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Abstract—We present a novel topology of the radial basis function
(RBF) neural network, referred to as the boundary value constraints
(BVC)-RBF, which is able to automatically satisfy a set of BVC. Unlike
most existing neural networks whereby the model is identified via learning
from observational data only, the proposed BVC-RBF offers a generic
framework by taking into account both the deterministic prior knowledge
and the stochastic data in an intelligent manner. Like a conventional RBF,
the proposed BVC-RBF has a linear-in-the-parameter structure, such that
it is advantageous that many of the existing algorithms for linear-in-the-
parameters models are directly applicable. The BVC satisfaction proper-
ties of the proposed BVC-RBF are discussed. Finally, numerical examples
based on the combined D-optimality-based orthogonal least squares algo-
rithm are utilized to illustrate the performance of the proposed BVC-RBF
for completeness.

Index Terms—Boundary value constraints (BVC), D-optimality,
forward regression, radial basis function (RBF), system identification.

I. INTRODUCTION

The radial basis function (RBF) network has been widely studied
and applied in system dynamics modeling and prediction [1]–[4]. Most
RBF models are constructed to represent a systems’ input/output map-
ping, in which the system output observations are used as the direct
target of the model output of RBF networks in training. A fundamental
problem in RBF network modeling is to achieve a network with a
parsimonious model structure producing good generalization. For gen-
eral linear in the parameters systems, an orthogonal forward regression
(OFR) algorithm based on Gram–Schmidt orthogonal decomposition
has extensively been studied [5]–[7]. The OFR algorithm has been a
popular tool in associative neural networks such as fuzzy/neurofuzzy
systems [8], [9] and wavelets neural networks [10], [11]. The algorithm
has also been utilized in a wide range of engineering applications,
e.g., aircraft gas turbine modeling [12], fuzzy control of multiple-
input–multiple-output nonlinear systems [13], power system control
[14], and fault detection [15]. In optimum experimental design [16],
D-optimality criterion is regarded as most effective in optimizing the
parameter efficiency and model robustness via the maximization of the
determinant of the design matrix. In order to achieve a model structure
with improved model generalization, the D-optimality-based OFR
algorithm is introduced in which D-optimality-based cost function is
used in the model searching process [4], [17], [18].

Note that all the aforementioned RBF modeling algorithms are
conditioned on that the model is determined based on the observational
data only, so that these fit into the statistical learning framework. In
many modeling tasks, there are more or less some prior knowledge
available. Although any prior knowledge about the system should
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help to improve the model generalization, in general incorporating the
deterministic prior knowledge into a statistically learning paradigm
would make the development of modeling algorithms more difficult
if not impossible.

In this contribution, we aim to open up a new ground for the RBF
by enhancing its capability of automatic constraints satisfaction. We
consider a special type of prior knowledge given by a type of boundary
value constraints (BVC) and introduce the BVC-RBF as a new topol-
ogy of RBF neural network that has the capability of automatically
satisfying the BVC. The proposed BVC-RBF is constructed and
parameterized based on the given BVC. It is shown that the BVC-RBF
remains as a linear-in-the-parameter structure just as the conventional
RBF does. Therefore, many of the existing modeling algorithms for
a conventional RBF are almost directly applicable to the new BVC-
RBF without added algorithmic complexity nor computational cost.
Consequently, the proposed BVC-RBF effectively lends itself as a
single framework in which both the deterministic prior knowledge and
stochastic data are fused with ease. For completeness, the combined
D-optimality-based orthogonal least squares (OLS) algorithm [4]
is used to demonstrate the modeling performance of the proposed
BVC-RBF.

II. PROBLEM FORMULATION

We consider the identification of a semi-unknown system. Defining
the system input vector as x(t) = [x1(t), x2(t), . . . , xn(t)]T and the
system output as y(t), and given a training data set DN consisting
of N input/output data pairs {x(t), y(t)}N

t=1, the goal is to find the
underlying system dynamics

y(t) = f (x(t), θ) + e(t). (1)

The underlying function f : �n → � is unknown, and θ is the vec-
tor of associated parameters. e(t) is the noise, which is often assumed
to be independent identically distributed with constant variance σ2. In
addition, it is required that the model strictly satisfies a set of L BVC
given by

f(xj) = dj , j = 1, . . . , L (2)

where xj ∈ �n and dj ∈ � are known. Note that the information
from the given BVC is fundamentally different from that of the
observational data set DN and should differently be treated. The BVC
is a deterministic condition, but DN is subject to observation noise
and possesses stochastic characteristics. The BVC may represent the
fact that at some critical regions, there is a complete knowledge about
the system.

If the underlying function f(.) is represented by a conventional RBF
neural network formulated as

ŷ(t) =

M∑
k=1

pk (x(t)) θk (3)

where ŷ(t) is the output of the RBF model. pk(.) is a known RBF
function, given as

pk (x(t)) =Φ (vk(t), τ) (4)

vk(t) = ‖x(t) − ck‖ (5)

where ‖ • ‖ denotes the Euclidean norm and τ is a positive scalar
called width. ck ∈ �n, 1 ≤ k ≤ M are the RBF centers which should
appropriately be chosen and sample the input domain. Φ(‖ • ‖, τ) is
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a chosen RBF function from �n → �, e.g., the Gaussian. Typically,
for the identification of a priori unknown system using DN only, the
RBF network of (3) is determined using y(t) as the target of the RBF
model output ŷ(t), via some optimization criterion and often in an
unconstrained optimization manner. Note that resultant RBF network
cannot meet the BVC given by (2). Clearly, the prior knowledge about
the system from BVC helps to improve the model generalization, but
equally, this makes the modeling process more difficult, since with
constraints we are facing a constrained optimization problem. In this
contribution, we introduce a simple yet effective treatment to ease the
problem.

III. RBF NEURAL NETWORKS WITH BVC

Our design goal is to find a new topology of RBF such that the
BVC is automatically satisfied, and, as a consequence, the system
identification can be carried out without added algorithmic complexity
nor computational cost compared to any modeling algorithm for a
conventional RBF. The new topology of RBF, shown in Fig. 1, will be
parameterized and dependent upon the given BVC as described below.

Consider the following BVC-RBF model representation:

ŷ(t) =

M∑
k=1

pk (x(t)) θk + g (x(t)) (6)

where the proposed RBF is given by

pk (x(t)) = h (x(t)) exp

(
−‖x(t) − ck‖2

τ2
1

)
(7)

where h(x(t)) = L

√∏L

j=1
‖x(t) − xj‖ is the geometric mean of the

data sample x(t) to the set of boundary values xj , j = 1, . . . , L. τ1 is
a positive scalar

g (x(t)) =

L∑
j=1

αj exp

(
−‖x(t) − xj‖2

τ2
2

)
(8)

τ2 is also a positive scalar. αj is a set of parameters that is obtained by
solving a set of linear equations g(xj) = dj , j = 1, . . . , L. That is

α = G−1d (9)

where α = [α1, . . . , αL]T, d = [d1, . . . , dL]T, and G is given by

G =

⎛
⎜⎜⎜⎜⎜⎝

1 e
− ‖x1−x2‖2

τ2
2 . . . e

− ‖x1−xL‖2

τ2
2

e
− ‖x2−x1‖2

τ2
2 1 . . . e

− ‖x2−xL‖2

τ2
2

. . . . . . . . . . . .

e
− ‖xL−x1‖2

τ2
2 e

− ‖xL−x2‖2

τ2
2 . . . 1

⎞
⎟⎟⎟⎟⎟⎠

. (10)

In the case of the ill conditioning, the regularization technique is
applied to the above solution. It is easy to verify that with the proposed
topology of BVC-RBF neural networks, the BVC is automatically
satisfied. To elaborate, we use a simple 1-D function based on the
following parameter setting. τ1 = τ2 = 0.5, and five centers c1 = 0.2,
c2 = 0.4, c3 = 0.6, c4 = 0.8, and c5 = 1. A set of two BVC is given
by f(0.1) = −2, f(0.5) = 3. From (9), we obtain α1 = −4.9613 and
α2 = 5.6161. For illustration, we construct the five basis functions
pk(x) using (7) and g(x) using (8), as shown in Fig. 2.

From Fig. 2, we note the following basic features.

1) As shown in Fig. 2(a), we see that pk(x), k = 1, . . . , 5 have
the properties of zero forcing at the boundary points x1 = 0.1,
x2 = 0.5. Effectively, the zero forcing feature extends to the first
term in (6). This means that due to the special network topology,
the adjustable parameters θk have no effects on the first term in
(6) at any of the boundary points.

2) Fig. 2(b) shows that the summation term g(x) has the character-
istics of passing all the predetermined boundary values (the re-
quired offsets). Consequently, we have f(0.1) = g(0.1) = −2,
f(0.5) = g(0.5) = 3. We also note that g(x) is totally pa-
rameterized by the BVC, but does not contain any adjustable
parameters dependent on DN . Effectively, g(x) provides as an
offset function for any x.

3) Over the input range as distributed by the RBF centers, the set
of smooth functions pk(x) has diverse local responses and has
nonzero adjustable contribution toward f(x) via the adjustable
parameters θk.

4) We note that all the five basis functions pk(x) and g(x) are
bounded and approach to zero as x → ∞.

In general, pk(x(t)) and g(x(t)) act as building blocks of the BVC-
RBF networks in (6), with a novel feature compared to most of the
existent neural networks architecture. That is, by resorting to the given
boundary conditions, its topology is designed for the boundary con-
straints satisfaction, or more generally, for incorporating given prior
knowledge. Clearly, the boundary constraints satisfaction property is
achieved due to the fact of our choosing h(x(t)) as the geometric mean
of the data sample x(t) to the set of boundary values xj . However, note
that there is no reason to limit the geometric mean as the only choice of
h(x(t)) as long as the features above can be maintained. We point out
that the basic features listed above are not mathematically vigorous,
and how to describe the mathematical properties of a general form of
h(x(t)) poses as an open problem.

Note that the boundary condition satisfaction via the network
topology is an inherent, but often overlooked, feature for any model
representation. For example, the autoregressive with exogenous output
model automatically satisfies the boundary condition of f(0) = 0, and
for the conventional RBF given by (1) together with the Gaussian basis
functions, f(∞) = 0. The aim of this contribution is to introduce and
exploit the boundary condition satisfaction via the network topology
in a controlled manner, so that the modeling performance may be
enhanced by incorporating the a priori knowledge via boundary con-
ditions satisfaction.

IV. IDENTIFICATION ALGORITHM

Substituting (6) into (1) and defining an auxiliary output variable
z(t) = y(t) − g(x(t)), we have

z(t) =

M∑
k=1

pk (x(t)) θk + e(t). (11)

Based on the model representation of (6), as shown Fig. 1, we sug-
gest a very general two stage training procedure for the identification
of BVC-RBF.

1) Determine the offset function g(x(t)) using (9).
2) Apply an existent RBF network identification algorithm to the

input/output training data set {x(t), z(t)}.

The step 2) above is very general, and its up to the users to decide
which identification algorithm to use. Hence, in terms of the training
procedure, the difference between the BVC-RBF and RBF is just that
the additional step 1) above is required for BVC-RBF.
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Fig. 1. Graphical illustration of the proposed BVC-RBF neural network.

Fig. 2. Illustration of basis functions (a) zero forcing RBFs and (b) offset passing function g(x).
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Fig. 3. Example 1. (a) True function f(x1, x2). (b) Noisy data y(x1, x2). (c) Boundary points. (d) Prediction of the resultant BVC-RBF model.

A practical nonlinear modeling principle is to find the smallest
model that generalizes well. Sparse models are preferable in engi-
neering applications since a models’ computational complexity scales
with its model complexity. Moreover, a sparse model is easier to
interpret from the viewpoint of knowledge extraction. Starting with
a large candidate regressors set with M regressors, the forward OLS
is an efficient nonlinear system identification algorithm [2], [5] which
selects regressors in a forward manner by virtue of their contribution to
the maximization of the model error reduction ratio. Various forward
orthogonal selection algorithms [9], [17], [19]–[22] are directly ap-
plicable to the new RBF network with BVC satisfaction without extra
computational cost. Clearly, due to the special topology of the new
RBF, we note that the formation of data matrices is different from that
of the conventional RBF.

Equation (11) can be written in the matrix form as

z = Pθ + e (12)

where z = [z(1), . . . , z(N)]T is the auxiliary output variable vector,
θ = [θ1, . . . , θM ]T is the parameter vector, e = [e(1), . . . , e(N)]T is
the residual vector, and P is the regression matrix

P=

⎡
⎢⎣

p1 (x(1)) p2 (x(t)) · · · pM (x(1))
p1 (x(2)) p2 (x(t)) · · · pM (x(2))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . .
p1 (x(N)) p2 (x(t)) · · · pM (x(N))

⎤
⎥⎦ .

Note that the auxiliary output variable z(t) is used as the target of
the first term in (6) (the adjustable part of BVC-RBF). Aiming for
improved model robustness, the D-optimality in experimental design
[16] has been incorporated in the D-optimality-based model selective
criterion [4] to select a set of nθ � M regressors from M regressors,
i.e., to select nθ columns from P in a forward regression manner. For
completeness, the combined D-optimality-based OLS algorithm [4] is
used in the numerical examples.

V. NUMERICAL EXAMPLES

Example 1: Consider the partial differential equation given by[
∂2

∂x2
1

+
∂2

∂x2
2

]
f(x1, x2) = e−x1

(
x1 − 2 + x3

2 + 6x2

)
x1 ∈ [0, 1], x2 ∈ [0, 1] (13)

with the boundary conditions given by

f(0, x2) =x3
2 (14)

f(1, x2) =
(
1 + x3

2

)
/e (15)

f(x1, 0) =x1e
−x1 (16)

f(x1, 1) = e−x1(1 + x1). (17)

The analytic solution is f(x1, x2) = e−x1(x1 + x3
2), by which

a 11 × 11 meshed data set f(x1, x2) is generated, as shown
in Fig. 3(a). By using y(x1, x2) = f(x1, x2) + e(x1, x2), where
e(x1, x2) ∼ N(0, 0.12), the training data set DN consists of
(N = 121) samples of {x1, x2, y(x1, x2)}) and is as shown in
Fig. 3(b). By sampling data according to (14)–(17), 40 BVC points are
produced, and Fig. 3(c) plots the input part as cross points (L = 40).
The input part of all the training data set {x1, x2} is used as the
candidate center set (M = 121). τ1 = 0.6, τ2 = 0.6 are empirically
chosen and used in the candidate BVC-RBF basis functions. Note
that ultimate goal is to find a model that is closest to the unknown
function. It is difficult to define the analytic form of the ultimate goal
with respect to τ1 and τ2. However, the technique of cross validation
and the grid search may be used to choose τ1 and τ2. In conventional
RBF model, it is known the modeling performance is not sensitive
to τ in a range of suitable values. This means that a coarse search
will be sufficient. The combined D-optimality-based OLS algorithm
was applied [4] to identify a sparse BVC-RBF model, in which the
adjustable parameter in the D-optimality-based cost function (β in [4])
was set as 10−4. The model prediction of the resultant BVC-RBF
model is shown in Fig. 3(d). For comparison, a sparse conventional
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TABLE I
COMPARISON BETWEEN THE CONVENTIONAL RBF AND THE PROPOSED BVC-RBF MODEL FOR EXAMPLE 1

Fig. 4. Modeling error between the true function and the model prediction (ŷ(x1, x2) − f(x1, x2)) for Example 1. (a) BVC-RBF model. (b) RBF model.

Fig. 5. Example 2. (a) True function f(x1, x2). (b) Noisy data y(x1, x2). (c) Boundary points. (d) Prediction of the resultant BVC-RBF model.

RBF model was identified using the combined D-optimality-based
OLS algorithm [4]. The Gaussian basis function with an empirically
set τ = 0.6 was used. Candidate basis functions are generated using
the same training data set and the same candidate center set. The
adjustable parameter in the D-optimality-based cost function was also
set as 10−4. The comparative results are as shown in Table I and Fig. 4.
The BVC-RBF has much better performance in terms of the modeling
errors to the true function, as a result of making use of BVC. Note that
Fig. 4 has shown that the BVC cannot be satisfied by the conventional
RBF, but the proposed BVC-RBF model inherently satisfies the BVC
via the topology.

Example 2: The Matlab logo was generated by the first eigen-
function of the L-shaped membrane. A 31 × 31 meshed data set
f(x1, x2) is generated by using Matlab command membrane.m, which

is defined over a unit square input region x1 ∈ [0, 1] and x2 ∈ [0, 1].
The data set y(x1, x2) = f(x1, x2) + e(x1, x2) is then generated
by adding a noise term e(x1, x2) ∼ N(0, 0.012). The true function
f(x1, x2) is shown in Fig. 5(a), and the noisy data set y(x1, x2) is
shown in Fig. 5(b). In Fig. 5(c), the BVC is marked as cross point,
and there are L = 120 boundary points, given by the coordinates of
{x1, x2, f(x1, x2)}. We use all the data points within the boundary as
the training data set DN consisting of the set of {x1, x2, y(x1, x2)}
coordinates (N = 721). The input part of all the training data set
{x1, x2} is used as the candidate center set (M = 721). τ1 = 0.1,
τ2 = 0.2 were predetermined in order to generate the candidate
BVC-RBF basis functions. The combined D-optimality-based OLS
algorithm was applied [4] to identify a sparse model, in which the
D-optimality-based cost function’s adjustable parameter (denoted as
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Fig. 6. Modeling error between the true function and the model prediction (ŷ(x1, x2) − f(x1, x2)) for Example 2. (a) BVC-RBF model. (b) RBF model.

TABLE II
COMPARISON BETWEEN THE CONVENTIONAL RBF AND THE PROPOSED BVC-RBF MODEL FOR EXAMPLE 2

β in [4]) was set as 10−6. Fig. 5(d) shows the excellent performance
of the resultant BVC-RBF model. For comparison, the combined
D-optimality-based OLS algorithm was applied [4] to identify a sparse
conventional RBF model. The Gaussian basis function with a pre-
determined τ = 0.1 was used to generate candidate basis functions
from the same training data set and the same candidate center set.
The adjustable parameter in the D-optimality-based cost function was
also set as 10−6. The comparative results are shown in both Fig. 6
and Table II. It is shown that the BVC-RBF can achieve significant
improvement over the RBF in terms of the modeling performance to
the true function. In particular, we note that the BVC can be satisfied
with the proposed BVC-RBF model, but not by the conventional RBF,
as clearly shown in Fig. 6.

VI. CONCLUSION

A new topology of RBF neural network has been introduced for
a type of modeling problems in which a set of BVC is given in
addition to an observational data set. A significant advantage of the
proposed BVC-RBF is that the BVC satisfaction is taken into account
by the network architecture, rather than by the learning algorithm.
Consequently, the resultant model maintains a linear-in-the-parameter
structure such that many of the existing linear-in-the-parameters learn-
ing algorithms are readily applicable. Future work will investigate
other RBF topology for other types of BVC.
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