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Abstract—In order to effectively identify industrial process
faults, an improved Fisher discriminant analysis (FDA) method,
referred to as the statistics local Fisher discriminant analysis
(SLFDA), is proposed for fault classification. For mining statistics
information hidden in process data, statistics pattern analysis
is firstly applied to transform the original measured variables
into the corresponding statistics, including second-order and
higher-order ones. Furthermore, considering the local structure
characteristics of fault data, local FDA (LFDA) is performed
which computes the discriminant vectors by modifying the
optimization objective with local weighting factor. Simulation
results on the benchmark Tennessee Eastman process show that
the proposed SLFDA has a better fault classification performance
than the FDA and LFDA methods.

I. INTRODUCTION

Industrial process fault diagnosis technology plays a key
role in ensuring process safety and enhancing product quality.
In the past two decades, data-based fault diagnosis approach
becomes ever increasingly popular because huge amounts of
process data are collected and stored by computer control
systems [1]–[3]. In order to deal with complicated process
characteristics, many data-based fault diagnosis methods have
been developed, which includes principal component analy-
sis (PCA), independent component analysis (ICA), canonical
variate analysis (CVA), Fisher Discriminant analysis (FDA), et
al. [4]–[8]. In process monitoring application, these methods
utilize historical data to build statistical models for fault
detection and fault classification.

Among the existing statistical analysis methods, FDA is a
well-known pattern classification technique [9]. Because of
its simplicity and effectiveness, FDA has been widely used to
construct different fault classification algorithms. Chiang et al.
developed an FDA based industrial process fault classification
method [10] and then proposed a dynamic FDA method by
augmenting the observed vectors [11]. To deal with the serial
correlation property of process data, Jiang et al. [12] developed
a CVA-FDA method which uses CVA to extract dynamic
features for helping fault discrimination. For utilizing both
labeled and unlabeled samples, Zhong et al. [13] presented a
semi-supervised FDA model which combines the objectives
of PCA and FDA. Considering process nonlinearity, Zhu

and Song [14] studied kernel FDA method by using kernel,
while Li and Cui [15] proposed an improved kernel FDA
which applies feature vector selection to reduce computational
complexity. To improve the discriminant power of FDA, a
nested loop FDA algorithm was built by Zhao and Gao [16]
with inner-loop and outer-loop iterative calculations.

All the aforementioned methods are based on global data
structure analysis and do not take into account data local
structure characteristics, such as multi-modality. To overcome
this disadvantage, Sugiyama [17] developed a local FDA
(LFDA) method by combining the idea of local structure
preserving. Yu [18] studied a locallized FDA based process
monitoring method and proved its superiority over the FDA
approach. Ren et al. [19] proposed to monitor multimode
processes by integrating the discriminant local consistency
Gaussian mixture model (DLCGMM) with the LFDA. For
nonlinear system monitoring, Van and Kang [20] developed a
wavelet kernel LFDA method whose parameters are optimized
by a particle swarm optimization algorithm. To ensure the
orthogonality of discriminant vectors, Li et al. [21] presented
a supervised orthogonal local Fisher discriminant analysis
method and tested its performance on a rotating machinery
system.

Although FDA and LFDA have achieved great success in
the fault diagnosis field, there are some issues worthy of
further studies. Both the FDA and LFDA methods are based on
second-order statistics analysis which only involve the mean
and variance-covariance structure analysis of the original mea-
sured variables. In other words, FDA and LFDA ignore higher-
order statistics information. Higher-order statistics of process
variables often have close relationship with process operation
states and can be very useful for fault classification. Therefore,
mining process higher-order statistics information is extremely
valuable to assist the FDA based methods. Recently, statistics
pattern analysis (SPA) was proposed by Wang and He [22], and
the results of [22] confirm that including both second-order
and higher-one statistics of process variables can significantly
enhance fault detection performance. Therefore, combining
SPA with FDA related methods will provide a practical and
powerful means to improve fault classification performance,



which motivates our current study. To our best knowledge, no
work to date applies SPA to FDA-based fault classification.

In this paper, by utilizing both SPA for statistical informa-
tion extraction and local structure analysis, we develop a new
enhanced FDA method, which is referred to as the statistics
LFDA (SLFDA). Specifically, in the proposed method, SPA is
applied to extract different orders of statistics and then LFDA
is used to build discriminant model with local structure anal-
ysis. Fault discriminant function is constructed to determine
the class of fault samples. The rest of this paper is organized
as follows. In Sections II and III, the principles of FDA and
LFDA are briefly introduced, respectively. Section IV details
our proposed SLFDA. Simulation results obtained using the
Tennessee Eastman process are presented in Section V, and
our conclusions are drawn in Section VI.

II. FISHER DISCRIMINANT ANALYSIS

FDA is a supervised learning technique widely used for
pattern classification [9]–[11]. The training feature data set
X =

[
x1 x2 · · ·xN

]T ∈ RN×M , including N samples of
the measured vector x ∈ RM , consists of K classes of fault
patterns {Ck, 1 ≤ k ≤ K} with Nk samples for fault class Ck.
The objective of FDA is to seek a set of projection vectors so
that the between-class scatter is maximized and the within-
class scatter is minimized simultaneously.

The within-class scatter matrix is defined as

Sw =
K∑

k=1

Sw,k =
K∑

k=1

∑
xi∈Ck

(
xi − µk

)(
xi − µk

)T
(1)

where Sw,k is the scatter matrix for the k-th class, and µk =
1

Nk

∑
xi∈Ck

xi represents the mean vector of the k-th class.
The between-class scatter matrix is given as

Sb =
K∑

k=1

Nk

(
µk − µ

)(
µk − µ

)T (2)

where µ = 1
N

∑N
i=1 xi is the mean vector of all fault samples.

FDA finds the discriminant vector pj to maximize the
between-class scatter as well as to minimize the within-class
scatter, which is defined by the following optimization problem

max
pj

pT
j Sbpj

pT
j Swpj

(3)

This optimization problem can be solved by the generalized
eigenvalue decomposition according to

Sbpj = λjSwpj (4)

where λj is the generalized eigenvalue corresponding to the
vector pj . Here the value of j ranges from 1 to K − 1,
because the rank of Sb is less than K. For fault discrimi-
nation, we retain the eigenvectors corresponding to the first A
(A ≤ K−1) largest eigenvalues, which form the discriminant
matrix PA =

[
p1 p2 · · ·pA

]
∈ RM×A.

For a testing vector x, its projection onto the discrimination
vector pj is called the j-th discriminant component, which is
computed as

yj = xTpj (5)

By defining Γ = 1
Nk−1PA

TSw,kPA, the FDA discriminant
function is constructed as [11], [12]

fk(x) = −1
2
(x − µk)TPAΓ−1PA

T(x − µk) − 1
2

ln(det(Γ))
(6)

Based on the discriminant functions fk(x), 1 ≤ k ≤ K, the
class index IC(x) of the testing vector x is determined by

IC(x) = arg max
1≤k≤K

{fk(x)} (7)

III. LOCAL FISHER DISCRIMINANT ANALYSIS

The optimization of FDA is based on the global structure
analysis, which is effective for classifying the data with
multivariate Gaussian distribution. However, fault data often
show non-Gaussian characteristics, where local data structure
becomes important for data discrimination. To overcome the
shortcoming of FDA, LFDA has been proposed by integrating
local structure preserving technique with FDA [17].

Note that for FDA, the within-class scatter matrix (1) can
be rewritten as [17], [18]

Sw =
1
2

N∑
i=1

N∑
j=1

w
(w)
i,j

(
xi − xj

)(
xi − xj

)T (8)

with the within-class weighting coefficient w
(w)
i,j defined by

w
(w)
i,j =

{
1

Nk
, if xi,xj ∈ Ck

0, otherwise
(9)

while the between-class scatter matrix (2) can be reformulated
as [17], [18]

Sb =
1
2

N∑
i=1

N∑
j=1

w
(b)
i,j

(
xi − xj

)(
xi − xj

)T
(10)

with the between-class weighting coefficient w
(b)
i,j given by

w
(b)
i,j =

{
1
N − 1

Nk
, if xi, xj ∈ Ck

1
N , otherwise

(11)

The formulations (8) and (10) indicate that the distances of
data pairs between the same classes have important influence
on within-class and between-class scatters. According to (9)
and (11), the weighting coefficients are the same for the data
points in the same class.

However, the distribution of fault data is complex because
of its dynamic and non-Gaussian properties. Even in the same
fault class, multimodality may be observed among data points.
For example, some data points may represent the starting stage
of a fault, while other data points may reflect the ending stage
of the fault. Therefore, to impose the same importance on all
data points as FDA does is unreasonable. LFDA introduces
local structure preserving to modify the weighting coefficients.



In the framework of LFDA, the weighting coefficients given
in (9) and (11) are modified respectively as

w
(w)
i,j =

{
ri,j

1
Nk

, if xi, xj ∈ Ck

0, otherwise
(12)

w
(b)
i,j =

{
ri,j

(
1
N − 1

Nk

)
, if xi, xj ∈ Ck

1
N , otherwise

(13)

where ri,j is a local weighting factor used to measure the
closeness degree between the data pair xi and xj . If the
two data points are close, the factor should be large to
emphasize the local structure preserving. Otherwise, for the
two points that are far apart, the factors should be small to
avoid destroying the data structure. According to [17], [18],
the local weighting factor ri,j can be computed as

ri,j = exp
(
− ∥xi − xj∥

σ

)
(14)

where σ is the local scaling parameter represented by the
distance between the sample and its nearest neighbors. By sub-
stituting (9) and (11) for (12) and (13), the FDA is transformed
into the LFDA, which is capable of extracting discriminant
features while imposing local structure preserving.

IV. STATISTICS LOCAL FISHER DISCRIMINANT ANALYSIS

The FDA and LFDA methods are directly based on the
original measured process variables. More specifically, they
extract the second-order statistics from the original measured
variables for fault classification, and they do not carry out
deep mining for higher-order statistical information. In fact,
different orders of the process variables’ statistics, including
second-order and higher-order statistics, are all closely related
to fault operation mode, which are very important for fault
classification. Using only the second-order statistics may be
unable to discover certain complicated faults. In the SPA
framework [22]–[24], the process behavior is described not
directly by the process variables but by their different statistics.

Our proposed SLFDA combines SPA with LFDA, whose
schematic is depicted in Fig. 1. Two steps are involved in
the SLFDA based fault classification. In the first step, SPA
is performed to acquire the statistics of all the measured
variables. Then in the second step, LFDA is applied to build
a discriminant model. We now detail our SLFDA modeling.

For the data matrix X =
[
x1 x2 · · ·xN

]T, a data window
with width L is captured at time instant t (L ≤ t ≤ N), which

Fig. 1: The Schematic of SLFDA modeling.

is denoted as Xt = [xt−L+1 xt−L+2 · · · xt]T ∈ RL×M . This
data window can be represented explicitly as

Xt =


xt−L+1(1) xt−L+1(2) · · · xt−L+1(M)
xt−L+2(1) xt−L+2(2) · · · xt−L+2(M)

...
...

. . .
...

xt(1) xt(2) · · · xt(M)

 (15)

where xi(j) denotes the i-th sample of the j-th variable.
Given the data window (15), three types of the process

variables’ statistics are constructed, which includes first-order,
second-order and higher-order statistics. The j-th process
variable’s first-order statistic or mean, µt(j), is defined as

µt(j) =
1
L

t∑
i=t−L+1

xi(j) (16)

The second order statistics of the j-th process variable are the
variance vt(j) and the one-lag autocorrelation ct(j), which are
given respectively by

vt(j) =
1

L − 1

t∑
i=t−L+1

(
xi(j) − µt(j)

)2
(17)

ct(j) =
1

L−1

t−1∑
i=t−L+1

(
xi(j)−µt(j)

)(
xi+1(j)−µt(j)

)
vt(j)

(18)

The higher-order statistics considered are skewness and kur-
tosis, which quantify the nonlinearity and non-Gaussianity
of process variables [22]. In particular, skewness measures
the asymmetry of the process variable distribution, while
the kurtosis measures the peakiness of the distribution. The
skewness of the j-th process variable is defined as

γt(j) =

1
L

t∑
i=t−L+1

(xi(j) − µt(j))3(
1
L

t∑
i=t−L+1

(xi(j) − µt(j))2
)3/2

(19)

while the kurtosis of the j-th process variable is given by

κt(j) =

1
L

t∑
i=t−L+1

(xi(j) − µt(j))4(
1
L

t∑
i=t−L+1

(xi(j) − µt(j))2
)2 − 3 (20)

By computing the various statistics, (16) to (20), for L ≤
t ≤ N , the original data matrix X is transformed into the new
statistics matrix XS given by

XS =


µL νL cL γL κL

...
...

...
...

...
µt νt ct γt κt

...
...

...
...

...
µN νN cN γN κN

 (21)

where µt = [µt(1) · · ·µt(M)], νt = [νt(1) · · · νt(M)],
ct = [ct(1) · · · ct(M)], γt = [γt(1) · · · γt(M)] and κt =



[κt(1) · · ·κt(M)]. As the statistics matrix XS has a higher
dimension than the original data matrix, PCA is executed
to reduce data dimension before discriminant analysis. PCA
is capable of producing the uncorrelated low-dimensional
principal component matrix TS and the decomposition is
expressed as

XS = TSQT + E (22)

where Q is the loading matrix and E is the residual matrix.
In the PCA decomposition procedure, the principal component
matrix TS is required to retain 99.9% information of the statis-
tics matrix XS . Further explanations for the PCA algorithm
can be found in the related references [2], [10], [11].

After the completion of the first step of SPA, we obtain
the statistic training matrix TS . In the second step of LFDA,
the LFDA is implemented on this statistic training matrix
and the constructed discriminant model is called the SLFDA
discriminant model.

We can now summarize our SLFDA based fault classifi-
cation, which involves two stages: offline training and online
testing. In the offline training, the SLFDA is performed on
the training fault datasets to build the discriminant function
for each class of fault. During the online testing, new fault
data is collected and projected onto the discriminant model.
The class of the new fault data is determined by comparing
the test discriminant functions of all the known fault classes.

V. A SIMULATION CASE STUDY

The proposed SLFDA based fault classification approach is
evaluated using the well-known benchmark Tennessee East-
man (TE) process. The TE process whose flowchart is depicted
in Fig. 2 simulates a real chemical process, which involves five
units: reactor, condenser, compressor, separator and stripper.
The TE process simulator was firstly built by Downs and
Vogel [25] and has been widely used for validating various
process monitoring and fault diagnosis techniques [4], [6],
[10], [12], [26]. With the TE simulator, operation datasets
for normal operation mode and 21 classes of fault modes
have been generated. The data of each mode contains 52
process variables, including 11 manipulated variables and 41
measurement variables. Details of this TE process, including
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Fig. 2: Flow chart of the Tennessee Eastman process.

the descriptions of process variables and faults, can be found
in [11], [25]. In this simulation study, we collect 480 samples
for each fault as training data and 400 different samples for
each fault as testing data. We compare the performance of the
proposed SLFDA with those of the FDA and LFDA.

First, the classification of faults 3, 4 and 11 is illustrated.
The training data includes 1440 samples with 480 data points
from each of the three faults, while the testing dataset contains
1200 samples with the first 400 testing samples coming from
fault 3, the second 400 testing samples from fault 4 and the
last 400 testing samples from fault 11. The FDA, LFDA and
SLFDA are applied to the training data to build their respective
discriminant models. For the SLFDA, the time window L for
calculating statistics is set to 30. The classification results
on the testing data obtained by the three methods are now
shown. For a clear visualization of the test results, the first
two discriminant components y1 and y2 obtained by each
method are plotted in Fig. 3, where each ellipse represents 99%
confidence region for the corresponding fault data. The results
of the FDA shown in Fig. 3 (a) exhibits serious overlaps among
the three faults. Thus, the FDA is unable to classify these three
faults. From the LFDA based results shown in Fig. 3 (b), it can
be seen that fault 3 and fault 4 are separated clearly but both
overlap with fault 11. Therefore, although some improvement
over the FDA is achieved, the LFDA is unable to classify all
these three faults satisfactory. By contrast, the results of the
proposed SLFDA depicted in Fig. 3 (c) indicate that all the
three faults are clearly separated, and the SLFDA provides
the best fault classification results.

The y1–y2 plots given in Fig. 3 only reflect the position
difference among different fault classes. However, the classifi-
cation accuracy is also influenced by the covariance structures
of fault data. Therefore, we further analyze the discriminant
function outputs of the three methods plotted in Fig. 4. As
three classes of faults 3, 4 and 11 are used to build discriminant
models, there are three discriminant functions for each test
sample, which are correspondingly denoted as f1(x), f2(x)
and f3(x). The maximum discriminant function output among
the three discriminant functions indicates the estimated fault
class of the test sample, which is illustrated in Fig. 5.

According to the FDA chart of Fig. 4 (a), the three discrim-
inant function curves are intertwined for the first 400 samples
and the last 400 samples, which leads to large numbers of
misclassified samples for faults 3 and 11, as can be clearly seen
from Fig. 5 (a). For the LFDA method shown in Fig. 4 (b), the
situation is better than the case of the FDA but the discriminant
function outputs for the last 400 samples are still seriously
intertwined, while for the first 400 samples, f1(x) and f3(x)
are intertwined. This results in many misclassified samples as
indicated in Fig. 5 (b). When the SLFDA is applied, it provides
excellent discrimination results as shown in Fig. 4 (c), which
can clearly and correctly identify the fault classes of testing
samples, as confirmed in Fig. 5 (c).

The fault misclassification rates obtained by the three meth-
ods for classifying faults 3, 4 and 11 are listed in Table I. For
the FDA method, fault 4 is recognized reasonably well with
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Fig. 5: Classification results of the testing data for fault 3, 4 and 11 obtained by (a) FDA, (b) LFDA, and (c) SLFDA

a misclassification rate of 7.25% but its fault misclassification
rates for faults 3 and 11 are very high, reaching 33.75% and
61.5%, respectively. For the LFDA method, most of the testing
samples from faults 3 and 4 are identified reasonably well
and its misclassification rates for faults 3 and 4 are 7% and
2.25%, respectively. But its misclassification rate for fault 11 is
very high, reaching 17.5%. By contrast, our SLFDA correctly
recognizes all the test samples of faults 4 and 11, while its

TABLE I: Fault misclassification rates (%) of testing samples
for faults 3, 4 and 11 obtained by the FDA, LFDA and SLFDA.

Method
Misclassification rate of testing samples

Samples No. Samples No. Samples No. All
1-400 401-800 801-1200 samples

FDA 33.75 7.25 61.50 34.17
LFDA 7.0 2.25 17.5 8.92

SLFDA 0.27 0 0 0.09

misclassification rate for fault 3 is only 0.27%. Clearly, the
proposed SLFDA offers the best fault discrimination capability
for classifying faults 3, 4 and 11.

Next, all the 21 faults are used to investigate the clas-
sification performance of the three methods. The average
misclassification rates of the FDA, LFDA and SLFDA over
the test data of all the 21 faults are plotted in Fig. 6 as the
functions of the number of discriminant components selected.
As expected, the LFDA has a lower fault misclassification
rate than the FDA, and the SLFDA achieves the lowest
misclassification rate among these three methods.

VI. CONCLUSIONS

This paper has developed a SLFDA method, which inte-
grates the SPA and the LFDA to provide better fault classi-
fication performance. In particular, the SPA has been applied
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to mine intrinsic statistical information from the process vari-
ables, including higher-order statistics, while the LFDA has
been utilized to handle local structure preserving for enhancing
classification. The testing results on the benchmark Tennessee
Eastman process have shown that the proposed SLFDA pro-
vides significantly better fault classification capability than the
FDA and LFDA methods. There are two key issues deserving
further research. One is how to choose statistics optimally
for fault discrimination, and the other is to investigate the
influence of statistic window width on classification results.
The study on these two problems can help realizing the full
potential of the SLFDA.
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