+m) such that

P1

Iq
P2


¿M#



P1

Ip
P2


MT

# (44)

subject to

P1 =

[
In 0

0 T

]
X

[
In 0

0 TT

]
¿ 0 (45)

and

P2 = TTT¿ 0; (46)

where

M# =

[
PA0 B̃

1=#C̃ 0

]
: (47)

The inequality (44) with the constraints P1¿ 0 and
P2¿ 0 is an LMI problem [1,14], and numerical algo-
rithms for solving for this kind of problems are readily
available, for example, in MATLAB toolbox. There-
fore, the optimal value of � can be obtained together
with the corresponding P1 opt and P2 opt using a bisec-
tion search method. This leads to

Topt; r = P1=2
2 opt (48)

and

Xopt =

[
In

T−1
opt; r

]
P1 opt

[
In

T−T
opt; r

]
: (49)

With Topt; r , the corresponding optimal controller re-
alization wopt; r can be obtained.
Unlike the pole-sensitivity measure (11), the com-

plex stability radius measure does not have a direct re-
lationship with the word length, and a statistical word
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length was adopted to circumvent this diFculty [7]. It
follows from

P (()6 ‖(‖F ; (50)

that the closed-loop system is stable if

‖(‖F ¡ rC; (51)

where ‖ · ‖F denotes Frobnius-norm. Assume that the
elements of ( are independently and uniformly dis-
tributed in [ − �=2; �=2]. From the central limit theo-
rem, ‖(‖2F is approximately normally distributed with
mean E%=N�2=12 and variance D2

%=N�4=180, where
N is the number of nonzero random elements in (.
Thus

Pr(‖(‖F6Q(�)) = 0:9777; (52)

where

Q(�) =
√
E% + 2D% = �

√
N
12

+

√
N
45

: (53)

The above discussions result in the following
proposition:

Proposition 2. The closed-loop system is stable with
probability no less than 0:9777; provided that the el-
ements of ( are bounded absolutely by

�r(w) =
rC√

N=3 + 4
√
N=45

: (54)

Thus, the statistical word length formula using the
stability measure (54) leads to the following minimum
bit length estimate:

B̂
min
s; r = Bi + Int[− log2(�r(w))]− 1: (55)

5. Comparisons

Both the pole sensitivity and complex stability ra-
dius approaches involve some approximations in es-
timating the true stability measure �0(w). Therefore,
�p(w) and �r(w) are conservative measures. As con-
ditions are di4erent for them to be lower bounds of
�0(w), it is diFcult to say which measure is less con-
servative in estimating the true minimum bit length. It
will generally be case dependent. In particular, the cor-
responding optimal controller realizations wopt;p and
wopt; r will generally be di4erent. For the pole sensitiv-
ity method, the source of approximation is apparent in

the Proof of Corollary 1 (see [5,16]). For the complex
stability radius measure, the lower-bound nature of
�r(w) is less obvious. In practice, the FWL perturba-
tions are real-valued. Taking ( to be complex-valued
will introduce some inaccuracy in estimating the true
closed-loop stability robustness of a controller realiza-
tion.
An important advantage of the complex stability

radius measure is that the corresponding optimiza-
tion problem can be posed as the LMI problem (44),
and this LMI problem is easier to solve for than the
non-linear optimization problem (31). The latter can
have many solutions. The pole sensitivity approach
however is applicable to the general controller struc-
ture that includes output-feedback and observer-based
controllers and that is parameterized either by shift or
delta operators [5,3,16,6]. The approach based on the
complex stability radius measure at its present form
can only be applied to output-feedback controllers, and
it is not apparent how to generalize to observer-based
controllers or controllers in the delta operator domain.
For the controller structure given in Fig. 1, experience
shows that the two approaches are often compatible in
that the two optimal controller realizations wopt;p and
wopt; r usually have similarly good FWL characteristics
in &xed-point implementation.

6. A numerical example

A numerical example was used to compare the two
FWL optimal design approaches. The example was a
torsional vibration control system given in [10]. Dis-
cretizing the continuous-time plant with the sampling
period 0:001 yielded the discrete-time plant model:

A =



0:0 0:0 1:0

1:0 0:0 −2:97686

0:0 1:0 2:97686


 ; B=



1:0

0:0

0:0


 ;

C= [ 0:24863 0:24621 0:24143 ]

and the initially designed controller was given by

F0 =

[
0:0 −0:33333

1:0 1:33333

]
; G0 =

[
1:0

0:0

]
;

J0 = [−1:20982 −0:41278 ]; M0 = [1:35120]:
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Table 1
Comparison of the two stability measures, corresponding estimated minimum bit lengths and true minimum bit lengths for the initial and
three optimal controller realizations

Realization �p B̂
min
s;p rC �r B̂

min
s; r Bmin

s

w0 9.8513e-4 10 5.3470e-3 2.4434e-3 9 7
wopt;p1 8.9321e-3 8 2.0181e-2 9.2219e-3 8 6
wopt;p2 8.9317e-3 7 2.2827e-2 1.0431e-2 7 4
wopt; r 5.0274e-3 9 2.6305e-2 1.2021e-2 8 6

With this initial controller realization w0 together with
the given plant model, the two optimization problems
(31) and (44) were formed and solved for. For the
pole-sensitivity approach, we give the two typical so-
lutions obtained

Topt;p1 =

[
4:04705e + 0 −4:57362e + 0

−1:03464e + 1 1:92511e + 1

]

and

Topt;p2 =

[−8:18364e− 1 −3:99776e + 0

3:44463e + 0 1:02204e + 1

]
:

The complex stability radius approach produced the
following solution:

Topt; r =

[
4:00108e + 0 −1:90171e + 0

−1:47342e + 1 −5:16409e− 1

]
:

The corresponding controller realizations wopt;p1,
wopt;p2 and wopt; r are, respectively:

Fopt;p1 =

[
0:71295 −0:88451

−0:12320 0:62038

]
;

Gopt;p1 =

[
0:62934

0:33823

]
;

Jopt;p1 = [−0:62540 −2:41321 ];

Mopt;p1 = [1:35120];

Fopt;p2 =

[
0:62038 0:68013

0:16022 0:71295

]
;

Gopt;p2 =

[
1:89030

−0:63710

]
;

Jopt;p2 = [−0:43180 0:61778 ];

Mopt;p2 = [1:35120];

Fopt; r =

[
1:07316 0:16668

−0:32475 0:26017

]
;

Gopt; r =

[
0:01716

−0:48973

]
;

Jopt; r = [ 1:24139 2:51388 ];

Mopt; r = [1:35120]:

As expected, the two approaches produced di4erent
optimal controller realizations. For the initial and three
optimal controller realizations, the true minimal bit
lengths Bmin

s that can guarantee the closed-loop stabil-
ity were also determined using a computer simulation
method. Table 1 compares the values of the two sta-
bility measures �p and �r , corresponding estimated
minimum bit lengths and true minimum bit lengths for
the initial and three optimal controller realizations. It
can be seen that wopt;p1 or wopt;p2 is not the optimal
solution for the optimization problem based on the
complex stability radius measure and, similarly, wopt; r

is not the optimal solution for the optimization prob-
lem based on the pole sensitivity measure. The results
also show that the two optimization procedures are ef-
fective, as wopt;p1, wopt;p2 or wopt; r have much larger
FWL stability margins than the initial design w0.

We also computed the unit impulse response of
the closed-loop control system when the controllers
were the in&nite-precision implemented w0 and vari-
ous FWL implemented realizations. Notice that any re-
alization w∈S, implemented in in&nite precision, will
achieve the exact performance of the in&nite-precision
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Fig. 2. Comparison of unit impulse response for the
in&nite-precision controller implementation wideal with those for
the 6-bit implemented controller realizations wopt;p1 and wopt; r .

Fig. 3. Comparison of unit impulse response for the
in&nite-precision controller implementation wideal with those for
the 6-bit implemented controller realizations wopt;p2 and wopt; r .

implemented w0, which is the designed controller per-
formance. For this reason, the in&nite-precision imple-
mented w0 is referred to as the ideal controller realiza-
tion wideal. Fig. 2 compares the unit impulse response
of the plant output for the ideal controller wideal with
those for the 6-bit implemented wopt;p1 and wopt; r . The
same comparison for wideal, wopt;p2 and wopt; r is given
in Fig. 3. Although wopt;p1 and wopt; r are very di4erent,
they both perform similarly well in FWL implementa-
tion. It should be emphasized that, although the values
of �r for various realizations are consistently larger
than those of �p, this does not imply that the complex
stability radius approach is superior than the pole sen-

sitivity approach. As clearly shown in Fig. 3, wopt;p2

performs better than wopt; r in a 6-bit implementation.

7. Conclusions

In this paper, we have compared the two approaches
for obtaining optimal FWL controller realizations
based on the pole sensitivity and complex stability
radius measures, respectively. Design procedures for
the both methods are provided. Although the moti-
vations for these two approaches are di4erent, they
can be regarded as two methods of approximating a
true FWL closed-loop stability measure. An example
is used to compare the two design procedures, and
the results show that for the example tested the two
approaches produce di4erent optimal controller real-
izations which have similar good FWL characteristics
in &xed-point implementation.
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