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Optimal Finite-Precision State-Estimate Feedback
Controller Realizations of Discrete-Time Systems

Jun Wu, Sheng Chen, Gang Li, and Jian Chu

Abstract—This paper investigates the stability issue of a discrete-time
control system, where a state-estimate feedback controller (SEFC), digitally
implemented with a fixed-point format, is used. A tractable closed-loop sta-
bility related measure is derived with finite-word-length (FWL) implemen-
tation consideration of the controller. The optimal realizations of the SEFC
are defined as those that maximize this measure and can be shown as the
solutions of a nonlinear programming problem. A sophisticated optimiza-
tion strategy is presented to provide an efficient method for solving this Fig. 1. Block diagram of the closed-loop system with state-estimate feedback
problem, and a numerical example is given to illustrate the design proce- controller.
dure.

Index Terms—Finite word length, optimization, stability, state-estimate ) o .
feedback controller. This paper addresses the stability issues of FWL SEFC's. We derive

a tractable measure that quantifies the “robustness” of the closed-loop
stability under the controller parameter perturbations, and develop an
optimization procedure to search for the optimal controller realizations

The recent advances in digital control system design methods h#vat maximize the defined measure. The paper is organized as follows.
led to a need for the efficient and accurate implementation of cofection Il is devoted to formulating the problem to be dealt with and
trollers with orders higher than that of the traditional PID controller. Alestablishing necessary notations. A stability related measure that can
though the number of controller implementations using floating-poike computed easily for a given SEFC realization is given in Section
processors is increasing due to their reduced price, for reasons of ckt;The optimal controller realization problem is also defined in this
simplicity, speed, memory space, and ease-of-programming, the gégtion. In Section 1V, the optimization framework for obtaining the
of fixed-point processors is more desirable for many industrial af@timal FWL controller realization is presented. A numerical example
consumer applications. The “robustness” of closed-loop stability undérgiven in Section V to demonstrate the design procedure and the ef-
controller parameter perturbations is a critical issue in fixed-point infiectiveness of the proposed optimization method. Some concluding re-
plementations. It is well known that a designed, stable, closed-logggarks are given in Section VI.
system may become unstable when the “infinite-precision” controller
is implemented using a fixed-point processor due to finite-word-length Il. NOTATIONS AND PROBLEM STATEMENT
(FWL) effects.

Many studies have investigated digital controller realizations with Consider the discrete-time closed-loop system with an SEFC, as
FWL considerations [1]-[5]. The first FWL stability measure was proshown in Fig. 1. The discrete-time plaf( =), which is assumed to
posed in 1994 [3]. However, computing the value of this measure &3 Strictly proper, is represented as
plicitly is still an unsolved open problem. Recently, two tractable FWL
stability related measures have been derived, and the design procedures { e(k+1) = Ase(k) + Bse(k) 1)
for searching for optimal FWL controller realizations have been de- y(k) =Cs x(k)
veloped [4]-[7]. In all of the above-mentioned works, controllers are
output feedback controllers (OFC’s). It is well known that there is awith A, € R"*", B, € R"*?, andC, € R?*". The discrete-time
other class of controllers, namely, state-estimate feedback controliSEsFCC'(z) is given by
(SEFC’s) [8]. The SEFC design is the product of a direct synthesis
and design approach for linear control systems that combines modern @(k+1) = Fa(k)+ Gy(k) + He(k)
state-space methods and observer theory. It also provides a unified for- { u(k) = K#(k)
mulation for single-input single-output and multi-input multi-output
systems. The design of SEFC's is more transparent and simpler thgiere F € R"*", H € R"*P, the control gaink € R?*", and
the design of OFC's. Li and Gevers [9] studied the sensitivity and thige observer gaii € R™*?. The representation or realization for a
roundoff noise gain of the closed-loop system transfer function witlivenC(z) is not unique. In fact, it Fy, Ho, Ko, Go) is a realization
an FWL implemented SEFC. However, few studies to date invesgf C'(z), all the realizations of'(z) form a realization set
gate the effects of FWL implementation on the closed-loop stability
for SEFC's.

|. INTRODUCTION
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whereVec(-) denotes the column stacking operator and= »n* + \;(A(w)) are to the unit circle and how sensitive they are to the

n(2p+ q). Let(A, B, C, D) denote the state-space description of theontroller parameter perturbations. Let us consider the following

closed-loop system. It is easy to see that stability related measure:
_ A,  —B.K A . 1 — [Ai(A(w))]
A = ‘ = I S AT
(w) {GCS F_HK} W) =i (12)
I, 0, |= I, 0, Jw. ‘
N {on T*l}A(WU){On T}' ®) = 0wl

wherel — |\, (A(w))| is called the stability margin of thith eigen-

Although different controller realizations vyield differend, the .
value. Defining

closed-loop poles or the eigenvaluesf denoted ag\;}, remain
the same; i.el); = X\ (A(w)) = X\ (A(wo)), 7 € {1,2,---, 2n}. A - .

In the controller design(F, H, K, G) will have been chosen to make P(w) = {AW: [Ni(A(w + Aw))| — [Xi(A(w))]
the closed-loop system stable and, therefprd, < 1, V.

When a controller realizatiomw is implemented in fixed-point Mo, _
format, it is perturbed into < p(Aw) Y u, {-/ Vi 13)
i=1 Jlw
wy Ay ) . ’ L .
. . we have the following proposition, the proof of which is straightfor-
wHAw=| |+ : ®)  ward.

wN Awn Proposition 1: A(w + Aw) is stable if Aw & P(w) and

due to the FWL effects. Each elementdiv is bounded: pAW) < i (w).

Remarks: The requirement foAw € P(w) is not over-restricted.
(7) In practice, we will only be interested in thogew that lie in the
bounded regionQ(w) £ {Aw: u(Aw) < po(w)}, i.e., thoseAw
For a fixed-point processor @8, bits that will not cause the closed-loop instability. Sink /9w ; is con-
¢ = 9—(Bs=Bu) @) tinuous

HAW) 2 max |[Aw;| <
i€{l, -, N}

[ NN

whereB,, is an integer an@®« is a “normalization” factor to make A (A(W + AW))

the absolute value of each element2of”»w no larger than 1. With _ N oop N

the perturbatiodw, \;(A(w)) is moved to\; (A(w + Aw)), which =M (A(w)) + Z/( Jw; dw

may be outside the unit circle. Thus, the closed-loop system designed to Jil i

be stable may become unstable with an FWL-implemented controller — ' o\ . o
realizationw. =N (A(W)) + Z <Re dw; |, . +ilm ow; |y,

It is, therefore, critical to know when the FWL error will cause the A 1= 7 ! 14
closed-loop system to become unstable. This means to compute the Bt (14)
following stability measure [3] where( is the oriented segment from to w + Aw, a; andb; are

/ — . some points o. Hence
po(w) 2 int{(Aw): A(w + Aw) isunstabld . (9) pol
. ) . |)\1(A(w—|—Aw))| — /\I(A(W))|
The largeruo(w) is, the bigger FWL error the closed-loop stability N
_can tolerate. LeB."" be the smallest word Iength_t_hat, when _use_d to < Z Re 15Dy 4 iTm 122V, Aw;jl. (15)
implementw, can guarantee the closed-loop stability. Except in simu- = Ow; a Jw; b,
lation, BI™" is unknown. An estimate aB;™" can be provided by
o Now, let us compare
BU™ = Int[~log, (jio(w))] — 1 + By, (10)
6)\, . a)\l y
wherelnt[z] roundsz to the nearest integer witht[z] > x. From Z Re duw, +iIm B, Aw,
(7)-(10), it can be seen that the closed-loop system is stable when g=1 T , 7k
implemented with a fixed-point processor of at leBSt™ bits. More- . N O\
over, as the stability measupg (w) is a function of the controller re- with  p(Aw) Z dw; |, (16)
alizationw, we can search for an “optimal” realization that maximizes 7=l
po(w): Note that all of theV real-valued item§\; /9w |w| are in alignment;
while the N complex-valued items
Wopt = arg max fio(w). (11)
weso N Y
The diff . . . . . e P + ¢ Im B Awy
e difficulty with this approach is that computing explicitly the value W |a, Wi |y,

of o (w) is still an unsolved open problem. Thus, the stability measure I ¢ ali ’
110(w) and the optimization procedure (11) have very limited practic&(€_9enerally out of alignment. Moreoveihw;| < u(Aw),
value. An alternative measure that can not only quantify the FWL efeldA/9w;] and L[ /Ow;] are d|rfferent|ab|e. Thus, a rather
fects on stability robustness but can also be computed easily mus{H@e POsitives exists such that Aw € {Aw: mMAW) < K}

sought.

N
Z Re & +iIm _a/\l Aw;
4 owy |, dwy |y,
Ill. A TRACTABLE STABILITY RELATED MEASURE i=1 g J
N
Roughly speaking, how easily the FWL errdew can cause a < p(Aw) Z I\ (17)
stable control system to become unstable is determined by how close - =1 1905 |
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The above analysis shows tHafw) exists and at least a large part ofFor a complex-valued matrix{ € C'*" with elementsn;;, define a

Q(w) is covered byP(w).

Generally speaking, there is no rigorous relationship betwegéw)
andyu (w), butpq (w) is connected with a lower bound pf(w) in
some manners. Define

N ,
p(P(w)) = Awgg(w) p(Aw). (18)
Proposition 2: jt1 (w) < po(w) if p(P(w)) > po(w).

Proof: From the definition of p( (w)) and the condi-
tion p(P(w)) > po(w), @a Aw € P(w) exists such that
po(w) p(Aw) and A(w + Aw) is unstable. It follows from
Proposition 1 thati (w) > w1 (w).

norm of M as

| M||s éi g Imij- 29)
L
Then
2l [
-5 +‘22 I e =l e

For a given controller realizatiow, the smallest word lengtB™™

From Proposition 2, it can be seen tha{w) can be considered as can be estimated with, (w) using the following:

a lower bound ofu

assumption of smajhko (w
much sense to study the FWL effects on the closed-loop stability
those situations where the closed-loop systems have a very large

w), prowded thatuo (w) is small enough. The

bility robustness. Most digital control systems do have a small stabili

robustness, especially when fast sampling is applied.
To computgs (w), one need$d ), /dw, }, which can be calculated

) is not too restricted, as it does not make

1[1111

= Int[—log, (1 (W))] = 1 + Bu. (30)

fo . . . .
g/[g[e importantly, agt, (w) is tractable, one can estimate the optimal

%9ntroller realizations defined in (11) with

(1)

Wopt = arg max i1 (w)
wESe ’

with the following theorem. A proof of this theorem can be found ifyhich will be discussed in the next section.

[4].

Theorem 1: Let A = My + M, X M> € R™*™ be diagonalisable
whereX € R™", andMy, M;, andM, are independent ok with
proper dimensions. Denofe\; } = {\;(A)} as its eigenvalues. L&
be a right eigenvector of corresponding to the eigenvalde Denote
M,=[x1 X2 ,-++, XmJandM, =[y1 y2 , "y Ym] = M,
whereH denotes the transpose and conjugate operatiog aisctalled
the reciprocal left eigenvector corresponding\to Then

O\ N
011 w1y
A . .
v = e = MIyixIM]  (19)
ON; ON;
(9.’1311 81»,,‘

where the superscriff denotes the transpose operator arble con-
jugate operation.

Without confusion, we usg; andy; to denote the right and recip-
rocal left eigenvectors related }o(A(w)), respectivelyA(w) can be
arranged in the following equivalent forms:

aw =g Tl ] 1 e
w) = 040 —%K} n {(}J H]0, -K] (21
Aw) = _ 040 (H + {__%}K[On L] (22)
A(w) = g F__B;A} + {” GO, 0. (23)
Applying Theorem 1, we obtain
=10, Llyix! H (24)
Sr=ton i |0 (25)
Sh=l-nl —HT v | (26)
=0, nvixd [(]. @)

IV. OPTIMIZATION PROCEDURE

With the computationally tractable stability related meagurew ),
we now present a practical optimization procedure to search for an
optimal controller realizatiow,,, defined in (31}t Assume that an
initial controller realization(F,, Hy, Ko, Go) has been provided.
For example, the observer gai#, is obtained using some observer
design method with given observer poles, the state-feedback gain
K, is obtained using some state-feedback design method with given
closed- Ioop polesFy, = A, — GoCs and Hy = B.. Let {\;,
i = 1,---,2n} be the eigenvalues ofi(wo), and xo;, and yo;
be the rlght and reciprocal left eigenvectors correspondingoto
respectively. Partitiox,; andyo, into

XOi(]-) n
Xoi = |: :| y XOi(l)v XOi(Q) ec (32)
X0i(2)
and
(1
Yoi = {yo ( )} . voi(1), yoi(2) €C” (33)
ym(Q)

respectively. Letw be a controller realization transformed froam
with 7. It is easy to see from (5) that

i 2

T—l
is a right eigenvector ofi(w) corresponding to the same eigenvalue,
ym(l)

and
Vi { } o= {TTym(?)}

is the corresponding reciprocal left eigenvector. Substituting (34) and
(35) into (24)—(27) yields

Xo,j(l)
T~ " x0:(2)

In

0, (34)

In
On

On

T (35)

O\
OF - yo,(2)x0,(9) (36)
aN; . i
oH T7y5:(2)x0:(2) K§ 37)
(()/\7 T _ % . T 7

= (o
oK (B voi(1) + Hg yoL(Q)) on(a)T (38)

1in the sequel, by aoptimal realizationwe mean a solution to (31) rather
than (11). The latter, as mentioned before, is not tractable.
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gg =TTyr.(2)xL1)ct. (39) V. ILLUSTRATIVE EXAMPLE
_ ) _ This section presents a numerical example to illustrate the design
We can define (31) in an alternative way: procedure and how the proposed optimization approach can be used
effectively to search for the optimal FWL realization of SEFC’s. This
v = 1 example was taken from [9]. The discrete-time pl&it) was given
max ft1 (W) by
weESe
N .
3 O 2.758200e +0 —2.534177¢ +0 T7.755853¢ — 1
B . = Qwy |, A, = 1 0 0
RN S p s vt 0 1 0
det(1)#0 1
= min max —
TeRnXn i€{l,--,2n} Bs =10
det(1)7£0 0
)% N AN n AN n )% Cs =[2.200000e¢ — 3 4.400000c — 3 2.200000c — 3].
or || oH ||, oK || G || 4 40
1— [Aos (40) " The initial realization of the controller’( =) was chosen to be
which means that finding an optimal realization of the SEFC is equiv- [ 2.497941e +0 —3.054695¢+0  5.153264e—1
alent to obtaining a similarity transformation that is a solution to the Fo = | 7.776040e—1 —4.447920e—1 —2.223960e—1
following nonlinear optimization problem: |—1.801490e—1 6.397019¢e—1 —1.801490e—1
M1
Topt =arg min  f(T) (42) Ho= 10
I-GRW,XH
det(T)#£0 L0
Ko =[4.761000e — 1 —8.183439¢ —1 3.505623¢ — 1]
with the cost function [1.182995e + 2
Go = | 1.010891 2
o, O o, o, ‘ o
+ |5 + 22+ | 8.188593¢ + 1
A OF || OH 0K 9G || 4
f(I)=  max 5 5 5 = .
E{L, e, 20} L= Aoi] The corresponding transition matrik(w,) was formed, from which
(42)  the poles and eigenvectofdo;, Xo;, ¥o;,J = 1, - -+, 6} of the ideal

closed-loop system were computed.
To find aZs,, we will adopt an iterative optimization procedure to  The ASA algorithm was used to search for’&g, by solving the

generate a sequen¢@y, 71, T, - - -}, which converges t@... . optimization problem (41), and it produced the following solution:
The optimization (41) is constrained. Defifie 2 {T € R™™™:

det(T) = 0}. As (2 is only a manifold inR™*", starting from &l ¢ —2.492226e + 2 —8.436334e+ 1 2.500780e + 2

Q, it is rare for an iterative sequendd’;} to move into(2. Thus, in  Tope = | —1.712397e +2 —6.278 793¢ + 1 2.126 909¢ + 2

the iterative procedure, the constrailet (1) # 0 can practically be —9.225780¢ +1 —3.503457¢+ 1 1.704995¢ + 2

ignored, leading to an unconstrained optimization problem:
This gave rise to the optimal FWL controller realizatién,,. :

v= min f(T). (43)
reRrRmxm [ 7.273562e—1 —1.063087e—1 1.577498e—1
Fope = [—1.906839¢e—1  6.591385e—1 2.312892e—1

The possible pitfall of violating the constraint can readily be avoided | 7.272022¢—2 —3.150339¢—2 4.865053¢—1

by the following measure. As the inverse’bfis required in the com-

putation of f(T'), it is obtained using the singular value (SV) decom- _5‘?26 ‘}286 -2
position. If an SV ofT" is too small,T" is almost singular and a small Hopy = 1.743758¢ — 1
perturbatiom I, is added tdl” so thatl’ + nI, ¢ . This small per- [ 3.763549¢ — 3 |
turbation, which is rarely needed, will not affect the convergence of thdopt =[ —1.086402¢ +1 —1.065065¢ +0 4.778530¢ + 0]
iterative procedure. [—1.558451e — 37
Because the cost functiof(7") is nonsmooth and nonconvex, opti- G, = 6.013747e — 2
mization must be based on a direct search without the aid of cost func- | 4.917847e¢ — 1 |

tion derivatives. The conventional optimization methods for this kind

of problem, such as Rosenbrock and Simplex algorithms [10], [1Hor the initial and optimal controller realizations, we exploit the true
generally can only find a local minimum. Although the choice of iniminimal bit lengthsBX" using the following computer simulation
tial realization will not affect the closed-loop eigenvalues, the eigemethod. Let initial bit length be enough big, e B, = 100. Rounding
value sensitivitie$)\; /0w, Vi depend on the chosen initial realiza-( F', H, K, G) to B; bits, we obtain thé3, -bits representatiof¥ ., H,,

tion. Thus, for differentwg, the shape of the cost functigiZ) will K, G,) and then check the stability of the closed-loop system com-
change, giving rise to a different degree of difficulty in the optimizatioposed of A,, B,,C) and( F:, H,, K, G,), i.e., observe whether the
procedure. It is therefore important to use an efficient, and preferaluypsed-loop poles are in the open unit disk. Redbi¢cdy 1 and repeat
global, optimization method. We adopt a global optimization strateggunding and checking until there appears to be closed-loop instability
based on the adaptive simulated annealing (ASA) [12], [13] to searahB, bits. Then,B™™® = B, + 1. Table | compares the values of
for a true global optimunw s . the stability related measure, estimated minimum bit lengths, and true
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TABLE | Practical Stability and Stabilization
COMPARISON OF STABILITY RELATED
MEASURES ESTIMATED MINIMUM BIT LENGTHS AND TRUE MINIMUM BIT Luc Moreau and Dirk Aeyels
LENGTHS FOR THEINITIAL AND OPTIMAL CONTROLLER REALIZATIONS
realization H1 Bt | B Abstract—\We present a practical stability result for dynamical systems
initial wo 1.995885¢e-5 | 22 15 depending on a small parameter. This result is applied to a practical sta-
optimal Wop | 6.019238e-4 14 7 bility analysis of fast time-varying systems studied in averaging theory, and

of highly oscillatory systems studied by Sussmann and Liu. Furthermore,
the problem of practically stabilizing control affine systems with drift is
. ) o ] ~ discussed.

minimum bit lengths for the initial and optimal controller realizations. Index Terms—Approximation methods, Lie algebras, stabilty,

It can be seen that, for this example, the optimization achieved an ifgse.varying systems.
provement by a factor of 30 on the closed-loop stability related measure

and an 8-bit reduction in the required minimum bit length.
I. INTRODUCTION

In the present note, dynamical systems that depend on a small pa-
rameter are studied from the viewpoint of continuity of solutions.

VI. CONCLUSIONS .
Consider a system that depends on a small parameted

In this paper, we have presented an approach to address the stability z = f(t, x) @)
issues of the closed.-lo.op dlscrete-tlmg systgm whgre a state-estln&%t& a system
feedback controller is implemented with a fixed-point processor. An
FWL closed-loop stability related measure has been derived, which is i=g(t, x) )
computationally tractable. As this measure is a function of the con-
troller realization; the optimal realization problem of state-estimatgith the assumption that trajectories of (1) converge—uniformly on
feedback controllers is to find a realization that maximizes this me@empact time intervals—to trajectories of (2)za$ 0.
sure. It has been shown that this optimal realization problem can beA particular example is given by fast time-varying systems studied
interpreted as a nonlinear programming problem. An efficient glob averaging theory
optimization strategy based on the ASA algorithm has been adopted to .
solve this nonsmooth and nonconvex optimization problem. g=f <;, ,f) . (3)

It is well known that, under appropriate technical conditions, there ex-
ists an associated averaged system

T = fav(x) ()]
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