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Optimizing Stability Bounds of Finite-Precision
PID Controller Structures

S. Chen, J. Wu, R. H. Istepanian, and J. Chu

Abstract—This paper investigates a recently derived lower bound
stability measure for sampled-data controller structures subject to finite-
wordlength (FWL) constraints. The optimal realization of the digital PID
controller with FWL considerations is formulated as a nonlinear opti-
mization problem, and an efficient strategy based on adaptive simulated
annealing (ASA) is adopted to solve this complex optimization problem.
A numerical example of optimizing the finite-precision PID controller
structure for a simulated steel rolling mill system is presented to illustrate
the effectiveness of the proposed strategy.

Index Terms—Finite wordlength, optimization, sampled data system,
stability.

I. INTRODUCTION

Controller implementations with fixed-point arithmetic offer the ad-
vantages of speed, memory space, cost, and simplicity over floating-
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point arithmetic. However, a designed stable closed-loop system may
become unstable when the infinite-precision controller is implemented
using a fixed-point processor due to finite-wordlength (FWL) effects.
In recent years, many studies have addressed FWL issues [1]–[6].
It remains an unsolved problem to compute the exact stability ro-
bustness measure with FWL considerations for sampled-data control
systems [1]. To overcome this problem, a tractable lower bound
stability measure has been developed [6]. Recently, a new lower
bound stability measure [4], [5] has been derived, which provides
a better estimate of stability robustness than the one given in [6].

In this paper, we discuss the generic optimal realization problem
of the digital PID controller with FWL considerations based on
this new closed-loop lower bound stability measure. We prove
that this problem can be solved as an unconstrained nonlinear
optimization problem. The optimization criteria in this case are,
however, nonsmooth and nonconvex functions, and conventional
optimization methods may fail to obtain an optimum solution. To
overcome this difficulty, an efficient global optimization method,
known as the ASA [7]–[10], is employed to search for the true
optimal PID controller realization. The effectiveness of the proposed
optimization strategy is illustrated by the numerical example of a
simulated steel rolling mill control problem.

II. STABILITY ROBUSTNESSMEASURES WITH FWL CONSIDERATIONS

Consider the sampled-data system depicted in Fig. 1, whereP (s) is
strictly proper. The plantP (z) = ShP (s)Hh has a realization(Az 2
Rm�m; Bz 2 Rm�l; Cz 2 Rq�m; 0). The controllerC(z) has a
realization(Ac 2 Rn�n; Bc 2 Rn�q; Cc 2 Rl�n; Dc 2 Rl�q).
The realizations ofC(z) are not unique. If(Ac; Bc; Cc; Dc) is a
realization ofC(z), so is (T �1AcT ; T

�1Bc; CcT ; Dc) for any
similarity transformationT 2 Rn�n. The corresponding realization
(A; B; C; D) of the closed-loop system is given by

A =
Az +BzDcCz BzCc

BcCz Ac

=
Az 0
0 0

+
Bz 0
0 In

Dc Cc

Bc Ac

Cz 0
0 In

=M0 +M1XM2 = A(X)

B =
Bz

0

C = [Cz 0]

D =0 (1)

where all 0’s are zero matrices of proper dimensions,In is then�n
identity matrix, and

X =
Dc Cc

Bc Ac

=

p1 p2 � � � pq+n
pq+n+1 pq+n+2 � � � p2(q+n)

...
... � � �

...
p(l+n�1)(q+n)+1 p(l+n�1)(q+n)+2 � � � p(l+n)(q+n)

(2)

is the controller matrix. LetC(z) be chosen to make the feedback
system stable. Then all of the eigenvaluesf�i; 1 � i � m+ ng of
A(X) are in the interior of the unit circle.

When the realization(Ac; Bc; Cc; Dc) is implemented with a
digital control processor,X is perturbed intoX + �X due to the
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Fig. 1. Sampled-data system with digital controller realization.

FWL effects, shown in (3) at the bottom of the page. Each element
of �X is bounded by�=2, that is,

�(�X)
�
= max

1�i�N
j�pij �

�

2
(4)

where N = (l + n)(q + n). For a fixed-point processor ofBs

bits, � = 2�(B �B ), and2B is a normalization factor. With the
perturbation�X, �i may be moved to~�i. The sampled-data system
is unstable if and only if there existsj~�ij � 1. Define

�0(X)
�
= inff�(�X): A(X) +M1�XM2 is unstableg: (5)

It describes the stability robustness of the realizationX to the FWL
effects [1]. However, explicitly computing the value of�0(X) is
still an unsolved open problem.

To overcome the difficulty in the computation of�0(X), a lower
bound of�0(X) has recently been derived [4]. Define

�1(X)
�
= min

1�i�m+n

1� j�ij
N

j=1

@�i
@pj X

: (6)

We have the following theorem from [4].
Theorem 1: A(X)+M1�XM2 is stable when�(�X) < �1(X).
Comparing (6) with (5), it is easily seen that�1(X) is a lower

bound of�0(X). The following lemma from [4] shows that�1(X)
can be computed easily.

Lemma 1: Let f�i; 1 � i � m + ng be the eigenvalues of
A(X), and letxxxi and yyyi be the right eigenvector and reciprocal
left eigenvector corresponding to�i, respectively. Then, see (7) at
the bottom of this page, whereT denotes the transpose operation and
� is the conjugate operation.

Let Bmin
s be the smallest word length that can guarantee the

closed-loop stability. WhenX is implemented with a digital control
processor ofBs bits, it is easily seen that the closed-loop sampled-
data system is stable if

�1(X) >
2�(B �B )

2
: (8)

Define B̂min
s1 as the smallest integer that is not less than

� log2 �1(X) � 1 + BX . B̂min
s1 can be used as an estimate of

Bmin
s . Another tractable stability robustness measure with FWL

considerations given in [6] is defined as

�2(X)
�
= min

1�i�m+n

1� j�ij

N

N

j=1

@�i
@pj X

2
: (9)

It is also a lower bound of�0(X). Similarly, an estimatêBmin
s2 of

Bmin
s can be computed based on�2(X). Since

N

j=1

@�i
@pj X

2

� N

N

j=1

@�i
@pj X

2

(10)

we have�2(X) � �1(X) � �0(X). It is clear that�1(X), which
is closer to�0(X), is a better stability robustness measure, and can
provide a better estimate ofBmin

s .

III. OPTIMAL REALIZATION OF PID CONTROLLER

STRUCTURES WITH FWL CONSIDERATIONS

Since there are different realizations for a givenC(z) and the
stability robustness measure�1(X) is a function of the realization,
it is of practical importance to find a realization such that�1(X)
is maximized. Such a realization is optimal in the sense that it has
maximum stability robustness to FWL effects. The digital controller
implemented with an optimal realization means that the stability
of the closed-loop system is guaranteed with a minimum hardware
requirement in terms of word length. In this section, we specifically
discuss the optimal realization problem of digital PID controllers.

The digital PID controllerC(z) is an ordern = 2 system.
We will assume thatC(z) is “single-input single-output,” that is,
l = q = 1. Let (A0

c 2 R2�2; B0
c 2 R2�1; C0

c 2 R1�2; D0
c 2 R)

be a controllable canonical realization ofC(z), and let (Az 2
Rm�m; Bz 2 Rm�1; Cz 2 R1�m) be a realization of the plant
P (z). Then the initial control matrix is

X0 =
D0
c C0

c

B0
c A0

c

2 R3�3: (11)

Any realization of C(z) can be represented as
(T �1A0

cT ; T
�1B0

c ; C
0
cT ; D

0
c) or

XT
�
=

1 0
0 T �1

X0
1 0
0 T

(12)

�X =

�p1 �p2 � � � �pq+n
�pq+n+1 �pq+n+2 � � � �p2(q+n)

...
... � � �

...
�p(l+n�1)(q+n)+1 �p(l+n�1)(q+n)+2 � � � �p(l+n)(q+n)

(3)

@�i
@X

=

@�i
@p1

@�i
@p2

� � �
@�i
@pq+n

@�i
@pq+n+1

@�i
@pq+n+2

� � �
@�i

@p2(q+n)

...
... � � �

...
@�i

@p(l+n�1)(q+n)+1

@�i
@p(l+n�1)(q+n)+2

� � �
@�i

@p(l+n)(q+n)

=MT
1 yyy

�
ixxx

T
i M

T
2 (7)
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where T 2 R2�2 and det(T ) 6= 0. The transition matrix of the
closed-loop system is

A(XT ) =
Az 0
0 0

+
Bz 0
0 In

XT
Cz 0
0 In

=
Im 0
0 T �1 A(X0)

Im 0
0 T : (13)

Let �0i be theith eigenvalue ofA(X0). From (13), applying Lemma
1, we have

@�i
@X

X=X

=
1 0
0 T T

@�i
@X

X=X

1 0
0 T �T : (14)

From (6), (7), and (14), we can define the optimal realization
problem of digital PID controllers as the following optimization
problem:

�
�
= max

X
�1(XT ) = max

X
min

1�i�m+2

1� j�0i j
N

j=1

@�i
@pj X=X

: (15)

For the complex-valued matrixM 2 Cm�n with elementsMi; j ,
define

kMks �
=

m

i=1

n

j=1

jMi; j j: (16)

The optimization problem (15) is equivalent to

�
�
= min

X
max

1�i�m+2

@�i
@X

X=X
s

1� j�0i j
= min
T 2R
det(T ) 6=0

max
1�i�m+2

1 0
0 T T �i

1 0
0 T �T

s

(17)

where

�i =

@�i
@X

X=X

1� j�0i j
(18)

are eigenvalue sensitivity matrices. It is difficult to handle the
constraint det(T ) 6= 0 directly in numerical optimization. The
following theorem shows that the optimization problem (17) can be
solved by solving the two “simpler” problems. First, we define

f1(x; y; w)

= max
1�i�m+2

w 0 0
0 x 0
0 y 1=x

�i

1=w 0 0
0 1=x 0
0 �y x

s

(19)

and

f2(x; y; u; w) = max
1�i�m+2

w 0 0
0 x u
0 (xy � 1)=u y

��i

1=w 0 0
0 y �u
0 (1� xy)=u x

s

: (20)

Theorem 2: Let

�1 = min

y2(�1;+1)
w2(0;+1)

f1(x; y; w) (21)

and

�2 = min

u2(0;+1)

f2(x; y; u; w): (22)

Then

� = minf�1; �2g: (23)

If � = �1 and (xopt1; yopt1; wopt1) is the optimal solution of (21),
the optimal solution of (17) is given as

Topt = 1

wopt1

xopt1 yopt1
0 1=xopt1

: (24)

If � = �2 and(xopt2; yopt2; uopt2; wopt2) is the optimal solution of
(22), the optimal solution of (17) is given as

Topt = 1

wopt2

xopt2 (xopt2yopt2 � 1)=uopt2
uopt2 yopt2

: (25)

The proof of Theorem 2 is given in the the Appendix. Because
f1(x; y; w) andf2(x; y; u; w) are nonsmooth and nonconvex func-
tions, it is very difficult for a conventional optimization method to
obtain a global minimum solution. To overcome this difficulty, we
adopt an efficient global optimization strategy based on the ASA
[7]–[10]. Space limitation precludes a detailed description of the ASA
algorithm here.

IV. A PPLICATION EXAMPLE

We consider the implementation of a finite-precision PID controller
for a steel rolling mill system. The continuous-time plant model
P (s) was developed in [11]. The entire digital PID control system
is simulated. DiscretizingP (s) with the sampling periodh = 0:001
yields P (z):

Az =
0:9951 � 9:7260 0:0049
0:0010 0:9884 �0:0010
0:0067 13:3732 0:9933

Bz =
0:2486
0:0001
0:0006

Cz = [1 0 0]

Dz = [0]: (26)

A stabilized PID controller for vibration suppression and disturbance
rejection is designed:

0:00269s

0:001s+ 1
� 0:435� 14:26

s
: (27)

Inserting the bilinear transformation into (27) gives rise to the digital
PID controller:

C(z) = �0:01426

z � 1
� 1:1956

z � 0:3333
+ 1:3512: (28)

The initial realization ofC(z) is set to the controllable canonical
realization:

A0
c =

1 0
0 0:3333

B0
c =

�1
�1

C0
c = [0:01426 1:1956]

D0
c = [1:3512]: (29)

Notice that the data given above are shown to only four significant
digits in fractional part.

From A(X0), the poles of the ideal closed-loop system are
computed and given as

�1; 2
�3; 4
�5

=
0:9089� 0:2371i
0:9431� 0:0725i

0:9422
(30)

wherei =
p�1. The corresponding eigenvalue sensitivity matrices

are shown in (31) at the bottom of the next page.
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(a) (b)

Fig. 2. Typical convergence performance of the ASA in optimizing: (a) cost functionf1(x; y; w) with initial (x; y; w) = (1:0; 0:0; 1:0) and (b)
cost functionf2(x; y; u; w) with initial (x; y; u; w) = (1:0; 1:0; 1:0; 1:0).

For the optimization problem (21), the ASA algorithm always
converged to the solution

(xopt1; yopt1; wopt1) = (2:3704; 3:3598; 0:2004)

with �1 = 136:5897: (32)

The realization corresponding to(xopt1; yopt1; wopt1) is

Xopt1 =
1:3512 0:1687 2:7560
0:5888 1 0:9450
�0:4750 0 0:3333

: (33)

The cost functionf1(x; y; w) in a typical run is shown in Fig. 2(a).
It is worth pointing out that, in the previous study [5], a conventional
optimization method, the Rosenbrock algorithm, failed to achieve this
global optimum. For the optimization problem (22), two solutions
were found by the ASA, and they are

x
(1)
opt2; y

(1)
opt2; u

(1)
opt2; w

(1)
opt2 =(2:7967; 0:1540; 0:3512; 0:2565)

with �2 = 111:9901 (34)

x
(2)
opt2; y

(2)
opt2; u

(2)
opt2; w

(2)
opt2 =(�3:0481; �0:1868; 0:2895; 0:4824)

with �2 = 111:9899: (35)

The corresponding realizations are

X
(1)
opt2 =

1:3512 1:7925 0:6277
�0:4553 0:6204 �0:1664
�0:6273 �0:6548 0:7129

(36)

X
(2)
opt2 =

1:3512 0:6274 �0:5069
�0:6274 0:7129 0:1852
1:6101 0:5883 0:6204

: (37)

The cost functionf2(x; y; u; w) in a typical run is shown in
Fig. 2(b). Since� = minf�1; �2g = �2, the optimal PID controller
realization is eitherX(1)

opt2 or X(2)
opt2.

Table I summarizes the stability lower bound measures, estimated,
and true minimal bit lengths that can ensure closed-loop stability for
different controller realizations. The results given in Table I show
that�1(X) is a better measure of stability robustness, as it provides
a larger stability bound and a better estimate ofBmin

s
compared with

�2(X). The ASA optimization strategy is very effective, and the

TABLE I
LOWER STABILITY BOUNDS, ESTIMATED MINIMAL BIT LENGTHS, AND TRUE

MINIMAL BIT LENGTHS FORDIFFERENT CONTROLLER REALIZATIONS

optimization process converges fast, as confirmed in Fig. 2. From
Table I, two realizationsX(1)

opt2 and X
(2)
opt2 have the same stability

lower bound measure and the same estimate of minimum word length.
The largest absolute parameter value is 1.6101 forX

(2)
opt2 and 1.7925

for X(1)
opt2. For practical implementation, therefore,X

(2)
opt2 is preferred.

V. CONCLUSIONS

Based on a new lower bound measuring stability robustness of
sampled-data systems with FWL considerations, the optimal real-
ization of an FWL PID controller can be interpreted as a nonlinear
optimization problem. An efficient global optimization strategy based
on the ASA has been adopted to solve this FWL optimal real-
ization problem. The theoretical results have been verified using
the numerical example of a simulated steel rolling mill system.
This method can be extended to other finite-precision controller
realizations. In this work, the main emphasis has been focused on
the stability issues of digital controller structures subject to FWL
constraints. Ongoing work will explore the integration of the proposed
ASA optimization procedure with the closed-loop performance and
sparseness consideration of controller realizations.

APPENDIX

Define then � n diagonal matrix set:�n
�
= fU = diag(u1; u2;

� � � ; un): ui 2 f�1; 1g; 1 � i � ng. From the definition (16), we
have the following.

�1; 2 =
5:3222� 2:4117i 16:3783� 16:1509i �6:4294� 6:8389i

�0:2336� 0:2303i 0:5165� 1:1835i 0:4878� 0:1992i
7:6870� 8:1766i 40:9014� 16:6993i �6:4145� 16:8486i

�3; 4 =
0:6130� 6:0505i 55:7394� 35:2729i 0:1727� 9:9017i

�0:7948� 0:5030i �9:6135� 3:4161i 1:1885� 0:9662i
�0:2065� 11:8384i 99:6482� 81:0121i 2:6112� 19:1031i

�5 =
�8:0215 �138:6951 13:1745
1:9778 34:1969 �3:2483

�15:7514 �272:3494 25:8702
(31)
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Lemma 2: 8M 2 Cm�n, U1 2 �m, andU2 2 �n,

kU1Mks = kMks and kMU2ks = kMks:

Proof of Theorem 2:Define the sets

�0
�
= T =

t1 t2
t3 t4

:t1 2 R; t2 2 R; t3 2 R;

t4 2 R; t1t4 � t2t3 6= 0

�1
�
= T =

t1 t2
0 t4

:t1 2 R; t2 2 R; t4 2 R;

t1t4 6= 0

�2
�
= T =

t1 t2
t3 t4

:t1 2 R; t2 2 R; t3 2 R;

t4 2 R; t3 6= 0; t1t4 � t2t3 6= 0 : (38)

Construct the optimization problems

�1
�
= min

T 2�
max

1�i�m+2

1 0
0 T T �i

1 0
0 T �T

s

(39)

and

�2
�
= min

T 2�
max

1�i�m+2

1 0
0 T T �i

1 0
0 T �T

s

: (40)

Obviously, �0 = �1 [ �2, and therefore,� = minf�1; �2g. Define
the function sgn(�): sgn(x) = 1 for x � 0 and sgn(x) = �1 for
x < 0. Consider the optimization problem (39). Utilizing Lemma 2,
8T 2 �1 and8 i 2 f1; � � � ; m + 2g we have

1 0
0 T T �i

1 0
0 T �T

s

=
1 0 0
0 t1 0
0 t2 t4

�i

1 0 0
0 1=t1 0
0 �t2=(t1t4) 1=t4 s

=

1= jt1t4j 0 0

0 jt1=t4j 0

0 sgn(t4)t2= jt1t4j jt4=t1j

�i

�

jt1t4j 0 0

0 jt4=t1j 0

0 �sgn(t4)t2= jt1t4j jt1=t4j s

: (41)

Define

x =
jt1j

jt4j
2 (0; +1)

y = sgn(t4)
t2

jt1t4j
2 (�1; +1)

w =
1

jt1t4j
2 (0; +1): (42)

Then

f1(x; y; w)

�
= max

1�i�m+2

w 0 0
0 x 0
0 y 1=x

�i

1=w 0 0
0 1=x 0
0 �y x

s

= max
1�i�m+2

1 0
0 T T �i

1 0
0 T �T

s

(43)

and

�1
�
= min

T 2�
max

1�i�m+2

1 0
0 T T �i

1 0
0 T �T

s

= min

y2(�1;+1)
w2(0;+1)

f1(x; y; w): (44)

If � = �1 and (xopt1; yopt1; wopt1) is the solution of the optimiza-
tion problem (44)

� = �1

= max
1�i�m+2

wopt1 0 0
0 xopt1 0
0 yopt1 1=xopt1

� �i

1=wopt1 0 0
0 1=xopt1 0
0 �yopt1 xopt1 s

= max
1�i�m+2

1

wopt1

wopt1 0 0
0 xopt1 0
0 yopt1 1=xopt1

� �i

1=wopt1 0 0
0 1=xopt1 0
0 �yopt1 xopt1

wopt1

s

(45)

which means that

Topt =
1

wopt1

xopt1 yopt1
0 1=xopt1

(46)

is the optimal solution of the problem (17).
By considering (40) in a similar way, we can prove the rest of

Theorem 2.
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