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Sparse Modeling Using Orthogonal Forward
Regression With PRESS Statistic and Regularization
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Abstract—The paper introduces an efficient construction algo-
rithm for obtaining sparse linear-in-the-weights regression models
based on an approach of directly optimizing model generalization
capability. This is achieved by utilizing the delete-1 cross validation
concept and the associated leave-one-out test error also known as
the predicted residual sums of squares (PRESS) statistic, without
resorting to any other validation data set for model evaluation in
the model construction process. Computational efficiency is en-
sured using an orthogonal forward regression, but the algorithm
incrementally minimizes the PRESS statistic instead of the usual
sum of the squared training errors. A local regularization method
can naturally be incorporated into the model selection procedure
to further enforce model sparsity. The proposed algorithm is fully
automatic, and the user is not required to specify any criterion
to terminate the model construction procedure. Comparisons with
some of the existing state-of-art modeling methods are given, and
several examples are included to demonstrate the ability of the pro-
posed algorithm to effectively construct sparse models that gener-
alize well.

Index Terms—Bayesian learning, cross validation, orthogonal
forward regression, predicted residual sums of squares (PRESS)
statistic, regularization, sparse data modeling.

I. INTRODUCTION

THE objective of modeling from data is not that the model
simply fits the training data well. Rather, the goodness of

a model is characterized by its generalization capability, inter-
pretability and ease for knowledge extraction. Note that all these
properties depend crucially on the ability to construct appro-
priate sparse models by the modeling process, and a basic prin-
ciple in practical nonlinear data modeling is the parsimonious
principle that ensures the smallest possible model that explains
the training data. There exists a vast amount of works in the
area of sparse modeling (e.g., [1]–[9]). Recently, a well-known
sparse kernel modeling algorithm has perhaps been the support
vector machine (SVM) method [8], which is widely regarded
as the state-of-art technique for regression and classification ap-
plications. The formulation of SVM embodies the structural risk
minimization principle, thus combining excellent generalization
properties with a sparse model representation. Despite these at-
tractive features and many good empirical results obtained using
the SVM method, data modeling practicians have realized that
the ability for the SVM method to produce sparse models has
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perhaps been overstated. This has motivated Tipping [9] to in-
troduce the relevance vector machine (RVM) method.

The RVM method adopts a Bayesian learning framework
[4]. The introduction of individual hyperparameters for every
weights of the regression model is the key feature of the
RVM method and is ultimately responsible for the sparsity
properties of the RVM method [9]. An evidence procedure [4]
is used to iteratively optimize kernel weights and the associated
hyperparameters. During the optimization process, many of
these hyperparameters are driven to large values so that the
corresponding model weights are effectively forced to be zero
and their associated model terms can then be removed from
the trained model. The results given in [9] have demonstrated
that the RVM has a comparable generalization performance
to the SVM but requires dramatically fewer kernel functions
or model terms than the SVM. A drawback of the RVM
method is a significant increase in computational complexity,
compared with the SVM method. A more serious limitation
is however inherent in the evidence framework. The compu-
tation of the associated Hessian matrix required for updating
hyperparameters is expensive, and this Hessian matrix may
be near singular or singular and thus noninvertible. At a local
minimum, some eigenvalues of this Hessian matrix may even
be negative [10] and thus cause numerical instability for the
iterative optimization procedure.

The orthogonal least squares (OLS) algorithm [1], which
was developed in the late 1980s for nonlinear system modeling,
remains popular for nonlinear data modeling practicians
because the algorithm is simple and efficient and is capable
of producing parsimonious linear-in-the-weights nonlinear
models with good generalization performance. Over time,
many “improved” variants of the OLS algorithm have been
proposed [11]–[16]. In particular, the locally regularized OLS
(LROLS) algorithm [13], [15] has been shown to be capable of
producing very sparse regression models that generalize well.
The key idea of the LROLS algorithm is in fact adopted from
the RVM method, namely using the multiple regularizers to
enforce sparsity. The LROLS algorithm is, however, based on
the forward selection principle, has the ability to reveal the
significance of individual model regressor, and only selects
those significant terms, whereas the RVM method starts with
the full model set and is effectively based on the backward
elimination principle. It is well known that forward selection
is computationally more attractive compared with backward
elimination. More importantly, in the LROLS algorithm, only
a subset matrix of the full Hessian matrix is used. This subset
matrix is diagonal and well-conditioned with small eigenvalue
spread. Therefore, the inverse of the Hessian is trivial, the
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regularization parameter updating is exact and simple, and the
iterative procedure converges fast.

As in most model construction algorithms, the criterion
used by the OLS algorithm in the model construction process
is the training mean square error (MSE). Since the training
MSE typically decreases as the model size increases, a separate
stopping criterion is needed to stop the selection procedure
in order to avoid an over-fitted model. For example, infor-
mation-based criteria, such as the AIC and the minimum
description length [17]–[19], can be adopted to terminate the
model selection process. An information based criterion can be
viewed as a model structure regularization by using a penalty
term to penalize large-sized models. However, the penalty term
in an information based criterion does not determine which
model term should be selected. Multiple regularizers, i.e.,
local regularization [9], [13], [15], and optimal experimental
design criteria [14] offer better solutions as model structure
regularization as they are directly linked to model efficiency
and parameter robustness. The underlying “problem,” however,
remains that the basic criterion for most model construction
procedures is the training MSE. Arguably, a better and more
natural approach is using a criterion of model generalization
capability directly in the model selection procedure rather than
only using it as a measure of model complexity.

The evaluation of model generalization capability is directly
based on the concept of cross validation [20]. This paper inves-
tigates a model construction algorithm using a model selection
criterion that is based explicitly on cross validation. This is
achieved with a training data set only by utilizing the concept
of delete-1 cross validation and the associated leave-one-out
test error also known as the predicted residual sums of squares
(PRESS) statistic [21]–[23]. The use of the leave-one-out
estimate for general nonlinear-in-the-weights models has been
studied in [24]–[26]. Even for the class of linear-in-the-weights
models, computation of the mean square PRESS error is
normally expensive and the use of the PRESS statistic in model
selection is generally prohibitive. However, a recent study
[27] has shown that, using the OLS algorithm, the calculation
of the PRESS statistic becomes efficient and model selection
based on the PRESS statistic is computationally affordable. It
is well known that local regularization is effective in enforcing
model sparsity as well as ensuring excellent generalization
performance [9], [13], [15]. We combine the PRESS statistic
with local regularization in the orthogonal forward regression
procedure. The resulting algorithm selects a sparse model by
incrementally minimizing a regularized mean square PRESS
error.

Our motivation is twofold. First, we aim to derive a construc-
tion algorithm based directly on optimizing model generaliza-
tion capability, without resorting to use a separate validation
data set. We also want the model construction process to be au-
tomatic without the need for the user to specify some additional
terminating criterion. The usual training MSE cannot achieve
these objectives, but the PRESS statistic provides the capability
to do so. Second, the level of sparsity and computational effi-
ciency are also critical to the model construction process, and
the LROLS algorithm (based on the training MSE) is known

to offer considerable advantages in these two aspects. By com-
bining the PRESS statistic with the LROLS algorithm, we ob-
tain a truly automatic and computationally efficient construc-
tion algorithm capable of producing very sparse models with
excellent generalization performance, using a training data set
only. Several illustrative examples are included to illustrate the
effectiveness of this approach. Comparisons with some of the
existing state-of-art modeling methods are given, and the re-
sults demonstrate that our LROLS algorithm based on PRESS
statistic compares favorably in terms of achieving the above-
stated objectives.

II. LINEAR-IN-THE-WEIGHTS REGRESSION MODEL

Consider the general discrete-time nonlinear system repre-
sented by the nonlinear model [28]

(1)

where and are the system input and output variables
with integers and representing the lags in and ,
respectively, is a white noise,

denotes the system “input” vector,
and is the unknown system mapping. The system (1) is
to be identified from an -sample observation data set

using some suitable functional that can ap-
proximate with arbitrary accuracy. One class of such func-
tionals is the regression model of the form

(2)

where denotes the model output, are the model weights,
are the regressors and

with , and is the
total number of candidate regressors. The model (2) is very
general and includes all the kernel-based models, the polyno-
mial-expansion model [1], and the general linear-in-the-weights
nonlinear model [29]. In particular, for kernel-based models, the
regressor takes the form

(3)

where is the kernel center, and is a given kernel function.
By letting , for ,

and defining and
, the regression model (2) can be written

as

(4)

Let an orthogonal decomposition of the matrix be

(5)
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where

. . .
...

...
. . .

. . .
(6)

and

(7)

with columns satisfying , if . The regression
model (4) can alternatively be expressed as

(8)

where the orthogonal weight vector sat-
isfies the triangular system . The space spanned by
the original model bases ,] is identical
to the space spanned by the orthogonal model bases

, and the model is equivalently expressed by

(9)

where .

III. OLS ALGORITHM BASED ON PRESS STATISTIC AND

LOCAL REGULARIZATION

A. Model Selection Using Cross Validation With PRESS
Statistic

Consider the model selection problem where a set of
models or predictors have been identified using the training
data set . Denote these predictors, identified using all the

data points of , as with index .
Cross validation using the stacked regression combines these
models to achieve better generalization performance [22], [23].
Our aim here is to select a single parsimonious model with
good generalization capability. To optimize generalization
capability, cross validation is often used for model selection
[20]. A commonly used cross validation is the delete-1 cross
validation. The idea is as follows. For every predictor, each
data point in the training set is sequentially set aside in turn,
a model is estimated using the remaining data points,
and the prediction error is derived using only the data point
that was removed from training. Specifically, let be the
resulting data set by removing the th data point from , and
denote the th model estimated using as and
the related predicted model residual at as

(10)

The leave-one-out test error or the mean square PRESS error
[21], [24] for the th model is obtained by averaging all
these prediction errors:

(11)

To select the best predictor from the candidate predictors
, the same modeling procedure is applied to

each of the predictors, and the predictor with the minimum
PRESS statistic is selected.

For linear-in-the-weights models, the PRESS statistic can be
generated, without actually sequentially splitting the training
data set and repeatedly estimating the associated models,
by using the Sherman–Morrison–Woodbury theorem [21].
Consider that an -term model is identified using
based on the model form of (2). The PRESS errors
are calculated using [21], [24]

(12)

where . The computation of the
PRESS error in (12) relies on the assumption that the regression
matrix has full rank. Obviously, choosing the best subset
model that minimizes the PRESS statistic quickly becomes
computationally prohibitive even for a modest -term model
set. Moreover, the PRESS error (12) itself is computational
expensive because the matrix inversion involved. However, if
we choose only to incrementally minimize the PRESS statistic
in an orthogonal forward regression manner, as presented
in [27], the model selection procedure based on the PRESS
statistic becomes computationally affordable. Furthermore,
due to orthogonalization, the calculation of the PRESS errors
becomes very efficient [27]. Note that the orthogonal forward
selection procedure will always select a subset model such that
the associated Hessian matrix is not only diagonal but well
conditioned as well.

B. LROLS Algorithm Based on PRESS Statistic

The LROLS algorithm [13], [15] is based on the following
regularized training error criterion

(13)

where is the regularization parameter
vector, and diag . The algorithm selects
a subset model by incrementally minimizing the regularized
training MSE. As is defined in [13] and [15], the regularized
error reduction ratio due to the regressor is given by

rerr (14)

At the th stage of selection procedure, a model term is selected
if it produces the largest regularized error reduction ratio among
the remaining to candidates. The selection process is ter-
minated at the th stage if

rerr (15)

where is a user-specified tolerance. This produces a
sparse model containing significant regressors.
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The regularization parameters can be optimized iteratively
using an evidence procedure [4], [9]. The following error cri-
terion is obviously equivalent to the criterion (13):

(16)

where is the noise parameter (inverse of noise variance),
is the hyperparameter vector, and

diag . The relationship between a regu-
larization parameter and its corresponding hyperparameter is
given by

(17)

It can be shown that the log evidence for and is [4]

evidence

constant (18)

Because of the orthogonalization, the Hessian matrix is diag-
onal and is given by

diag

(19)

Setting the derivatives of evidence with respect to and
to zeros yields the updating formulas for and , respectively.
Substituting these updating formulas into (17) results in the up-
dating formulas for the regularization parameters:

(20)

where

and (21)

Usually a few iterations (typically less than 10) are sufficient to
find a (near) optimal .

In the orthogonal forward selection procedure, if is too
small (near zero), this term will not be selected. This build-in
mechanism automatically avoids any ill-conditioning situations.
For the original OLS algorithm [1], the value of the user spec-
ified terminating scalar is critical for avoiding an overfitted
model. For the above LROLS algorithm based on training MSE,
the choice of is less critical, as is shown in [13] and [15]. Nev-
ertheless, the user is still required to specify an appropriate value
for . The main component in the model selection criterion for
the above algorithm is the training MSE. We can modify the
model selection procedure so that the subset model selection is
based entirely on the model generalization capability. Specif-
ically, we use the PRESS statistic as the subset model selec-
tion criterion, whereas the model parameter estimate and the up-

date of regularization parameters remain the same as the above
LROLS algorithm.

Using the equivalent orthogonal model (9) and incorporating
parameter regularization, the PRESS error is given by

(22)

where the PRESS error weighting is given by

(23)

The derivation of (22) is similar to the case without regulariza-
tion given in [27]. The mean square PRESS error for the model
with a size is then given by

(24)

Note that the model residual for the -term model can be
computed recursively as

(25)

and similarly, the PRESS error weighting can be written
in a recursive formula by

(26)

The recursive formulas (25) and (26) enable an efficient com-
putation of the PRESS statistic (24).

The subset model selection procedure can be modified as fol-
lows. At the th stage of the selection procedure, a model term
is selected among the remaining to candidates if the re-
sulting -term model produces the smallest mean square PRESS
error. It has been shown in [27] that the PRESS statistic is
concave with respect to the model size . That is, there exists an
“optimal” model size such that for , decreases as
increases, whereas for , increases as increases.
Thus, the selection procedure is automatically terminated with
an -term model when , without the need for
the user to specify a separate termination criterion. The iterative
model selection procedure based on the LROLS algorithm with
PRESS statistic can now be summarized.

1) Initialization: Set , to the same small
positive value (e.g., 0.000 01). Set iteration .

Step 1) Given the current and with the following initial
conditions:

and

(27)



902 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 34, NO. 2, APRIL 2004

use the procedure described in the Appendix to se-
lect a subset model with terms.

Step 2) Update using (20) and (21) with . If
remains sufficiently unchanged in two successive

iterations or a preset maximum iteration number is
reached, stop; otherwise, set , and go to Step
1.

The requirements of computing the PRESS statistic in the
selection process represent a considerable complexity increase,
compared with the LROLS algorithm using the regularized
training MSE. However, the computational complexity of the
proposed algorithm is clearly affordable, due to the orthogonal
forward regression and, in particular, the efficient recursive
calculation of the PRESS errors. The main advantage of the
proposed algorithm is that the model selection is directly
based on the model generalization capability. Therefore, even
without regularization, the algorithm, which is first derived
in [27], is capable of producing sparse models with excellent
generalization performance. The local regularization can often
further enforce sparsity to derive much sparser models in
many practical modeling situations. These observations will be
illustrated later on by some modeling examples.

IV. COMPARISON WITH SOME EXISTING MODEL

CONSTRUCTION ALGORITHMS

Several model construction algorithms are used for a compar-
ison with the proposed LROLS algorithm with PRESS statistic,
and they are the OLS algorithm with PRESS statistic [27], the
LROLS algorithm with regularized training MSE [13], [15], the
RVM algorithm [9], and the enhanced -means clustering and
least squares (CLS) algorithm [30], [31]. The OLS with PRESS
statistic and the LROLS with PRESS statistic are both automatic
construction algorithms using only a training data set. It should
be pointed out that the computational complexity of the LROLS
algorithm is not necessarily significantly more than that of the
OLS algorithm, even though the former involves an iterative
loop. This is because typically after the first iteration, which has
a complexity of the OLS algorithm, the model set contains only

terms, and the complexity of the subsequent itera-
tion decreases dramatically. The LROLS algorithm with training
MSE has a complexity less than that of the LROLS algorithm
with PRESS statistic, and it is also an automatic construction
algorithm using only a training data set, provided that an ap-
propriate value for can be specified. When an appropriate
cannot be found, it may then be necessary to use other termi-
nating criteria, such as employing an additional validation data
set.

The RVM algorithm [9] shares certain common features with
the LROLS algorithm, as they both use an approach of mul-
tiple regularizers to enforce sparsity and adopt a similar evi-
dence procedure for updating hyperparameters or regularization
parameters. It is therefore not surprising that the generalization
capabilities and the levels of sparsity provided by the two algo-
rithms are similar. The LROLS algorithm, however, has consid-
erable computational advantages in that it can operate robustly
in difficult modeling conditions, and its iterative loop generally
converges faster compared with the RVM (see the discussion in

[15]). Using the equivalent regularization formula, the RVM for
regression [9] can be reformulated to involve an iterative loop
of the model weight estimation and regularization parameter up-
dating. With given , the model weight estimate is the regular-
ized least squares (LS) solution:

(28)

where the Hessian matrix is given by

(29)

The regularization parameters are updated using

(30)

where

with (31)

and denotes the th diagonal element of . The RVM
starts with the full model set and removes those regressors
that have large values in their associated regularization param-
eters. Clearly, the inverse of is expensive and this matrix
may be ill-conditioned or even singular. Compared with the
LROLS algorithm, the regularization parameter updating is
much more expensive, and the iterative procedure generally
converges with slower rate and may suffer from numerical
instability. Model pruning in the RVM method is done by
specifying a large threshold . If a model term with its
associated regularization parameter satisfying ,
it is removed. During the iterative procedure, may need
to be reduced gradually in order to derive an appropriate final
sparse model. Provided that can be set appropriately
and numerical instability does not occur, the RVM algorithm
can provide a very sparse model with excellent generalization
performance using only a training data set.

Kernel based models belong to a special case of the general
linear-in-the-weights model (2). Typically, each training input
data is fitted with a kernel function, and a sparse repre-
sentation is then sought. This is the approach adopted by the
OLS, SVM, and RVM methods. An alternative approach is to
use a clustering algorithm to partition the training input data

into clusters and use the cluster centers for the kernel
centers. The related model weights can then be solved using
the usual LS method. Early works adopting this approach (e.g.,
[32], [33]) used the -means clustering [34] to seek the cluster
prototypes. The traditional -means clustering algorithm can
only achieve a local optimal solution, which depends on the
initial locations of cluster centers. A consequence of this local
optimality is that some initial centers can become stuck in re-
gions of the input domain with few or no input patterns and
never move to where they are needed. An improved -means
clustering algorithm was proposed in [35], which overcomes
the above-mentioned drawback. By using a cluster variation-
weighted measure, this enhanced -means partitioning process
always achieves an optimal center configuration in the sense
that after convergence all clusters have an equal cluster variance.
The enhanced CLS algorithm [30], [31] adopts this partitioning
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process to seek the kernel centers . The enhanced
-means clustering algorithm [35] is summarized as follows:

(32)

where is a learning rate, the membership function
is defined as

if for all
otherwise

(33)

and is the variation or “variance” of the th cluster. To estimate
variation , the following updating rule is used:

(34)

where is a constant slightly less than 1.0. The initial varia-
tions are set to the same small number. Note
that the learning rate can be self-adjusting based on an “entropy”
formula [35]

(35)

where

with

(36)

Given the set of kernel centers , the kernel model
in the form (2) can be formed, and the model weight vector
is readily given by the LS solution . The
enhanced CLS algorithm has a very low complexity. However,
the algorithm itself does not provide the required number of
cluster prototypes or model terms for adequately modeling the
data, i.e., it cannot determine the model structure. We will adopt
a practical strategy of having a separate validation data set at a
cost of increasing complexity. A range of models with different
model sizes are fitted to the training data set, and the MSE
values of the fitted models are computed over the validation set.
The model with a size , which has the smallest test MSE, is
selected.

V. MODELLING EXAMPLES

Example 1: This example used a radial basis function (RBF)
network to model the scalar function

(37)

Four hundred training data were generated from ,
where the input was uniformly distributed in , and
the noise was Gaussian with zero mean and standard deviation
0.2. The first 200 data points were used for training and the other
200 samples for model validation. The RBF model employed
the Gaussian kernel function of the form

(38)

Fig. 1. Evolution of training MSE and PRESS statistic versus model size for
simple scalar function modeling problem using the OLS algorithm based on
PRESS statistic without the help of a validation set.

Fig. 2. Simple scalar function modeling problem. (Dots) Noisy training data
y. (Thin curve) Underlying function f(x). (Thick curve) Model mapping.
(Circles) Selected RBF centers. The seven-term model was identified by the
OLS algorithm based on PRESS statistic without the help of a validation set.

where was the th RBF center vector and the kernel vari-
ance. For this example, was found to be optimal
empirically and was used for all the models. As each training
data was considered as a candidate RBF center, there were

regressors in the regression model (2). The training
data were very noisy. Two hundred noise-free data with
equally spaced in were also generated as an addi-
tional testing data set for evaluating model performance.

We first applied the OLS algorithm based on PRESS statistic.
Fig. 1 depicts the evolution of the training MSE and PRESS
statistic in scale during the forward regression procedure
with a typical set of noisy training data set. It can be seen that the
PRESS statistic continuously decreased until

, and the algorithm terminated with a seven-term
model. The training MSE, the mean square PRESS error, and
the MSEs over the noisy and noise-free testing sets, respectively,
for the constructed seven-term model are summarized in Table I.
Fig. 2 shows the noisy training points and the underlying func-
tion together with the mapping generated using the model
identified by the OLS algorithm based on PRESS statistic. It
can be seen from the results shown in Table I and Fig. 2 that the
OLS algorithm based on PRESS statistic automatically identi-
fied a very sparse model from the noisy training data set with
excellent generalization capability.

Next, we applied the LROLS algorithm with PRESS statistic
to the same noisy training data set. After the first iteration, the
model set contained seven candidates, and subsequent iterations
did not reduce the model set any further. After ten iterations, the
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TABLE I
COMPARISON OF MODELING ACCURACY FOR THE SIMPLE SCALAR FUNCTION MODELING

Fig. 3. Simple scalar function modeling problem. (Dots) Noisy training data
y. (Thin curve) Underlying function f(x). (Thick curve) Model mapping.
(Circles) Selected RBF centers. The seven-term model was identified by the
LROLS algorithm based on PRESS statistic without the help of a validation set.

regularization parameters were considered to have converged,
and the modeling accuracy of the resulting seven-term model is
also summarized in Table I. The corresponding model mapping
generated by this seven-term model is depicted in Fig. 3.

It is informative to examine the selection process of the
LROLS algorithm based on training MSE. At the first iteration,
the model selection procedure stopped at the 18th stage, when
it detected that adding one more term would cause the problem
to be singular or very ill-conditioned. The model set after the
first iteration thus contained 17 terms. The model, after had
converged (ten iterations), is listed in Table II. It can be seen
from Table II that the regularization parameters related to
the ninth to 17th terms were all very large and the associated
model weights were effectively zero. This clearly indicated an
eight-term model. The modeling accuracy of this eight-term
model is summarized in Table I, and the corresponding model
mapping is illustrated in Fig. 4. For this example, the role of
terminating threshold was not critical at all, and the local
regularization enabled the selection of a very sparse model
from the noisy training data set with excellent generalization
capability.

For the RVM algorithm, the iterative process was observed to
converge slower, and 50 iterations were required. The pruning
threshold was initially set to , which was sub-
sequently reduced to 500.0 at the tenth iteration, to 4.5 at the
30th iteration, and to 0.05 at the 40th iteration. The construction
process produced a 15-term model as listed in Table III, and the
modeling accuracy of this model can be seen in Table I. Fig. 5
depicts the model mapping generated by this 15-term model,
where it can be observed that some of the selected centers were
very close to each other and a seven-term model was in fact
possible, but there existed no mechanism within the RVM algo-
rithm to find this very sparse seven-term model that would have
the same excellent generalization performance as the 15-term
model shown in Table III.

TABLE II
SELECTION PROCEDURE OF THE LROLS ALGORITHM BASED ON TRAINING

MSE FOR THE SIMPLE SCALAR FUNCTION MODELING AFTER ��� HAS

CONVERGED (TEN ITERATIONS)

Fig. 4. Simple scalar function modeling problem. (Dots) Noisy training data
y. (Thin curve) Underlying function f(x). (Thick curve) Model mapping.
(Circles) Selected RBF centers. The eight-term model was identified by the
LROLS algorithm based on the training MSE without the help of a validation
set.

For the enhanced CLS algorithm, the adaptive constant was
set to , and the clustering algorithm was passed
through the training data set 50 times to ensure convergence.
A separate validation set was required to help determining
the model structure, and Fig. 6 shows the training and testing
MSE values over the training and validation sets, respectively,
versus the model size . The result shown in Fig. 6 clearly
indicated a seven-term model. The model accuracy of the
resulting seven-term model is summarized in Table I, and the
corresponding model mapping is illustrated in Fig. 7.
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TABLE III
MODEL CONSTRUCTED BY THE RVM ALGORITHM FOR THE SIMPLE SCALAR

FUNCTION MODELING AFTER ��� HAS CONVERGED (50 ITERATIONS)

Fig. 5. Simple scalar function modeling problem. (Dots) Noisy training data
y. (Thin curve) Underlying function f(x). (Thick curve) Model mapping.
(Circles) Selected RBF centers. The 15-term model was identified by the RVM
algorithm without the help of a validation set.

Fig. 6. Training and testing MSE values over the training and validation sets,
respectively, versus model size for simple scalar function modeling problem
using the enhanced CLS algorithm with the help of a validation set.

Example 2: This was a simulated nonlinear dynamic con-
trol system considered in [36]. The underlying dynamic system
was governed by (39), shown at the bottom of the next page,
where the system input was a random signal uniformly
distributed in the interval . The noisy system output was

Fig. 7. Simple scalar function modeling problem. (Dots) Noisy training data
y. (Thin curve) Underlying function f(x). (Thick curve) Model mapping.
(Circles) Selected RBF centers. The seven-term model was identified by the
enhanced CLS algorithm with the help of a validation set.

Fig. 8. Evolution of training MSE and PRESS statistic versus model size for
simulated control system modeling problem using the OLS algorithm based on
PRESS statistic without the help of a validation set.

given by , where the noise was Gaussian
with zero mean and standard deviation 0.05. Four hundred noisy
samples were generated. The first 200 data points were used for
training, and the other 200 samples were used for model valida-
tion. A RBF network with the thin-plate-spline basis function

(40)

and the input vector

(41)

was used to construct a model from the noisy training data set.
As each training data point was considered as a candidate
RBF center, there were candidate regressors.

Fig. 8 illustrates the evolution of the training MSE and
PRESS statistic for the OLS algorithm based on PRESS
statistic, where it can be seen that the PRESS statistic contin-
uously decreased until ,
and the algorithm terminated with a 51-term model. For the
LROLS algorithm based on PRESS statistic, the model set
was reduced to a size of 51 after the first iteration, and a
constant size of 31 terms was reached after a few iterations. The
final 31-term model was produced after 20 iterations. For the
LROLS algorithm based on training MSE, it was found that as

(39)
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Fig. 9. Training and testing MSE values over the training and validation sets,
respectively, versus subset model size for simulated control system modeling
problem using the LROLS algorithm based on training MSE with the help of a
validation set.

Fig. 10. Training and testing MSE values over the training and validation sets,
respectively, versus model size for simulated control system modeling problem
using the enhanced CLS algorithm with the help of a validation set.

more terms were added the training MSE kept decreasing and
the corresponding regularization parameters all had reasonable
small values. Thus, it was difficult to determine an adequate
sparse model by specifying an appropriate value for , and it
was decided to use the validation data set to help the model
construction. Fig. 9 depicts the training and testing MSE
values versus the subset model size, and the result appeared to
suggest a 42-term subset model. For the RVM algorithm, 60
iterations were used, and the pruning threshold was initially set
to which was subsequently reduced to 0.25 at
the 50th iteration. With this choice of , the RVM method
was able to construct a 42-term model without the need of
employing the validation set. For the enhanced CLS algorithm,

was used with 60 passes of the training data set for
clustering. The model structure determination with the help of
the validation set is depicted in Fig. 10, where a decision was
made to choose the 49-term model.

The five models produced by the five algorithms are com-
pared in Table IV. The constructed RBF model was
used to iteratively generate the model output according to

(42)

with the input vector given by

(43)

TABLE IV
COMPARISON OF MODELING ACCURACY FOR THE SIMULATED CONTROL

SYSTEM MODELING.

(a)

(b)

Fig. 11. Modeling performance for simulated control system modeling
problem. (a) Iterative model output ŷ (k) (dashed) superimposed on system
output y(k) (solid). (b) Iterative model error � (k). The 42-term model was
constructed by the RVM algorithm without the help of a validation set.

Fig. 11 plots the iterative model output and error
for the 42-term model constructed by the RVM

algorithm. The other four model responses, which are not shown
here, were all similar to the results shown in Fig. 11. The results
demonstrate that the five constructed models were adequate and
had similar generalization capability. For this example, the OLS
with PRESS, the LROLS with PRESS, and the RVM were able
to automatically construct sparse models without the help of a
validation set, and in particular, the LROLS algorithm based on
PRESS statistic resulted in a much sparser model, compared
with the other four algorithms.

Example 3: This example constructed a model representing
the relationship between the fuel rack position (input )
and the engine speed (output ) for a Leyland TL11 tur-
bocharged, direct-injection diesel engine operated at low engine
speed. It is known that at low engine speed, the relationship
between the input and output is nonlinear [37]. Detailed system
description and experimental setup can be found in [37]. The
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(a)

(b)

Fig. 12. Engine data set (a) input u(k) and (b) output y(k).

data set, which is depicted in Fig. 12, contained 410 samples.
The first 210 data points were used in modeling and the last 200
points in model validation. A RBF model with the input vector

(44)

and the Gaussian basis function of variance 1.69 was used to
model the data. As each in the training data set was con-
sidered as a candidate RBF center, there were can-
didate regressors. From Fig. 12, it is seen that a strong periodic
component was presented in the data, and this was believed to
have caused numerical problem for the RVM method during the
modeling construction.

Fig. 13 shows the evolution of the training MSE and PRESS
statistic for the OLS algorithm based on PRESS statistic. For
this example, the algorithm resulted in a sparse 22-term model.
For the LROLS algorithm based on PRESS statistic, the model
set contained 22 terms after the first iteration, and the subse-
quent iterations did not reduce the model set any further. The
final 22-term model was obtained after ten iterations. For the
LROLS algorithm based on training MSE, during the first iter-
ation, the model selection procedure stopped at the 55th stage
to avoid the singular or very ill-conditioning problem. By exam-
ining the 54-term model obtained after ten iterations, it was seen
that the 35th to 54th terms had large values of associated with
them. Thus, the algorithm was able to produce a sparse 34-term
model using only the training data set and without the need to
specify an appropriate value for . Note that if the validation
set was used to help determining the model structure, a sparser
model with 23 terms was obtained with the same generalization
performance as the 34-term model. For the enhanced CLS algo-
rithm, the clustering algorithm passed through the training data
set 50 times with . The model structure determination
with the aid of the validation set is illustrated in Fig. 14, and the
result suggested a 23-term model.

Fig. 13. Evolution of training MSE and PRESS statistic versus model size for
engine data set modeling problem using the OLS algorithm based on PRESS
statistic without the help of a validation set.

Fig. 14. Training and testing MSE values over the training and validation sets,
respectively, versus model size for engine data set modeling problem using the
enhanced CLS algorithm with the help of a validation set.

The modeling accuracies of the four resulting models are
compared in Table V, where it can be seen that the four
models have similarly good generalization performance. The
constructed RBF model was used to generate the
model prediction according to

(45)

with the input vector given by (44). Fig. 15 depicts the
model prediction and the prediction error

for the 22-term model constructed by the LROLS algo-
rithm based on PRESS statistic. The other three models have
similar prediction performance to the results shown in Fig. 15.

For this example, the RVM algorithm as implemented in the
form given in Section IV failed to work due to numerical insta-
bility of the iterative loop for updating regularization parame-
ters. Various initial values for were tried and a more stable
updating formula for

(46)

was also used, but the iterative loop for updating was unstable.
This numerical instability caused the algorithm to force every
regularization parameters to take very large values, which was
the root of failure. It is conceivable that the RVM method im-
plemented with some other more robust form may still work
well in this situation. However, the results shown here serve to
highlight a potentially inherent instability of the RVM method,
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TABLE V
COMPARISON OF MODELING ACCURACY FOR THE ENGINE DATA SET

(a)

(b)

Fig. 15. Modeling performance for engine data set modeling problem. (a)
Model prediction ŷ(k) (dashed) superimposed on system output y(k) (solid).
(b) Model prediction error �(k). The 22-term model was constructed by the
LROLS algorithm based on PRESS statistic without the help of a validation set.

which can affect the algorithm’s performance in adverse mod-
eling environments.

Example 4: This example constructed a model for the gas
furnace data set [38, ser. J]. The data set contained 296 pairs of
input–output points, where the input was the coded input
gas feed rate and the output represented CO concentra-
tion from the gas furnace. All the 296 data points were used in
training. A RBF network with the input vector

(47)

and the thin-plate-spline basis function was used to fit the data
set. The number of candidate regressors in the regression model
(2) was .

The OLS algorithm based on PRESS statistic terminated the
model construction with a sparse 32-term model when the con-
dition was reached, and

Fig. 16. Evolution of training MSE and PRESS statistic versus model size for
gas furnace data set modeling problem by the OLS algorithm based on PRESS
statistic using the training data set.

Fig. 17. Evolution of training MSE and PRESS statistic versus model size
for gas furnace data set modeling problem by the LROLS algorithm based on
training MSE using the training data set.

Fig. 16 shows the evolution of the training MSE and PRESS
statistic during the orthogonal forward regression procedure.
The LROLS algorithm based on PRESS statistic with 20 itera-
tions was able to obtain a sparser model of 28 terms. The LROLS
algorithm based on training MSE was unable to automatically
determine an adequate sparse model without being given an ap-
propriate stopping threshold . Since there was no validation
set, an attempt was made using the PRESS statistic to help de-
termining the model structure, and Fig. 17 illustrates the evo-
lution of the training MSE and PRESS statistic for the LROLS
algorithm based on training MSE. From Fig. 17, it was diffi-
cult to decide how many terms should be included in the con-
structed model but a decision was made nevertheless to use the
40-term model. For the RVM algorithm, 60 iterations were in-
volved. By choosing the pruning threshold ini-
tially and subsequently reducing it to at the 50th
iteration, the RVM algorithm was able to automatically con-
struct a 40-term model using only the training set. For the en-
hanced CLS algorithm, the clustering algorithm passed through
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Fig. 18. Evolution of training MSE and PRESS statistic versus model size for
gas furnace data set modeling problem by the enhanced CLS algorithm using
the training data set.

TABLE VI
COMPARISON OF MODELING ACCURACY FOR THE GAS FURNACE DATA SET

the training set 100 times with . The model struc-
ture determination, which is illustrated in Fig. 18, could only
be carried out with the help of PRESS statistic since there was
no validation data set. The results shown in Fig. 18 suggested a
40-term model.

The five resulting models are compared in Table VI, where
it can be seen that the model constructed by the enhanced CLS
algorithm is slightly inferior to the other four models. The con-
structed RBF model was used to generate the model
prediction according to with the input
vector given by (47). Fig. 19 shows the model prediction

and the prediction error for the 28-term
model constructed by the LROLS algorithm based on PRESS
statistic.

VI. CONCLUSION

A novel approach has been considered for sparse data
modeling using linear-in-the-weights nonlinear models based
directly on optimizing the model generalization capability.
This has been achieved by adopting a delete-1 cross vali-
dation method and utilizing an efficient computation of the
associated leave-one-out test error also known as the PRESS
statistic based on an orthogonal forward regression procedure.
It has been shown that incorporating a local regularization
into the model selection procedure can often further enforce
sparsity. The model construction process is fully automated,
and the user does not need to specify any stopping criterion
for terminating the model selection process. Several modeling
examples have been included to demonstrate the ability of the
proposed approach to construct sparse models that generalize
well. A comparison with some of the existing state-of-art
linear-in-the-weights modeling methods has been given.

(a)

(b)

Fig. 19. Modeling performance for gas furnace data set modeling problem. (a)
Model prediction ŷ(k) (dashed) superimposed on system output y(k) (solid).
(b) Model prediction error �(k). The 28-term model was constructed by the
LROLS algorithm based on PRESS statistic using only the training data set.

APPENDIX

The modified Gram–Schmidt orthogonalization procedure
[1] calculates the matrix row by row and orthogonal-
izes as follows: At the th stage, make the columns

, orthogonal to the th column, and repeat
the operation for . Specifically, denoting

, then for

(48)

The last stage of the procedure is simply .
The elements of are computed by transforming in a
similar way:

(49)

This orthogonalization scheme can be used to derive a simple
and efficient algorithm for selecting subset models in a forward-
regression manner. First, define

(50)

If some of the columns in have been
interchanged, this will still be referred to as for nota-
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tional convenience. With the initial conditions as specified in
(27), the th stage of the selection procedure is given as follows.

1) For , compute

where and are the th elements of

and , respectively.
2) Find

Then, the th column of is interchanged with
the th column of , the th column of is inter-
changed with the th column of up to the th row,
and the th element of is interchanged with the th el-
ement of . This effectively selects the th candidate as
the th regressor in the subset model.

3) The selection procedure is terminated with a -term
model if . Otherwise, perform the orthogonal-
ization as indicated in (48) to derive the th row of
and to transform into ; calculate , and up-
date into in the way shown in (49); update the
PRESS error weightings

and go to Step 1.
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