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Optimal Finite-Precision State-Estimate Feedback
Controller Realizations of Discrete-Time Systems

Jun Wu, Sheng Chen, Gang Li, and Jian Chu

Abstract—This paper investigates the stability issue of a discrete-time
control system, where a state-estimate feedback controller (SEFC), digitally
implemented with a fixed-point format, is used. A tractable closed-loop sta-
bility related measure is derived with finite-word-length (FWL) implemen-
tation consideration of the controller. The optimal realizations of the SEFC
are defined as those that maximize this measure and can be shown as the
solutions of a nonlinear programming problem. A sophisticated optimiza-
tion strategy is presented to provide an efficient method for solving this
problem, and a numerical example is given to illustrate the design proce-
dure.

Index Terms—Finite word length, optimization, stability, state-estimate
feedback controller.

I. INTRODUCTION

The recent advances in digital control system design methods have
led to a need for the efficient and accurate implementation of con-
trollers with orders higher than that of the traditional PID controller. Al-
though the number of controller implementations using floating-point
processors is increasing due to their reduced price, for reasons of cost,
simplicity, speed, memory space, and ease-of-programming, the use
of fixed-point processors is more desirable for many industrial and
consumer applications. The “robustness” of closed-loop stability under
controller parameter perturbations is a critical issue in fixed-point im-
plementations. It is well known that a designed, stable, closed-loop
system may become unstable when the “infinite-precision” controller
is implemented using a fixed-point processor due to finite-word-length
(FWL) effects.

Many studies have investigated digital controller realizations with
FWL considerations [1]–[5]. The first FWL stability measure was pro-
posed in 1994 [3]. However, computing the value of this measure ex-
plicitly is still an unsolved open problem. Recently, two tractable FWL
stability related measures have been derived, and the design procedures
for searching for optimal FWL controller realizations have been de-
veloped [4]–[7]. In all of the above-mentioned works, controllers are
output feedback controllers (OFC’s). It is well known that there is an-
other class of controllers, namely, state-estimate feedback controllers
(SEFC’s) [8]. The SEFC design is the product of a direct synthesis
and design approach for linear control systems that combines modern
state-space methods and observer theory. It also provides a unified for-
mulation for single-input single-output and multi-input multi-output
systems. The design of SEFC’s is more transparent and simpler than
the design of OFC’s. Li and Gevers [9] studied the sensitivity and the
roundoff noise gain of the closed-loop system transfer function with
an FWL implemented SEFC. However, few studies to date investi-
gate the effects of FWL implementation on the closed-loop stability
for SEFC’s.
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Fig. 1. Block diagram of the closed-loop system with state-estimate feedback
controller.

This paper addresses the stability issues of FWL SEFC’s. We derive
a tractable measure that quantifies the “robustness” of the closed-loop
stability under the controller parameter perturbations, and develop an
optimization procedure to search for the optimal controller realizations
that maximize the defined measure. The paper is organized as follows.
Section II is devoted to formulating the problem to be dealt with and
establishing necessary notations. A stability related measure that can
be computed easily for a given SEFC realization is given in Section
III. The optimal controller realization problem is also defined in this
section. In Section IV, the optimization framework for obtaining the
optimal FWL controller realization is presented. A numerical example
is given in Section V to demonstrate the design procedure and the ef-
fectiveness of the proposed optimization method. Some concluding re-
marks are given in Section VI.

II. NOTATIONS AND PROBLEM STATEMENT

Consider the discrete-time closed-loop system with an SEFC, as
shown in Fig. 1. The discrete-time plantP (z), which is assumed to
be strictly proper, is represented as

x(k + 1) = Asx(k) +Bse(k)

y(k) = Cs x(k)
(1)

with As 2 Rn�n, Bs 2 R
n�p, andCs 2 Rq�n. The discrete-time

SEFCC(z) is given by

x̂(k + 1) = F x̂(k) +Gy(k) +He(k)

u(k) = Kx̂(k)
(2)

whereF 2 R
n�n, H 2 R

n�p, the control gainK 2 R
p�n, and

the observer gainG 2 R
n�q. The representation or realization for a

givenC(z) is not unique. In fact, if(F0, H0,K0,G0) is a realization
of C(z), all the realizations ofC(z) form a realization set

SC
�
= (F; H; K; G): F = T

�1
F0T; H = T

�1
H0;

K = K0T; G = T
�1
G0 (3)

whereT is any real-valued nonsingular matrix, called a similarity trans-
formation. Define

w =

w1

w2
...
wN

�
=

Vec(F )

Vec(H)

Vec(K)

Vec(G)

; w0

�
=

Vec(F0)

Vec(H0)

Vec(K0)

Vec(G0)

(4)
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whereVec(�) denotes the column stacking operator andN = n2 +
n(2p+ q). Let (A,B,C,D) denote the state-space description of the
closed-loop system. It is easy to see that

A(w) =
As �BsK

GCs F �HK

=
In 0n
0n T�1

A(w0)
In 0n
0n T

: (5)

Although different controller realizations yield differentA, the
closed-loop poles or the eigenvalues ofA, denoted asf�ig, remain
the same; i.e.,�i = �i(A(w)) = �i(A(w0)), i 2 f1; 2; � � � ; 2ng.
In the controller design,(F ,H ,K,G) will have been chosen to make
the closed-loop system stable and, therefore,j�ij < 1, 8 i.

When a controller realizationw is implemented in fixed-point
format, it is perturbed into

w +�w =

w1

...
wN

+

�w1

...
�wN

(6)

due to the FWL effects. Each element of�w is bounded:

�(�w)
�
= max

i2f1; ���;Ng
j�wij �

�

2
: (7)

For a fixed-point processor ofBs bits

� = 2�(B �B ) (8)

whereBw is an integer and2B is a “normalization” factor to make
the absolute value of each element of2�B w no larger than 1. With
the perturbation�w, �i(A(w)) is moved to�i(A(w+�w)), which
may be outside the unit circle. Thus, the closed-loop system designed to
be stable may become unstable with an FWL-implemented controller
realizationw.

It is, therefore, critical to know when the FWL error will cause the
closed-loop system to become unstable. This means to compute the
following stability measure [3]

�0(w)
�
= inf �(�w): A(w +�w) is unstable : (9)

The larger�0(w) is, the bigger FWL error the closed-loop stability
can tolerate. LetBmin

s be the smallest word length that, when used to
implementw, can guarantee the closed-loop stability. Except in simu-
lation,Bmin

s is unknown. An estimate ofBmin
s can be provided by

B̂min
s0 = Int[� log2(�0(w))]� 1 +Bw (10)

whereInt[x] roundsx to the nearest integer withInt[x] � x. From
(7)–(10), it can be seen that the closed-loop system is stable whenw is
implemented with a fixed-point processor of at leastB̂min

s0 bits. More-
over, as the stability measure�0(w) is a function of the controller re-
alizationw, we can search for an “optimal” realization that maximizes
�0(w):

wopt = arg max
w2S

�0(w): (11)

The difficulty with this approach is that computing explicitly the value
of �0(w) is still an unsolved open problem. Thus, the stability measure
�0(w) and the optimization procedure (11) have very limited practical
value. An alternative measure that can not only quantify the FWL ef-
fects on stability robustness but can also be computed easily must be
sought.

III. A T RACTABLE STABILITY RELATED MEASURE

Roughly speaking, how easily the FWL error�w can cause a
stable control system to become unstable is determined by how close

�i(A(w)) are to the unit circle and how sensitive they are to the
controller parameter perturbations. Let us consider the following
stability related measure:

�1(w)
�
= min

i2f1; ���;2ng

1� j�i(A(w))j
N

j=1

@�i
@wj w

(12)

where1 � j�i(A(w))j is called the stability margin of theith eigen-
value. Defining

P(w)
�
= �w: j�i(A(w +�w))j � j�i(A(w))j

� �(�w)

N

j=1

@�i
@wj w

; 8 i (13)

we have the following proposition, the proof of which is straightfor-
ward.

Proposition 1: A(w + �w) is stable if �w 2 P(w) and
�(�w) < �1(w).

Remarks: The requirement for�w 2 P(w) is not over-restricted.
In practice, we will only be interested in those�w that lie in the
bounded region:Q(w)

�
= f�w: �(�w) < �0(w)g, i.e., those�w

that will not cause the closed-loop instability. Since@�l=@wj is con-
tinuous

�l A(w +�w)

= �l A(w) +

N

j=1 C

@�l
@wj

dwj

= �l A(w) +

N

j=1

Re
@�l
@wj a

+ i Im
@�l
@wj b

��wj (14)

whereC is the oriented segment fromw tow + �w, aj andbj are
some points onC. Hence

�l A(w +�w) � �l A(w)

�

N

j=1

Re
@�l
@wj a

+ i Im
@�l
@wj b

�wj : (15)

Now, let us compare

N

j=1

Re
@�l
@wj a

+ i Im
@�l
@wj b

�wj

with �(�w)

N

j=1

@�l
@wj w

: (16)

Note that all of theN real-valued itemsj@�l=@wj jwj are in alignment;
while theN complex-valued items

Re
@�l
@wj a

+ i Im
@�l
@wj b

�wj

are generally out of alignment. Moreover,j�wj j � �(�w),
Re[@�l=@wj ] and Im[@�l=@wj ] are differentiable. Thus, a rather
large positive� exists such that8�w 2 f�w: �(�w) � �g

N

j=1

Re
@�l
@wj a

+ i Im
@�l
@wj b

�wj

� �(�w)

N

j=1

@�l
@wj w

: (17)
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The above analysis shows thatP(w) exists and at least a large part of
Q(w) is covered byP(w).

Generally speaking, there is no rigorous relationship between�0(w)
and�1(w), but�1(w) is connected with a lower bound of�0(w) in
some manners. Define

�(P(w))
�
= inf

�w=2P(w)
�(�w): (18)

Proposition 2: �1(w) � �0(w) if �(P(w)) > �0(w).
Proof: From the definition of �(P(w)) and the condi-

tion �(P(w)) > �0(w), a �w 2 P(w) exists such that
�0(w) = �(�w) andA(w + �w) is unstable. It follows from
Proposition 1 that�0(w) � �1(w).

From Proposition 2, it can be seen that�1(w) can be considered as
a lower bound of�0(w), provided that�0(w) is small enough. The
assumption of small�0(w) is not too restricted, as it does not make
much sense to study the FWL effects on the closed-loop stability for
those situations where the closed-loop systems have a very large sta-
bility robustness. Most digital control systems do have a small stability
robustness, especially when fast sampling is applied.

To compute�1(w), one needsf@�i=@wjg, which can be calculated
with the following theorem. A proof of this theorem can be found in
[4].

Theorem 1: LetA =M0 +M1XM2 2 Rm�m be diagonalisable
whereX 2 Rl�r , andM0, M1, andM2 are independent ofX with
proper dimensions. Denotef�ig = f�i(A)g as its eigenvalues. Letxi
be a right eigenvector ofA corresponding to the eigenvalue�i. Denote
Mx = [x1 x2 ; � � � ; xm] andMy = [y1 y2 ; � � � ; ym] =M�H

x ,
whereH denotes the transpose and conjugate operation andyi is called
the reciprocal left eigenvector corresponding to�i. Then

@�i
@X

=

@�i
@x11

; � � � ;
@�i
@x1r

... ; � � � ;
...

@�i
@xl1

; � � � ;
@�i
@xlr

= MT
1 y

�
i x
T
i M

T
2 (19)

where the superscriptT denotes the transpose operator and� the con-
jugate operation.

Without confusion, we usexi andyi to denote the right and recip-
rocal left eigenvectors related to�i(A(w)), respectively.A(w) can be
arranged in the following equivalent forms:

A(w) =
As �BsK

GCs �HK
+

0n
In

F [ 0n In ] (20)

A(w) =
As �BsK

GCs F
+

0n
In

H[ 0n �K ] (21)

A(w) =
As 0n
GCs F

+
�Bs

�H
K[ 0n In ] (22)

A(w) =
As �BsK

0n F �HK
+

0n
In

G[Cs 0n ]: (23)

Applying Theorem 1, we obtain

@�i
@F

= [ 0n In ]y
�
i x
T
i

0n
In

(24)

@�i
@H

= [ 0n In ]y
�
i x
T
i

0n

�KT
(25)

@�i
@K

= [�BTs �HT ]y�i x
T
i

0n
In

(26)

@�i
@G

= [ 0n In ]y
�
i x
T
i

CTs
0n

: (27)

For a complex-valued matrixM 2 Cl�r with elementsmij , define a
norm ofM as

kMkS
�
=

l

i=1

r

j=1

jmij j: (28)

Then
N

j=1

@�i
@wj

=
@�i
@w S

=
@�i
@F S

+
@�i
@H S

+
@�i
@K S

+
@�i
@G S

: (29)

For a given controller realizationw, the smallest word lengthBmin
s

can be estimated with�1(w) using the following:

B̂min
s1 = Int[� log2(�1(w))]� 1 +Bw: (30)

More importantly, as�1(w) is tractable, one can estimate the optimal
controller realizations defined in (11) with

ŵopt = arg max
w2S

�1(w) (31)

which will be discussed in the next section.

IV. OPTIMIZATION PROCEDURE

With the computationally tractable stability related measure�1(w),
we now present a practical optimization procedure to search for an
optimal controller realization̂wopt defined in (31).1 Assume that an
initial controller realization(F0, H0, K0, G0) has been provided.
For example, the observer gainG0 is obtained using some observer
design method with given observer poles, the state-feedback gain
K0 is obtained using some state-feedback design method with given
closed-loop poles,F0 = As � G0Cs andH0 = Bs. Let f�0i,
i = 1; � � � ; 2ng be the eigenvalues ofA(w0), and x0i and y0i
be the right and reciprocal left eigenvectors corresponding to�0i,
respectively. Partitionx0i andy0i into

x0i =
x0i(1)

x0i(2)
; x0i(1); x0i(2) 2 Cn (32)

and

y0i =
y0i(1)

y0i(2)
; y0i(1); y0i(2) 2 Cn (33)

respectively. Letw be a controller realization transformed fromw0

with T . It is easy to see from (5) that

xi =
In 0n
0n T�1

x0i =
x0i(1)

T�1x0i(2)
(34)

is a right eigenvector ofA(w) corresponding to the same eigenvalue,
and

yi =
In 0n

0n T T
y0i =

y0i(1)

T T y0i(2)
(35)

is the corresponding reciprocal left eigenvector. Substituting (34) and
(35) into (24)–(27) yields

@�i
@F

=T T y�0i(2)x
T
0i(2)T

�T (36)

@�i
@H

= � T T y�0i(2)x
T
0i(2)K

T
0 (37)

@�i
@K

= � BTs y
�
0i(1) +HT

0 y
�
0i(2) x

T
0i(2)T

�T (38)

1In the sequel, by anoptimal realizationwe mean a solution to (31) rather
than (11). The latter, as mentioned before, is not tractable.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 45, NO. 8, AUGUST 2000 1553

@�i
@G

=T T y�0i(2)x
T
0i(1)C

T
s : (39)

We can define (31) in an alternative way:

� =
1

max
w2S

�1(w)

= min
T2R
det(T ) 6=0

max
i2f1; ���;2ng

N

j=1

@�i
@wj

w

1� j�0ij

= min
T2R
det(T )6=0

max
i2f1; ���;2ng

�

@�i
@F

S

+
@�i
@H

S

+
@�i
@K

S

+
@�i
@G

S

1� j�0ij
(40)

which means that finding an optimal realization of the SEFC is equiv-
alent to obtaining a similarity transformation that is a solution to the
following nonlinear optimization problem:

Topt = arg min
T2R
det(T )6=0

f(T ) (41)

with the cost function

f(T )
�
= max

i2f1; ���;2ng

@�i
@F

S

+
@�i
@H

S

+
@�i
@K

S

+
@�i
@G

S

1� j�0ij
:

(42)

To find a Topt, we will adopt an iterative optimization procedure to
generate a sequencefT0, T1, T2; � � �g, which converges toTopt.

The optimization (41) is constrained. Define

�
= fT 2 Rn�n:

det(T ) = 0g. As
 is only a manifold inRn�n, starting from aT0 =2

, it is rare for an iterative sequencefTig to move into
. Thus, in
the iterative procedure, the constraintdet(T ) 6= 0 can practically be
ignored, leading to an unconstrained optimization problem:

~� = min
T2R

f(T ): (43)

The possible pitfall of violating the constraint can readily be avoided
by the following measure. As the inverse ofT is required in the com-
putation off(T ), it is obtained using the singular value (SV) decom-
position. If an SV ofT is too small,T is almost singular and a small
perturbation�In is added toT so thatT + �In =2 
. This small per-
turbation, which is rarely needed, will not affect the convergence of the
iterative procedure.

Because the cost functionf(T ) is nonsmooth and nonconvex, opti-
mization must be based on a direct search without the aid of cost func-
tion derivatives. The conventional optimization methods for this kind
of problem, such as Rosenbrock and Simplex algorithms [10], [11],
generally can only find a local minimum. Although the choice of ini-
tial realization will not affect the closed-loop eigenvalues, the eigen-
value sensitivities@�i=@w, 8 i depend on the chosen initial realiza-
tion. Thus, for differentw0, the shape of the cost functionf(T ) will
change, giving rise to a different degree of difficulty in the optimization
procedure. It is therefore important to use an efficient, and preferably
global, optimization method. We adopt a global optimization strategy
based on the adaptive simulated annealing (ASA) [12], [13] to search
for a true global optimum̂wopt.

V. ILLUSTRATIVE EXAMPLE

This section presents a numerical example to illustrate the design
procedure and how the proposed optimization approach can be used
effectively to search for the optimal FWL realization of SEFC’s. This
example was taken from [9]. The discrete-time plantP (z) was given
by

As =

2:758200e+ 0 �2:534 177e+ 0 7:755853e� 1

1 0 0

0 1 0

Bs =

1

0

0

Cs = [ 2:200000e� 3 4:400000e� 3 2:200000e� 3 ]:

The initial realization of the controllerC(z) was chosen to be

F0 =

2:497 941e+ 0 �3:054695e+ 0 5:153264e�1

7:776040e�1 �4:447920e�1 �2:223960e�1

�1:801490e�1 6:397019e�1 �1:801490e�1

H0 =

1

0

0

K0 = [ 4:761000e� 1 �8:183439e� 1 3:505623e� 1 ]

G0 =

1:182995e+ 2

1:010891e+ 2

8:188593e+ 1

:

The corresponding transition matrixA(w0) was formed, from which
the poles and eigenvectorsf�0j , x0j , y0j , j = 1; � � � ; 6g of the ideal
closed-loop system were computed.

The ASA algorithm was used to search for anTopt by solving the
optimization problem (41), and it produced the following solution:

Topt =

�2:492226e+ 2 �8:436334e+ 1 2:500780e+ 2

�1:712397e+ 2 �6:278793e+ 1 2:126909e+ 2

�9:225780e+ 1 �3:503457e+ 1 1:704995e+ 2

:

This gave rise to the optimal FWL controller realizationŵopt:

Fopt =

7:273562e�1 �1:063087e�1 1:577498e�1

�1:906839e�1 6:591385e�1 2:312892e�1

7:272022e�2 �3:150339e�2 4:865053e�1

Hopt =

�5:926328e� 2

1:743758e� 1

3:763549e� 3

Kopt = [�1:086402e+ 1 �1:065065e+ 0 4:778530e+ 0 ]

Gopt =

�1:558451e� 3

6:013747e� 2

4:917847e� 1

:

For the initial and optimal controller realizations, we exploit the true
minimal bit lengthsBmin

s using the following computer simulation
method. Let initial bit length be enough big, e.g.,Bs = 100. Rounding
(F ,H ,K,G) toBs bits, we obtain theBs-bits representation(Fr ,Hr,
Kr, Gr) and then check the stability of the closed-loop system com-
posed of(As,Bs,Cs) and(Fr,Hr,Kr ,Gr), i.e., observe whether the
closed-loop poles are in the open unit disk. ReduceBs by 1 and repeat
rounding and checking until there appears to be closed-loop instability
at Bu bits. Then,Bmin

s = Bu + 1. Table I compares the values of
the stability related measure, estimated minimum bit lengths, and true
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TABLE I
COMPARISON OF STABILITY RELATED

MEASURES, ESTIMATED MINIMUM BIT LENGTHS AND TRUE MINIMUM BIT

LENGTHS FOR THEINITIAL AND OPTIMAL CONTROLLERREALIZATIONS

minimum bit lengths for the initial and optimal controller realizations.
It can be seen that, for this example, the optimization achieved an im-
provement by a factor of 30 on the closed-loop stability related measure
and an 8-bit reduction in the required minimum bit length.

VI. CONCLUSIONS

In this paper, we have presented an approach to address the stability
issues of the closed-loop discrete-time system where a state-estimate
feedback controller is implemented with a fixed-point processor. An
FWL closed-loop stability related measure has been derived, which is
computationally tractable. As this measure is a function of the con-
troller realization; the optimal realization problem of state-estimate
feedback controllers is to find a realization that maximizes this mea-
sure. It has been shown that this optimal realization problem can be
interpreted as a nonlinear programming problem. An efficient global
optimization strategy based on the ASA algorithm has been adopted to
solve this nonsmooth and nonconvex optimization problem.
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Practical Stability and Stabilization

Luc Moreau and Dirk Aeyels

Abstract—We present a practical stability result for dynamical systems
depending on a small parameter. This result is applied to a practical sta-
bility analysis of fast time-varying systems studied in averaging theory, and
of highly oscillatory systems studied by Sussmann and Liu. Furthermore,
the problem of practically stabilizing control affine systems with drift is
discussed.

Index Terms—Approximation methods, Lie algebras, stability,
time-varying systems.

I. INTRODUCTION

In the present note, dynamical systems that depend on a small pa-
rameter are studied from the viewpoint of continuity of solutions.

Consider a system that depends on a small parameter" > 0

_x = f
"(t; x) (1)

and a system

_x = g(t; x) (2)

with the assumption that trajectories of (1) converge—uniformly on
compact time intervals—to trajectories of (2) as" # 0.

A particular example is given by fast time-varying systems studied
in averaging theory

_x = f
t

"
; x : (3)

It is well known that, under appropriate technical conditions, there ex-
ists an associated averaged system

_x = fav(x) (4)

such that trajectories of (3) converge—uniformly on compact time in-
tervals—to trajectories of (4) as" # 0.

Teelet al. [1] have proven that, under appropriate technical condi-
tions, if the origin of the averaged system (4) is a globally asymptot-
ically stable equilibrium point, then the fast time-varying system (3)
is practically stable. Their proof is based on advanced Lyapunov tech-
niques.

In the present note, it is recognized that this practical stability re-
sult is of a topological nature, that it is a consequence of the conver-
gence property of solutions: we prove the general result that, under ap-
propriate technical conditions, if the origin of system (2) is a globally
uniformly asymptotically stable equilibrium point, then system (1) is
practically stable. This approach provides an alternative proof for the
practical stability result [1] mentioned above, and extends it to a larger
class of systems: it is not only applicable to fast time-varying systems
as in averaging theory, but also, for example, to highly oscillatory sys-
tems studied by Sussmann and Liu [2]. This latter application is useful
for control purposes. Indeed, it leads to a practical stabilization algo-
rithm for a class of control affine systems with drift.

An outline of this note is as follows. Section II introduces some
notations and hypotheses. Section III introduces a notion of practical
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