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Probability Density Estimation With Tunable Kernels
Using Orthogonal Forward Regression
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Abstract—A generalized or tunable-kernel model is proposed
for probability density function estimation based on an orthogonal
forward regression procedure. Each stage of the density estimation
process determines a tunable kernel, namely, its center vector and
diagonal covariance matrix, by minimizing a leave-one-out test cri-
terion. The kernel mixing weights of the constructed sparse density
estimate are finally updated using the multiplicative nonnegative
quadratic programming algorithm to ensure the nonnegative and
unity constraints, and this weight-updating process additionally
has the desired ability to further reduce the model size. The
proposed tunable-kernel model has advantages, in terms of model
generalization capability and model sparsity, over the standard
fixed-kernel model that restricts kernel centers to the training
data points and employs a single common kernel variance for
every kernel. On the other hand, it does not optimize all the
model parameters together and thus avoids the problems of high-
dimensional ill-conditioned nonlinear optimization associated
with the conventional finite mixture model. Several examples are
included to demonstrate the ability of the proposed novel tunable-
kernel model to effectively construct a very compact density esti-
mate accurately.

Index Terms—Leave-one-out (LOO) cross validation, multi-
plicative nonnegative quadratic programming (MNQP), orthog-
onal forward regression (OFR), Parzen window (PW) estimate,
probability density function (pdf), sparse kernel density (KD)
estimate, tunable kernels.

I. INTRODUCTION

E STIMATING the probability density function (pdf) based
on a realization sample drawn from the underlying density

distribution is an important and recurrent theme in machine
learning and all fields of engineering [1]–[5]. A powerful
approach for density estimation is the finite mixture model
(FMM) [6]. If there exists a priori information with regard to
the functional form of the pdf, namely, the number of mixture
components in the FMM is known, the problem becomes one of
determining the FMM’s functional parameters. The maximum-
likelihood (ML) estimates of the parameters can be obtained
using the expectation–maximization (EM) algorithm [7]. The
associated ML optimization, in general, is a highly nonlinear
optimization process requiring extensive computation, but for
the Gaussian mixture model (GMM), the EM algorithm can
be derived in an explicit and simple iterative form, e.g., [8].
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However, this ML estimation is well known to be ill posed,
and to tackle the associated numerical difficulties, it is often
required to apply resampling techniques [9]–[12]. In general,
the correct number of mixture components is unknown, and
simultaneously determining the required number of mixture
components and estimating the associated parameters of the
FMM is a challenging problem. Alternatively, nonparametric
techniques are routinely used for density estimation, which
do not assume a particular functional form for the pdf. The
classical Parzen window (PW) estimate [13] is a well-known
nonparametric density estimation technique, which is remark-
ably simple and accurate. As the PW estimate, which is also
known as the kernel density (KD) estimate, employs the full
data sample set in defining the density estimate for a subsequent
observation, its computational cost for testing directly scales
with the sample size. This has motivated the research on the
sparse KD (SKD) estimation techniques.

The support vector machine (SVM) method was applied for
SKD estimation in [14]–[16], based on its promising ability to
perform functional approximations in high-dimensional spaces
using sparse representations. An SKD estimation technique,
which is referred to as the reduced set density estimator
(RSDE), was developed in [17]. Similar to the SVM method,
this technique employs the full data sample set as the kernel
set and obtains a sparse model by making as many kernel
weights to (near) zero as possible. The difference with the
SVM approach is that it is based on the minimization of the
integrated squared error (ISE) between the unknown underlying
density and the KD estimate, calculated on the training set,
which can be shown to be equivalent to the ISE between the KD
estimator considered and the PW estimate. A regression-based
SKD estimation method was derived in [18]. By converting
the kernels into the associated cumulative distribution functions
(cdf’s) and using the empirical distribution function (EDF)
calculated on the training data set as the desired response,
just like the SVM density estimation [14]–[16], this technique
selects SKD estimates based on an orthogonal forward regres-
sion (OFR) algorithm that incrementally minimizes the training
mean square error (MSE). An efficient SKD construction algo-
rithm was proposed in [19] using the OFR based on the leave-
one-out (LOO) test MSE and local regularization (LR), which is
capable of constructing very sparse KD estimates with excellent
generalization capability. Moreover, the density construction
procedure is automatic, and the user is not required to specify
an additional terminating criterion [19].

The OFR-based SKD estimation methods of [18] and [19]
perform sparse kernel model selection on the associated cdf
space, and they also adopt some ad hoc mechanisms to ensure
the nonnegative and unity constraints for the kernel weights at
the cost of increased computation in the model construction
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procedure. Recently, an interesting regression-based SKD es-
timation alternative has been proposed [20]. Using the PW
estimate as the desired response, this method directly performs
SKD estimation in the pdf space, and it automatically selects
an SKD representation using the OFR algorithm based on the
LOO test MSE and LR (OFR-LOO-LR). The nonnegative and
unity constraints required for the kernel weights are met by
updating the kernel weights of the selected SKD estimate using
a modified multiplicative nonnegative quadratic programming
(MNQP) algorithm of [21]. The MNQP algorithm has an addi-
tional desired property of further reducing the model size, yield-
ing an even sparser density estimate. Extensive results reported
in [20] demonstrate that this SKD estimation method compares
favorably with other existing SKD estimation methods, in terms
of model generalization capability and model sparsity, as well
as computational complexity of the model construction process.

All the existing SKD estimation methods, including the
SVM-based SKD estimate [14]–[16], the RSDE [17], and
the OFR-based SKD estimation techniques [18]–[20], adopt a
fixed-kernel model, which places kernel centers on the training
data samples, and employ a single common kernel variance for
every kernel, which is not provided by the learning algorithms
and must be determined via cross validation. In this paper, we
propose a tunable-kernel model for density estimation. Unlike
the fixed-kernel approach, the center vectors of the tunable-
kernel model are not restricted to the training data points, and
each tunable kernel also has an individually adjusted diagonal
covariance matrix. Thus, the proposed tunable-kernel model
has an enhanced modeling ability and is capable of producing
smaller density estimates, as compared with the fixed-kernel
approach. On the other hand, we do not attempt to optimize
all the parameters of the tunable-kernel model together as the
FMM would, which could be a large and ill-posed nonlinear
optimization task. Rather, we construct tunable kernels one by
one in an OFR procedure. At each stage of the construction
process, a kernel unit is tuned by determining its center vector
and diagonal covariance matrix via the minimization of the
LOO test MSE. This optimization can be performed using
global optimization algorithms, such as the genetic algorithm
(GA) [22], [23], the adaptive simulated annealing (ASA) [24],
[25], or the particle swarm optimization (PSO) [26], [27]. In
this paper, we adopt a simple guided search algorithm, which
is referred to as the repeated weighted boosting search (RWBS)
[28], to carry out the optimization.

The training complexity of this tunable-kernel algorithm can
be significantly higher than those of the fixed-kernel meth-
ods [17]–[20]. However, these fixed-kernel SKD estimation
methods have to determine the kernel variance, typically via a
grid-search-based cross validation. Thus, the total complexity
of these SKD estimation methods is equal to their training
complexity given the kernel variance multiplied by the number
of grid search points used, and their computational advantage
over the tunable-kernel approach may be diminished, as, by
contrast, the tunable-kernel approach does not require such a
cross validation. It should also be pointed out that, apart from
the kernel variance, the SVM-based SKD estimation methods
[14]–[16] require tuning of additional hyperparameters via
cross validation. Because the LOO test MSE has a property
similar to “local convexity” with respect to the kernel model
size [29], [30], the OFR construction procedure for tunable-

kernel models will automatically terminate after constructing
a small number of kernel units. This determines the structure of
the density estimate. As a pdf estimate, the kernel weights of the
constructed tunable-kernel model must meet the nonnegative
and unity constraints, and this is guaranteed by updating the
kernel weights using the MNQP algorithm [17], [21]. The
extra computation involved in this weight computation is very
small, since the number of kernel units constructed for the
density estimate is very small owing to the enhance modeling
capability of the tunable-kernel model. Moreover, during the
iterative process of weight updating, some of the kernel weights
may be driven to (near) zero values, and the corresponding
kernel units can then be removed from the final model, further
reducing the model size. This property of the MNQP algorithm
is well known [17], [20], [21]. Numerical examples are used to
demonstrate the ability of the combined OFR-LOO and MNQP
algorithm for constructing accurate density estimates with very
small tunable-kernel models.

II. GENERALIZED KERNEL DENSITY ESTIMATION

Given the data sample set DN = {xk}N
k=1 drawn

from a density p(x), where the data samples xk =
[x1,k x2,k · · · xm,k]T ∈ Rm, the task is to estimate
the unknown p(x) using the tunable-kernel model of the form

p̂(x) =
NK∑
l=1

βlKl(x) =
NK∑
l=1

βlKΓl
(x, cl) (1)

with the constraints

βl ≥ 0, 1 ≤ l ≤ NK (2)
βT

NK
1NK

= 1 (3)

where βNK
= [β1 β2 · · · βNK

]T is the kernel weight
vector, 1NK

denotes the vector of ones with dimen-
sion NK , NK is the number of tunable kernels, cl =
[c1,l c2,l · · · cm,l]T denotes the lth kernel unit’s center
vector, and the lth kernel’s covariance matrix takes a diagonal
form Γl = diag{γ2

1,l, γ
2
2,l, . . . , γ

2
m,l}. In this paper, the kernel

function KΓ(•, c) is chosen to be the Gaussian function of
the form

KΓ(x, c) = GΓ(x, c)

=
1

(2π)
m
2 det

1
2 [Γ]

e−
1
2 (x−c)T Γ−1(x−c) (4)

but any other kernel functions, satisfying KΓ(x, c) ≥ 0 ∀ x ∈
Rm and ∫

Rm

KΓ(x, c)dx = 1

can also be used.

A. GMM Estimate

For the GMM with the given number of kernels NK , we
can determine all the mixture weights βl, center vectors cl,
and diagonal covariance matrices Γl together using the
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EM algorithm, which takes an explicit iterative form [8]. De-
note the parameters of the GMM by Ω Δ= {βl, cl,Γl}NK

l=1. Given
a value of Ω, labeled Ωold, define

P (l|xk,Ωold) =
βold

l KΓold
l

(
xk, cold

l

)
∑NK

i=1 βold
i KΓold

i

(
xk, cold

i

) (5)

for 1 ≤ l ≤ NK and 1 ≤ k ≤ N . Then, a new value of Ω is
obtained according to [8]

βnew
l =

1
N

N∑
k=1

P (l|xk,Ωold) (6)

cnew
l =

∑N
k=1 xkP (l|xk,Ωold)∑N

k=1 P (l|xk,Ωold)
(7)

Γnew
l =

1∑N
k=1 P (l|xk,Ωold)

N∑
k=1

P (l|xk,Ωold)

× diag
{
(x1,k − cnew

1,l )2, · · · , (xm,k − cnew
m,l )2

}
(8)

where xi,k − cnew
i,l denotes the ith element of xk − cnew

l .
This simple EM algorithm is generally ill posed. In par-

ticular, the updating equation (8) may cause numerical prob-
lems, leading to divergence. Often, more complicated robust
techniques such as the bootstrap [9], [10] may need to be
used to overcome numerical difficulties. The choice of the
initial Ω is also critical, as whether the algorithm converges
to local minima may depend on the initial parameter value.
Our previous experience in [10] suggests that it is necessary
to impose a minimum bound γ2

min for all the variances γ2
i,l,

1 ≤ i ≤ m, to alleviate the numerical problem and to improve
the chance of convergence. Appropriate γ2

min can only be found
by experiment.

B. Fixed-Kernel Density Estimate

The standard fixed-KD estimate can be viewed as a special
case of this generalized KD estimate by choosing NK = N ,
using every data sample xk ∈ DN as kernel center ck and
setting γ2

i,k = γ2, ∀ i, k, where γ2 is assumed to be given, for
example, via cross validation. The density estimation model (1)
in this case is expressed as

p̂(x; γ) =
N∑

k=1

βkKγ(x,xk) (9)

where γ is also known as the fixed-kernel width.
In particular, the PW estimate is obtained by further setting

all the kernel weights to βk = 1/N , 1 ≤ k ≤ N , yielding

p̂Parz(x; γParz) =
1
N

N∑
k=1

KγParz(x,xk) (10)

where γ2
Parz denotes the kernel variance for the PW estimate,

which is obtained based on cross validation. The PW estimate,
in fact, can be derived as the ML estimator using the
divergence-based criterion [6]. The negative cross entropy or

divergence between the true density p(x) and the estimate
p̂(x; γ) of (9), which is calculated on the training set, is defined as

∫
Rm

p(u) log p̂(u; γ)du ≈ 1
N

N∑
k=1

log p̂(xk; γ)

=
1
N

N∑
k=1

log

(
N∑

n=1

βnKγ(xk,xn)

)
.

(11)

Minimizing this divergence subject to the constraints (2) and (3)
leads to βn = 1/N for 1 ≤ n ≤ N , i.e., the PW estimate. The
PW estimate (10) is known to process a mean ISE convergence
rate on the order of N−1 [13], but it is nonsparse.

The RSDE [17] derives an SKD estimate by making as many
kernel weights to near zero as possible in (9) based on the ISE
criterion. Specifically, with the fixed Gaussian kernel

Kγ(x,xk) = Gγ(x,xk) =
1

(2πγ2)
m
2

e
− ‖x−xk‖2

2γ2 (12)

the kernel weight vector of the RSDE is obtained by solving the
constrained nonnegative quadratic programming

min
βN

{
1
2
βT

NGNβN − p̂T
NβN

}
s.t. βT

N1N = 1 and βi ≥ 0, 1 ≤ i ≤ N (13)

where GN = [gi,j ] ∈ RN×N with

gi,j =
∫

Rm

Gγ(x,xi)Gγ(x,xj)dx = G√
2γ(xi,xj) (14)

p̂N = [p̂Parz(x1; γ)p̂Parz(x2; γ), . . . , p̂Parz(xN ; γ)]T (15)

i.e., the ith element of p̂N is p̂Parz(xi; γ), the PW estimate
at the data point xi with the same kernel width γ as the
KD estimate to be determined. Note that the ISE between the
unknown underlying density and the KD estimate, which is
calculated on the training set, is equivalent to the ISE between
the KD estimator and the PW estimator, as is illustrated in the
following equation:

min
βN

∫
Rm

|p̂Parz(x; γParz) − p̂(x; γ)|2 dx

= min
βN

∫
Rm

p̂2(x; γ)dx − 2
N∑

i=1

βiEp̂Parz [Kγ(x,xi)] (16)

where Ep̂Parz [•] denotes the expectation with respect to
p̂Parz(x; γParz). Given (12), the first term in the right-hand
side of (16) is the first term of the cost function in (13),
whereas the second term in right-hand side of (16) can be ex-
pressed as

N∑
i=1

βiEp̂Parz [Kγ(x,xi)] ≈
N∑

i=1

βi
1
N

N∑
k=1

Kγ(xk,xi)

=
N∑

i=1

βip̂Parz(xi; γ) (17)
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which is identical to the second term of the cost function in
(13). To solve the constrained optimization (13), in particular
to obtain an SKD estimate, the MNQP algorithm [21] can
be used. However, because the full kernel matrix GN has a
very high dimension of N × N , the MNQP algorithm slowly
converges. The RSDE [17] uses the alternative sequential min-
imal optimization [31] to solve (13). Note that the optimization
process can only drive many kernel weights to small values,
and therefore, an appropriate zero threshold has to empirically
be specified to remove these weights.

The SKD estimator of [20] is very different from the RSDE.
It uses the OFR-LOO-LR algorithm to select a small subset of
significant kernels from the full fixed-kernel set that contains
all the training data points. The associated kernel weight vector
of the sparse estimate is updated with the MNQP algorithm.

The proposed tunable KD estimator can be viewed as an
alternative between the fully “nonlinear” optimization approach
optimizing all the kernel parameters together, such as the FMM
estimator, and the “linear” optimization approach based on the
fixed-kernel model, such as the SKD estimator of [20] and the
RSDE of [17].

C. Tunable-Kernel Density Estimate

Density estimation is an unsupervised learning problem. One
way of transferring it into a supervised learning problem is to
convert the kernels into the associated cdf’s and adopt the EDF
calculated using the training data as the desired response, as in
the SKD estimation methods of [14]–[16], [18], and [19]. The
true cdf of the pdf p(x) is defined as

F (x) =

x∫
−∞

p(u)du (18)

and the cdf associated with kernel Kl(x) is given by

ql(x) =

x∫
−∞

KΓl
(u, cl)du (19)

where x = [x1 x2 · · · xm]T ∈ Rm. Further define the
EDF on the training set DN as

F̂ (x) =
1
N

N∑
k=1

m∏
j=1

θ(xj − xj,k) (20)

with

θ(x) =
{

1, x > 0
0, x ≤ 0.

(21)

Using F̂ (x) as the desired response for F (x), the density
estimation can be expressed as a regression modeling

F̂ (x) =
NK∑
l=1

βlql(x) + ε̂(x) (22)

subject to the constraints (2) and (3), where ε̂(x) denotes the
modeling error at x. According to the Glivenko–Cantelli theo-
rem [32], the EDF (20) converges to the true cdf almost surely

as N → ∞, under the assumption of independent identically
distributed observations.

An alternative approach is the direct modeling in the pdf
space by using the PW estimate (10) as the desired response
of the true pdf p(x), as in the SKD estimation methods of [20].
This is the approach adopted in this paper. The PW estimate
can be viewed as the “observation” of the true density contam-
inated by some “observation noise,” namely, p̂Parz(x; γParz) =
p(x) + ε̃(x). Thus, the generic density estimation problem (1)
can be viewed as the following regression problem with the PW
estimate as the desired response:

p̂Parz(x; γParz) =
NK∑
l=1

βlKl(x) + ε(x) (23)

subject to the constraints (2) and (3), where ε(x) is the modeling
error at x.

Define φNK
(k) = [K1(xk) K2(xk) · · · KNK

(xk)]T
and tk = p̂Parz(xk; γParz). Then, the regression model (23) for
the data point xk ∈ DN can be expressed as

tk = t̂k + ε(k) = φT
NK

(k)βNK
+ ε(k) (24)

where ε(k) = ε(xk). Thus, the regression model (23) over the
training data set DN can be expressed in the matrix form

t = ΦNK
βNK

+ ε (25)

where t = [t1 t2 · · · tN ]T , ε =
[ε(1) ε(2) · · · ε(N)]T , and the regression
matrix ΦNK

= [φ1 φ2 · · · φNK
] with φl =

[Kl(x1) Kl(x2) · · · Kl(xN )]T , 1 ≤ l ≤ NK . Note that
φl is the lth column of ΦNK

, whereas φT
NK

(k) =
[φk,1 φk,2 · · · φk,NK

] is the kth row of ΦNK
. Let

an orthogonal decomposition of the regression matrix ΦNK
be

ΦNK
= WNK

ANK
(26)

where

ANK
=

⎡
⎢⎢⎢⎣

1 a1,2 · · · a1,NK

0 1
. . .

...
...

. . .
. . . aNK−1,NK

0 · · · 0 1

⎤
⎥⎥⎥⎦ (27)

and WNK
= [w1 w2 · · · wNK

] with columns satisfying
wT

i wj = 0, if i 
= j. The regression model (25) can alterna-
tively be expressed as

t = WNK
gNK

+ ε (28)

where the weight vector gNK
= [g1 g2 · · · gNK

]T asso-
ciated with the orthogonal regression matrix WNK

satisfies the
triangular system ANK

βNK
= gNK

. The space spanned by the
original model bases φl, 1 ≤ l ≤ NK , is identical to the space
spanned by the orthogonal model bases wl, 1 ≤ l ≤ NK , and
the model output t̂k is equivalently expressed by

t̂k = wT
NK

(k)gNK
(29)
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where wT
NK

(k) = [wk,1 wk,2 · · · wk,NK
] is the kth row

of WNK
.

The regression framework (24) does not imply that we
use the density estimate (1) to approximate the PW estimate.
Rather, the objective is to estimate or approximate the underly-
ing density p(x) whose noisy “observation” is considered to be
the PW estimate. This is exactly as in the standard regression
where the underlying data-generating mechanism is unknown
but whose noisy observation is available as the target of the
regression model output. The objective of regression is not
to approximate the noisy observation or desired output but to
uncover or approximate the underlying data-generating mecha-
nism. If an estimate can only approximate the desired response,
it is known as overfitting and cannot be regarded as an adequate
estimate. Similarly, the EDF (20) is nondifferentiable, but the
true density and cdf are differentiable. Using the framework
(22) does not imply a nondifferentiable estimate. In addition,
considering the PW estimate as the “desired” response is not a
strange idea at all. The RSDE [17] is said to be based on the ISE
criterion. Using the same argument of [17], we have just shown
in the previous section that this ISE criterion is equivalent to the
ISE criterion between the KD estimate considered and the PW
estimate.

Reformulating the density estimation as a regression problem
by using the PW estimate as the target function of the true pdf
has some advantages over the regression approach based on
using the EDF as the target function of the true cdf. The former
approach can use many types of kernel function, and it is com-
putationally simpler, as it does not need to compute the values
of regressors (19) on the training data set DN . Computing the
associated cdf’s for the kernels can be inconvenient and may be
difficult for certain types of kernels. Computing the values of
the PW estimator on DN is no more complex than calculating
the values of F̂ (x) on DN . The only drawback of using the PW
estimate is that the kernel variance for the PW estimator must be
determined. Although we developed the tunable-kernel model
using the PW estimate as the target function, the developed con-
struction algorithm is equally applicable for both approaches.

III. GENERALIZED KERNEL DENSITY CONSTRUCTION

We present the combined OFR-LOO and MNQP algorithm
for constructing the generalized KD estimate (1) with excellent
generalization capability. The structure of this density estimate
is determined using the OFR procedure based on the LOO
test MSE, which automatically constructs the set of tunable
kernels {cl,Γl}NK

l=1 one by one. The kernel weights of the con-
structed generalized KD estimate are then tuned by the MNQP
algorithm to ensure the nonnegative and unity constraints (2)
and (3). Denote the augmented training data set by D̄N =
{xk, tk}N

k=1. The concept of LOO cross validation is explained
in detail, for example, in [29] and [30], and therefore, it will not
be repeated here.

A. OFR With the LOO Test Criterion

Consider the modeling process after the nth stage, which pro-
duces the n-unit model identified using D̄N , which is written in
the following form for notational convenience:

t̂(n) = Φnβn = Wngn (30)

where Φn = [φ1 φ2 · · · φn] is the n-unit regres-
sion matrix, βn = [β1 β2 · · · βn]T is the associated
model’s weight vector, Wn = [w1 w2 · · · wn], and
gn = [g1 g2 · · · gn]T . The kth element of t̂(n) is

t̂(n)(k) = φT
n (k)βn = wT

n (k)gn (31)

where φT
n (k) denotes the kth row of Φn, and wT

n (k) denotes
the kth row of Wn. The modeling error of this n-unit model is
simply

ε(n)(k) = tk − t̂(n)(k). (32)

Now, “remove” the kth data point from D̄N and use the
remaining N − 1 data points to identify the n-unit model. The
“test” error of the resulting LOO n-unit model can be calculated
on the data point removed from training. This LOO modeling
error, which is denoted by ε(n,−k)(k), is given by [33]

ε(n,−k)(k) =
ε(n)(k)
η(n)(k)

(33)

where η(n)(k) is the associated LOO error weighting. The LOO
MSE for the n-unit generalized KD model is then defined by

Jn =
1
N

N∑
k=1

(
ε(n,−k)(k)

)2

. (34)

This LOO MSE is a measure of the model generalization
capability [33]–[36]. For the model (28) with the orthogonal re-
gression matrix, the computation of the LOO test MSE criterion
Jn is very efficient because ε(n)(k) and η(n)(k) can recursively
be computed using [29], [30]

ε(n)(k) = ε(n−1)(k) − gnwk,n (35)

η(n)(k) = η(n−1)(k) − w2
k,n

wT
nwn + λ

(36)

respectively, where λ ≥ 0 is a small regularization parameter.
The regularization parameter λ enters (36) if the regularized
orthogonal least-squares solution for the weights is adopted
[30]. Note that, in the current OFR-LOO algorithm, λ can
simply be set to zero (no regularization) or a very small value
(e.g., 10−6). This is very different from our previous OFR-
LOO-LR algorithm for selecting SKD estimates with the fixed-
kernel model [20], where multiple regularizers are employed
and an iterative evidence procedure has to be used to update the
regularization parameters.

The proposed OFR-LOO algorithm constructs the general-
ized kernel units one by one by minimizing the LOO MSE
Jn. Specifically, at the nth stage of the construction procedure,
the nth tunable-kernel unit is determined by minimizing Jn

with respect to the kernel’s center vector cn and the diagonal
covariance matrix Γn, i.e.,

min
cn,Γn

Jn(cn,Γn). (37)

The construction procedure is automatically terminated when

JNK
≤ JNK+1 (38)
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yielding an NK-term generalized kernel model. Note
that, for the LOO criterion Jn, there always exists an
“optimal” NK such that, for n ≤ NK , Jn decreases as the
model size n increases while the condition (38) holds [29],
[30]. The search space of the optimization (37) can simply be
set as

min{xi,k, 1 ≤ k ≤ N} ≤ ci,n ≤ max{xi,k, 1 ≤ k ≤ N}

0 < γ̃2
min ≤ γ2

i,n ≤ γ̃2
max, 1 ≤ i ≤ m.

Since Jn is nonconvex with respect to cn and Γn, a gradient-
based algorithm may become trapped at a local minimum.
Alternatively, global search optimization methods, such as the
GA [22], [23], the ASA [24], [25], or the PSO [26], [27], may be
used to perform the optimization task (37). We adopt the RWBS
algorithm [28] to determine cn and Γn. The motivation and
analysis of the RWBS algorithm as a general global optimizer
are detailed in [28]. A comparative study given in [28] shows
that the RWBS algorithm achieves a similar convergence speed
as the GA and ASA for several global optimization applications
while offering advantages of minimum programming effort and
fewer algorithmic parameters to tune. The detailed procedure
for determining the nth kernel unit based on the RWBS algo-
rithm is given in the Appendix.

B. Determining Weights of the Generalized Kernel Model

After the structure determination using the aforementioned
OFR-LOO algorithm, an NK-term generalized kernel model,
i.e., {KΓl

(x, cl)}NK

l=1, is obtained, where NK is typically
very small. The kernel weight vector βNK

, which is com-
puted from ANK

βNK
= gNK

, may not satisfy the constraints
(2) and (3). However, we can use a modified version of
the MNQP algorithm [21] to calculate βNK

. Since NK is
very small, the extra computation involved is small. This
task is defined as follows: finding βNK

for the generalized
kernel model (25), subject to the constraints (2) and (3).
More specifically, the kernel weight vector can be obtained
by solving the following constrained nonnegative quadratic
programming:

min
βNK

{
1
2
βT

NK
BNK

βNK
− vT

NK
βNK

}

s.t. βT
NK

1NK
= 1 and βi ≥ 0, 1 ≤ i ≤ NK (39)

where BNK
= ΦT

NK
ΦNK

= [bi,j ] ∈ RNK×NK is the related
design matrix, and vNK

= ΦT
NK

t = [ v1 v2 · · · vNK
]T .

Although there exists no closed-form solution for this op-
timization problem, the solution can readily be obtained
iteratively.

Since the elements of BNK
and vNK

are strictly positive,
the auxiliary function [21] for the aforementioned problem is
given by

1
2

NK∑
i=1

NK∑
j=1

bi,j

β
[ι]
j

(
β

[ι+1]
i

)2

β
[ι]
i

−
NK∑
i=1

viβ
[ι+1]
i

and the Lagrangian associated with this auxiliary problem can
be formed as [17]

L =
1
2

NK∑
i=1

NK∑
j=1

bi,j

β
[ι]
j

(
β

[ι+1]
i

)2

β
[ι]
i

−
NK∑
i=1

viβ
[ι+1]
i − h[ι]

(
NK∑
i=1

β
[ι+1]
i − 1

)
(40)

where the superindex [ι] denotes the iteration index, and h is the
Lagrangian multiplier. Setting

∂L
∂β

[ι+1]
i

= 0
∂L

∂h[ι]
= 0 (41)

leads to the following updating equations:

c
[ι]
i =β

[ι]
i

⎛
⎝NK∑

j=1

bi,jβ
[ι]
j

⎞
⎠

−1

, 1 ≤ i ≤ NK (42)

h[ι] =

(
NK∑
i=1

c
[ι]
i

)−1(
1 −

NK∑
i=1

c
[ι]
i vi

)
(43)

β
[ι+1]
i = c

[ι]
i

(
vi + h[ι]

)
. (44)

It is easy to check that, if β
[ι]
NK

meets the constraints (2)

and (3), β
[ι+1]
NK

updated according to (42)–(44) also satisfies

(2) and (3). The initial condition can be set as β
[0]
i = 1/NK ,

1 ≤ i ≤ NK . During the iterative procedure, some of the ker-
nel weights may be driven to (near) zero. The corresponding
kernels can then be removed from the kernel model, leading to
a further reduction in the generalized kernel model size.

C. Computational Complexity Comparison

Since the computational complexity of the MNQP algorithm
for tuning the kernel weights is negligible, the complexity is
dominated by the complexity of the OFR-LOO algorithm for
selecting NK tunable kernels. The computational complexity
of one LOO cost function evaluation and the associated model
column orthogonalization can be shown to be on the order of
O(N) (see the Appendix, (63)–(68)). In fact, the exact com-
plexity expression for O(N) can be derived as in [37]. Thus, the
computational requirements of the proposed combined OFR-
LOO and MNQP algorithm for constructing the generalized
SKD (GSKD) estimate can be expressed as

C(GSKD) = Nce(GSKD) × O(N). (45)

Here, Nce(GSKD) is the total number of the LOO cost function
evaluations and the associated model column orthogonaliza-
tions. This number can readily be shown to be

Nce(GSKD) = NK (NG(PS + 2MI) − (NG − 1))

≈NKNG(PS + 2MI)
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where the population size Ps, the number of the generations
NG, and the number of the weighted boosting search (WBS)
iterations MI are the algorithmic parameters of the RWBS
optimization algorithm, as defined in the Appendix.

For our previous combined OFR-LOO-LR and MNQP algo-
rithm for constructing the fixed-kernel SKD estimate [20], the
computational complexity of one LOO cost function evaluation
and the associated model column orthogonalization is also on
the order of O(N). Assume that, for the given kernel variance
γ2, the algorithm selects N ′

K kernels from the full set of N fixed
kernels. Then, the computational requirements of this algorithm
with the given γ2 is determined by

C(SKD) = Nce(SKD) × O(N). (46)

Here, Nce(SKD) is the total number of the LOO cost function
evaluations and associated model column orthogonalizations
with the given γ2, which can be shown to be

Nce(SKD) =
N ′

K∑
i=1

(N − (i − 1)) ≈ N ′
KN

where the approximation is arrived because the selected model
size N ′

K is usually much smaller than the training data size N .
Basically, C(SKD) = O(N2), as the complexity of an
OFR-type algorithm for the fixed-kernel model is well known
to be on the order of O(N2) [37].

Typically, C(SKD) � C(GSKD). Consider the 6-D density
estimation example of Section IV-D, where N = 600. For the
GSKD estimation, PS = 40, NG = 10, and MI = 400 were
used for the RWBS algorithm, and the resulting average model
size was NK = 5. Thus, on average, C(GSKD) = 42 000 ×
O(600). Since the average N ′

K = 9.4 for the OFR-LOO-LR
algorithm, C(SKD) = 5640 × O(600) on average. However,
the complexity (46) is for a given kernel variance. This hyper-
parameter has to be determined by a line search based on cross
validation. Let us make an optimistic assumption that, at each
point of the line search, the algorithm produces the same model
size N ′

K . The true complexity of the OFR-LOO-LR algorithm
for constructing the SKD estimate with fixed kernels will be
LS × C(SKD), where LS is the total points of the line search.
Therefore, the training complexity for constructing the tunable-
kernel estimate may not necessarily be higher than that for
selecting the fixed-kernel estimate.

The computational complexity of the RSDE algorithm is also
known to be on the order of O(N2) [17]. The PW estimator is
a plug-in estimator, and its training complexity involves only
the determination of the kernel variance via cross validation.
The problem of the PW estimator is its high test complexity.
For the GMM estimator, each iteration of the EM algorithm
involves the computation of (5)–(8). Thus, the computational
complexity of this EM algorithm is reasonably low. However,
care much be exercised in choosing the initial parameter values;
otherwise, the algorithm may not converge or may suffer from
the problem of local minima.

IV. NUMERICAL EXAMPLES

Five examples were used in the simulation to test the pro-
posed combined OFR-LOO and MNQP algorithm for con-

structing the GSKD estimator and to compare its performance
with the three fixed-kernel estimators, namely, the nonsparse
PW estimator, our previous SKD estimator [20], and the RSDE
of [17], as well as the tunable-kernel GMM estimator. For each
case, a data set of N randomly drawn samples was used to
construct the density estimate, and a separate test data set of
Ntest = 10 000 samples was used to calculate the L1 test error
for the resulting estimate according to

L1 =
1

Ntest

Ntest∑
k=1

|p(xk) − p̂(xk)| . (47)

The Kullback–Leibler divergence (KLD), which is defined as

DKL(p|p̂) =
∫

Rm

p(x) log
p(x)
p̂(x)

dx (48)

is a measure of the difference between the two probability
distributions p(x) and p̂(x). For the 1-D and 2-D problems,
the KLD was also used to test the resulting estimates. For
a 1-D problem, the KLD can accurately be approximated by
partitioning the integration range [xmin, xmax] into the Npar

small equal-length intervals and computing the summation

DKL(p|p̂) ≈
Npar∑
k=1

p(k) log
p(k)
p̂(k)

Δx (49)

where Δx = (xmax − xmin)/Npar, p(k) = p(xmin + kΔx),
and p̂(k) = p̂(xmin + kΔx). In the experiment, we chose
Npar ≥ 10 000 to ensure the accuracy of the approxima-
tion. Similarly, for a 2-D problem, the KLD is approxi-
mated by partitioning the integration range [x1,min, x1,max] ×
[x2,min, x2,max] into the Npar × Npar small equal-area inter-
vals and calculating

DKL(p|p̂) ≈
Npar∑
k=1

Npar∑
l=1

p(k, l) log
p(k, l)
p̂(k, l)

(Δx)2 (50)

where Δx=(x1,max−x1,min)/Npar =(x2,max−x2,min)/Npar,
p(k, l) = p(x1,min + kΔx, x2,min + lΔx), and p̂(k, l) =
p̂(x1,min + kΔx, x2,min + lΔx). To ensure the accuracy of the
approximation, we chose Npar > 100. For higher dimensional
problems, calculation of the KLD becomes computationally
too expensive. The experiment was repeated by Nrun different
random runs for each example.

The optimal values of the kernel variances γ2
Parz and γ2

for the PW estimator and the two SKD estimators with the
fixed-kernel model, respectively, were empirically found via
cross validation. For the GMM, the number of mixing Gaussian
components NK must be determined. Instead of exhaustedly
trying different values for the number of mixing components
based on cross validation, we used the average model size
obtained for the GSKD estimate as the number of mixing
components for the GMM. For the EM algorithm, all the initial
mixing weights βl were set to 1.0/NK , the initial center vectors
cl were randomly chosen from the region [a, b]m ∈ Rm, and
all the initial variances γ2

i,l were set to the same value γ2
ini. A

minimum bound γ2
min for the variances was also assigned. If

some runs of the EM algorithm were observed to diverge, the
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TABLE I
PERFORMANCE OF THE PW ESTIMATOR, PREVIOUS SKD ESTIMATOR [20], RSDE [17], PROPOSED GSKD ESTIMATOR, AND GMM ESTIMATOR IN

TERMS OF L1 TEST ERROR AND KLD DIVERGENCE, AS WELL AS NUMBER OF KERNELS REQUIRED FOR THE 1-D EXAMPLE OF THE

EIGHT-GAUSSIAN MIXTURE, QUOTED AS MEAN ± STANDARD DEVIATION, OVER 200 RUNS

region [a, b]m and the values of γ2
ini and/or γ2

min were rechosen
until all the Nrun of the EM algorithm were converged.

A. First 1-D Example

In this 1-D example, the density to be estimated was the
mixture of eight Gaussian distributions, which is given by

p(x) =
1
8

7∑
i=0

1√
2πσi

e
− (x−μi)

2

2σ2
i (51)

with

σi =

√(
2
3

)i

, μi = 3

((
2
3

)i

− 1

)
, 0 ≤ i ≤ 7.

(52)

The number of data points for density estimation was N =
200. The experiment was repeated Nrun = 200 times. The five
density estimates were obtained, and they were the proposed
GSKD estimate based on the tunable-kernel model, the GMM
estimate, the PW estimate, our previous SKD estimate [20], and
the RSDE [17]. The last three estimators were based on the
fixed-kernel model. The average model size obtained for the
GSKD estimate was 6.5, and therefore, we used NK = 7 for
the GMM. After considerable experiments, all the Nrun = 200
runs of the EM algorithm converged with the initialization
[a, b] = [−4, 3], γ2

ini = 0.1, and γ2
min = 0.01.

Table I compares the performance of the five density esti-
mates, in terms of the L1 test error and the KLD, as well as
the number of kernels required. In addition, the maximum and
minimum numbers of kernels over 200 runs are also listed in
Table I for each density estimator. For this example, the PW
estimate achieved the best test performance in terms of the
KLD value, but the PW estimator is a nonsparse method, and
the number of kernels was equal to the number of the training
data points. It can be seen that the proposed GSKD and GMM
estimators did well, both achieving better test performance with
a more parsimonious KD estimate, as compared with the other
two fixed-kernel SKD estimators of [17] and [20]. Figs. 1–5
depict the PW estimate, our previous SKD estimate [20], the
RSDE [17], the proposed GSKD estimate, and the GMM esti-
mate obtained in a typical run, respectively, in comparison with
the true density distribution. The RWBS algorithmic parameters
were set to PS = 10, MI = 200, and NG = 10. The average
complexity of the GSKD estimator is given in Table II, in
comparison with that of the previous SKD estimator when the
kernel width γ was chosen [20].

B. Second 1-D Example

The density to be estimated was the mixture of Gaussian and
Laplacian distributions, which is defined by

p(x) =
1

2
√

2π
e−

(x−2)2

2 +
0.7
4

e−0.7|x+2|. (53)

The number of data points for density estimation was N =
100, and the experiment was repeated Nrun = 100 times. The
number of Gaussian mixture components for the GMM was set
to NK = 5, as the average model size obtained for the GSKD
estimate was found to be 4.5. After several tries, the appropriate
initialization was found to be [a, b] = [−12, 7], γ2

ini = 0.1, and
γ2
min = 0.01 for the EM algorithm.
Table III lists the performance of the five density estimators,

in terms of the L1 test error and the KLD, as well as the number
of kernels required. Figs. 6–10 plot a typical PW estimate
obtained, a typical SKD estimate constructed, a typical RSDE
obtained, a typical GSKD estimate obtained, and a typical
GMM estimate obtained, in comparison with the true density.
For this example, it can be seen that the proposed GSKD
estimator and the RSDE achieved the best test performance,
whereas the GMM estimator had the worst test performance,
which was likely due to the local minimum problem. The
proposed GSKD estimator achieved the most compact estimate.
The GSKD estimator, however, employed the RWBS with the
algorithmic parameters PS = 10, MI = 200, and NG = 10,
and its average complexity was significantly higher than that
of the previous SKD estimator [20] when the kernel width γ
was chosen, as can be seen from Table IV. The computational
complexity of the RSDE [17] when the kernel width γ was
chosen was of course similar to that of the SKD estimator [20].

C. 2-D Example

The density to be estimated was defined by the mixture of
Gaussian and Laplacian distributions, which is given as follows:

p(x1, x2)=
1
4π

e−
(x1−2)2

2 e−
(x2−2)2

2 +
0.35
8

e−0.7|x1+2|e−0.5|x2+2|.
(54)

The estimation data set contained N = 500 samples, and the
experiment was repeated Nrun = 100 times. Because we had an
average model size of 7.2 for the GSKD estimate, NK = 8 was
used for the GMM. With considerable efforts, the appropriate
initialization was found to be [a, b]2 = [−8, 8]2, γ2

ini = 0.4,
and γ2

min = 0.01 for the EM algorithm to converge in all the
Nrun = 100 runs.
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Fig. 1. (Solid) PW estimate in comparison with (dashed) true density for the
1-D example of the eight-Gaussian mixture.

Fig. 2. (Solid) SKD estimate [20] in comparison with (dashed) true density
for the 1-D example of the eight-Gaussian mixture.

Fig. 3. (Solid) RSDE [17] in comparison with (dashed) true density for the
1-D example of the eight-Gaussian mixture.

Table V lists the L1 test errors and the KLD values, as
well as the numbers of kernels required for the five density
estimates, namely, the PW estimate, the SKD estimate [20], and
the RSDE [17] with the standard fixed-kernel model, as well as
the proposed GSKD estimate and the GMM estimate with the
tunable-kernel model. For this example, the GMM estimator
achieved the best test performance. The proposed tunable KD
estimator and the fixed-kernel RSDE also did well. The pro-
posed GSKD estimator again had the most compact model with
an average model size less than half of the RSDE. Table VI
compares the average complexity of the GSKD estimator with

Fig. 4. (Solid) Proposed GSKD estimate in comparison with (dashed) true
density for the 1-D example of the eight-Gaussian mixture.

Fig. 5. (Solid) GMM estimate in comparison with (dashed) true density for
the 1-D example of the eight-Gaussian mixture.

TABLE II
AVERAGE COMPLEXITY COMPARISON OF THE PREVIOUS SKD

ESTIMATOR [20] WITH THE GIVEN γ AND THE PROPOSED GSKD
ESTIMATOR FOR THE 1-D EXAMPLE OF THE EIGHT-GAUSSIAN MIXTURE

the algorithmic parameters of PS = 20, MI = 200, and NG =
10 with that of the SKD estimator [20] when the kernel width γ
was chosen.

D. 6-D Example

In this 6-D example, the underlying density to be estimated
was given by the mixture of three Gaussian distributions

p(x) =
1
3

3∑
i=1

1
(2π)6/2

1
det1/2 |Γ̄i|

e−
1
2 (x−μi)

T Γ̄−1
i (x−μi) (55)

with

μ1 = [1.0 1.0 1.0 1.0 1.0 1.0]T

Γ̄1 = diag{1.0, 2.0, 1.0, 2.0, 1.0, 2.0} (56)

μ2 = [−1.0 − 1.0 − 1.0 − 1.0 − 1.0 − 1.0]T

Γ̄2 = diag{2.0, 1.0, 2.0, 1.0, 2.0, 1.0} (57)

μ3 = [0.0 0.0 0.0 0.0 0.0 0.0]T

Γ̄3 = diag{2.0, 1.0, 2.0, 1.0, 2.0, 1.0}. (58)
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TABLE III
PERFORMANCE OF THE PW ESTIMATOR, PREVIOUS SKD ESTIMATOR [20], RSDE [17], PROPOSED GSKD ESTIMATOR, AND GMM ESTIMATOR IN

TERMS OF L1 TEST ERROR AND KLD, AS WELL AS NUMBER OF KERNELS REQUIRED FOR THE 1-D EXAMPLE OF THE GAUSSIAN

AND LAPLACIAN MIXTURE, QUOTED AS MEAN ± STANDARD DEVIATION, OVER 100 RUNS

Fig. 6. (Solid) PW estimate in comparison with (dashed) true density for the
1-D example of the Gaussian and Laplacian mixture.

Fig. 7. (Solid) SKD estimate [20] in comparison with (dashed) true density
for the 1-D example of the Gaussian and Laplacian mixture.

Fig. 8. (Solid) RSDE [17] in comparison with (dashed) true density for the
1-D example of the Gaussian and Laplacian mixture.

Fig. 9. (Solid) Proposed GSKD estimate in comparison with (dashed) true
density for the 1-D example of the Gaussian and Laplacian mixture.

Fig. 10. (Solid) GMM estimate in comparison with (dashed) true density for
the 1-D example of the Gaussian and Laplacian mixture.

TABLE IV
AVERAGE COMPLEXITY COMPARISON OF THE PREVIOUS SKD

ESTIMATOR [20] WITH THE GIVEN γ AND THE PROPOSED GSKD
ESTIMATOR FOR THE 1-D EXAMPLE OF THE GAUSSIAN

AND LAPLACIAN MIXTURE

The estimation data set was set to N = 50, 600, and 1000 sam-
ples, respectively, and the experiment was repeated Nrun = 100
times. For the GMM estimator, NK = 4, 5, and 7 were used for
the cases of N = 50, 600, and 1000, respectively, whereas the
appropriate initialization for the EM algorithm was found to be
[a, b]6 = [−5, 5]6, γ2

ini = 0.1, and γ2
min = 0.01. The GSKD

estimator had the RWBS algorithmic parameters of PS = 40,
MI = 400, and NG = 10.
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TABLE V
PERFORMANCE OF THE PW ESTIMATOR, PREVIOUS SKD ESTIMATOR [20], RSDE [17], PROPOSED GSKD ESTIMATOR, AND GMM ESTIMATOR IN

TERMS OF L1 TEST ERROR AND KLD, AS WELL AS NUMBER OF KERNELS REQUIRED FOR THE 2-D EXAMPLE OF THE GAUSSIAN AND

LAPLACIAN MIXTURE, QUOTED AS MEAN ± STANDARD DEVIATION, OVER 100 RUNS

TABLE VI
AVERAGE COMPLEXITY COMPARISON OF THE PREVIOUS SKD

ESTIMATOR [20] WITH THE GIVEN γ AND THE PROPOSED GSKD
ESTIMATOR FOR THE 2-D EXAMPLE OF THE GAUSSIAN

AND LAPLACIAN MIXTURE

The results obtained by the five density estimators are sum-
marized in Table VII, where it can be seen that the test perfor-
mance of the various estimators for the case of N = 50 was
much poorer than the cases of N = 600 and 1000. This was
not surprising as the estimation set of N = 50 was insufficient
to achieve an accurate estimate. For the cases of N = 600 and
1000, the GMM estimator achieved the best test performance,
and it can also be seen that the proposed GSKD estimator based
on the tunable-kernel model structure had clear advantages over
the standard SKD estimator based on the fixed-kernel model
structure, in terms of achievable test performance and estimator
model size.

Average computational requirements of the GSKD estimator
and our previous fixed-kernel SKD estimator [20] when the
kernel variance γ2 was chosen are compared in Table VIII. The
computational complexity of the RSDE [17] with a given kernel
variance γ2 was well known to be similar to that of the SKD
estimator [20].

E. 10-D Example

The underlying density of this 10-D example was the mix-
ture of three Gaussian distributions, which took the form of
(55) with

μ1 =[1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0]T

Γ̄1 =diag{1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0} (59)

μ2 =[−1.0 − 1.0 − 1.0 − 1.0 − 1.0

− 1.0 − 1.0 − 1.0 − 1.0 − 1.0]T

Γ̄2 =diag{2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0} (60)

μ3 =[0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0]T

Γ̄3 =diag{2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0}. (61)

The estimation set contained N = 20 samples, and the experi-
ment was repeated Nrun = 100 times. This example was specif-
ically designed to represent the situation where the number of
data samples is very small in comparison with the dimension
of the density space, as 20 samples are extremely sparse in
the 10-D space. The GMM estimator had NK = 4 mixture

components, whereas the EM algorithm had the parameters
[a, b]10 = [−5, 5]10, γ2

ini = 0.2, and γ2
min = 0.02. The GSKD

estimator had the RWBS algorithmic parameters of PS = 40,
MI = 400, and NG = 10. The results obtained by the five
density estimators are compared in Table IX, where it can be
seen that the three fixed-kernel estimators and the proposed
GSKD estimator based on the tunable-kernel model structure
had similar test performance, but the GSKD estimator achieved
a smaller estimator model size.

V. CONCLUSION

A novel algorithm has been proposed for constructing the
GSKD estimator with tunable-kernel units. Unlike the exist-
ing sparse SKD estimators, the kernel center vectors are not
restricted to the training data samples, and each kernel unit
has an individually adjusted diagonal covariance matrix. On
the other hand, we do not optimize all the kernel model’s
parameters together using nonlinear optimization, as the con-
ventional FMM would. Rather, we optimize the kernel units
one by one by minimizing the LOO test MSE based on an
OFR procedure. A modified version of the MNQP algorithm is
used to compute the kernel weights of the constructed GSKD
estimator to guarantee the nonnegative and unity constraints
for the mixture coefficients. Five illustrative examples have
been included to demonstrate the advantages of the proposed
GSKD estimator based on the tunable-kernel model over the
standard SKD estimator based on the fixed-kernel model, in
terms of achievable test performance and estimator model size.
In terms of computational requirements, the SKD estimator
with the fixed-kernel model typically imposes several times
lower complexity than the GSKD estimator with the tunable-
kernel model. However, when the complexity of tuning the
kernel variance required by the fixed-kernel model is taken
into account, the computational advantage of the fixed-kernel
approach over the proposed tunable-kernel approach may be
diminished. The results obtained have also suggested that the
proposed GSKD estimator has similar test performance to that
of the GMM.

APPENDIX

POSITIONING AND SHAPING GENERALIZED

KERNEL UNITS

Let u be the vector that contains cn and Γn. Give the
following initial conditions:

ε(0)(k) = tk and η(0)(k) = 1, 1 ≤ k ≤ N

J0 = 1
N tT t = 1

N

∑N
k=1 t2k

}
. (62)
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TABLE VII
PERFORMANCE OF THE PW ESTIMATOR, PREVIOUS SKD ESTIMATOR [20], RSDE [17], PROPOSED GSKD ESTIMATOR, AND

GMM ESTIMATOR IN TERMS OF L1 TEST ERROR AND NUMBER OF KERNELS REQUIRED FOR THE 6-D EXAMPLE OF

THE THREE-GAUSSIAN MIXTURE, QUOTED AS MEAN ± STANDARD DEVIATION, OVER 100 RUNS

TABLE VIII
AVERAGE COMPLEXITY COMPARISON OF THE PREVIOUS SKD

ESTIMATOR [20] WITH THE GIVEN γ AND THE PROPOSED GSKD
ESTIMATOR FOR THE 6-D EXAMPLE OF THE THREE-GAUSSIAN MIXTURE

Specify the RWBS algorithmic parameters: the population size
PS , the number of generations in the repeated search NG, and
the number of WBS iterations MI .

Outer loop: generations For (l = 1; l ≤ NG; l = l + 1){
• Generation initialization: Initialize the population by set-

ting u[l]
1 = u[l−1]

best and randomly generating the rest of

the population members u[l]
i , 2 ≤ i ≤ PS , where u[l−1]

best
denotes the solution found in the previous generation. If
l = 1, u[l]

1 is also randomly chosen.
• WBS initialization: Assign the initial distribution weight-

ings δi(0) = 1/PS , 1 ≤ i ≤ PS , for the population. Then

1) For 1 ≤ i ≤ PS , generate φi)
n from u[l]

i , the can-
didates for the nth model column, and orthogonal-
ize them using the Gram–Schmidt orthogonalization
procedure [38]:

α
i)
j,n =

wT
j φi)

n

wT
j wj

, 1 ≤ j < n (63)

wi)
n =φi)

n −
n−1∑
j=1

α
i)
j,nwj (64)

gi)
n =

(
wi)

n

)T

t(
wi)

n

)T

wi)
n + λ

. (65)

2) For 1 ≤ i ≤ PS , calculate the LOO cost function
value of each u[l]

i :

ε
(n)
i (k) = ε(n−1)(k) − w

i)
k,ngi)

n , 1 ≤ k ≤ N (66)

η
(n)
i (k) = η(n−1)(k) −

(
w

i)
k,n

)2

(
wi)

n

)T

wi)
n + λ

, 1 ≤ k ≤ N

(67)

J i)
n =

1
N

N∑
k=1

(
ε
(n)
i (k)

η
(n)
i (k)

)2

(68)

where w
i)
k,n is the kth element of wi)

n .

Inner loop: WBS For (t = 1; t ≤ MI ; t = t + 1){
• Step 1: Boosting

1) Find

ibest = arg min
1≤i≤PS

J i)
n and iworst = arg max

1≤i≤PS

J i)
n .

2) Denote u[l]
best = u[l]

ibest
and u[l]

worst = u[l]
iworst

.
3) Normalize the cost function values

J̄ i)
n =

J
i)
n∑PS

j=1 J
j)
n

, 1 ≤ i ≤ PS .

4) Compute a weighting factor μt according to

ξt =
PS∑
i=1

δi(t − 1)J̄ i)
n μt =

ξt

1 − ξt
.

5) Update the distribution weightings for 1 ≤
i ≤ PS

δ̃i(t) =

{
δi(t − 1)μJ̄

i)
n

t , for μt ≤ 1

δi(t − 1)μ1−J̄
i)
n

t , for μt > 1

and normalize them

δi(t) =
δ̃i(t)∑PS

j=1 δ̃j(t)
, 1 ≤ i ≤ PS .
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TABLE IX
PERFORMANCE OF THE PW ESTIMATOR, PREVIOUS SKD ESTIMATOR [20], RSDE [17], PROPOSED GSKD ESTIMATOR, AND

GMM ESTIMATOR IN TERMS OF L1 TEST ERROR AND NUMBER OF KERNELS REQUIRED FOR THE 10-D EXAMPLE OF

THE THREE-GAUSSIAN MIXTURE, QUOTED AS MEAN ± STANDARD DEVIATION, OVER 100 RUNS

• Step 2: Parameter updating
1) Construct the (PS + 1)th point using the formula

uPS+1 =
PS∑
i=1

δi(t)u
[l]
i .

2) Construct the (PS + 2)th point using the formula

uPS+2 = u[l]
best +

(
u[l]

best − uPS+1

)
.

3) Calculate φPS+1)
n and φPS+2)

n from uPS+1 and
uPS+2, orthogonalize these two candidate model
columns [as in (63)–(65)], and compute their corre-
sponding LOO cost function values J

i)
n , i = PS +

1, PS + 2 [as in (66)–(68)]. Then, find

i∗ = arg min
i=PS+1,PS+2

J i)
n .

The pair (ui∗ , J
i∗)
n ) then replaces

(u[l]
worst, J

iworst)
n ) in the population.

} End of inner loop
The solution found in the lth generation is u = u[l]

best.} End of outer loop

This yields the solution u = u[NG]
best , i.e., cn and Γn of the nth

kernel unit, the nth model column φn, the orthogonalization co-
efficients αj,n, 1 ≤ j < n, the corresponding orthogonal model
column wn, and the weight gn, as well as the n-term modeling
errors ε(n)(k) and associated LOO modeling error weightings
η(n)(k) for 1 ≤ k ≤ N .

The idea of the RWBS algorithm is remarkably simple. The
basic process, i.e., the inner WBS loop, evolves a population
of PS initially randomly chosen solutions by performing a
convex combination of the potential solutions to yield uPS+1

and computing its mirror image uPS+2. The worst member of
the population is then replaced by either uPS+1 or uPS+2. This
process is repeated MI times until the process converges. The
weightings δi(t) used in the convex combination are adapted
to reflect the “goodness” of corresponding potential solutions
using the idea from boosting [39]–[42]. The inner iteration
loop is designed to efficiently find a minimum point within
the convex hull defined by the initial population members. This
capability as a local optimizer can be explained by the theory
of weak learnability associated with boosting [39], [40]. The
outer loop repeats the inner WBS NG times or “generations” to
improve the probability of finding a global optimal solution. An
elitist strategy is adopted by retaining the best solution found
in the current generation in the initial population of the next
generation, which ensures that the information obtained with

regard to the previous search region is not lost. By repeating
the WBS a number of generations, the algorithm resembles
a commonly used random search strategy, which is called
the multistart [43]. Note that randomly drawing a number of
points adopted by the RWBS algorithm is also the sampling
strategy used in a class of global optimization methods, which
is referred to as clustering [43].

The appropriate values for the RWBS algorithmic parameters
PS , NG, and MI depend on the dimension of u and how hard
the objective function to be optimized. Generally, these algo-
rithmic parameters have to empirically be found, and some gen-
eral rules are discussed in [28]. In the inner optimization loop,
there is no need for every member of the population to converge
to a (local) minimum, and it is sufficient to locate where the
minimum lies. Thus, the maximum number of iterations MI for
the inner optimization loop can be set to a relatively small value.
This makes the search efficient, achieving convergence with a
small number of the cost function evaluations. The population
size PS and the number of generations NG should be set
sufficiently large so that the parameter space will sufficiently
be sampled.
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