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Abstract—This contribution applies digital predistorter to
compensate distortions caused by memory high power amplifiers
(HPAs) which exhibit true output saturation characteristics.
Particle swarm optimization is first implemented to identify the
Wiener HPA’s parameters. The estimated Wiener HPA model is
then directly used to design the predistorter. The proposed digital
predistorter solution is attractive owing to its low on-line com-
putational complexity, small memory units required and simple
VLSI hardware structure implementation. Moreover, the designed
predistorter is capable of successfully compensating serious non-
linear distortions and memory effects caused by the memory
HPA operating in the output saturation region. Simulation results
obtained are presented to demonstrate the effectiveness of this
novel digital predistorter design.

Index Terms—Hammerstein model, memory high power ampli-
fier, output saturation, particle swarm optimization, predistorter,
Wiener model.

I. INTRODUCTION

H IGH POWER AMPLIFIER (HPA) is an indispensable
component for any wireless communication system.

To achieve high energy-efficiency, HPAs should operate at
their output saturation regions but this operational mode could
not accommodate high bandwidth-efficiency single-carrier
high-order quadrature amplitude modulation (QAM) signals
[1] as well as multi-carrier orthogonal frequency division
multiplexing (OFDM) signals [2]. Even with a signal of low
power envelope fluctuations, the nonlinearities of HPA may
introduce distortions, causing adjacent channel interference
and degrading the system’s bit error rate (BER) performance.
It is therefore critical to compensate the nonlinearity of the
HPA in the design of a wireless system. In the early researches,
HPAs were often considered to be memoryless. However,
for high-rate broadband signals, the influence of the HPAs’
memory effects can no longer be ignored. The memory effects
are mostly caused by electrical or electrothermal factors which
are elaborated in [3]. An accurate linearized compensation
technique therefore needs to consider not only the nonlineari-
ties caused by the current input signals but also the distortion
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induced by the memory effects. Of all the linearization tech-
niques, digital baseband predistorter (PD) is considered the
most effective because it offers a modest implementation cost,
while achieves a relatively good performance.

Many predistortion techniques [4]–[17] have been proposed
to correct the distortions caused by the nonlinearity as well as
the memory effect of memory HPAs. The look-up table (LUT)
based techniques [4]–[6] realizea PD by representing the in-
verse characteristic function of the memory HPA in a LUT. The
so-called indirect-learning based PD designs [10]–[12] first
identify a post-inverse polynomial filter for the memory HPA
to be compensated and then copy the post-inverse polynomial
filter to form the PD. By contrast, the direct-learning based
PD designs [13]–[15] first identify the input-output relation of
the memory HPA using a polynomial model and then adapt
a polynomial PD directly to invert the resulting polynomial
HPA model. A recent work [16] uses a neural-fuzzy based
PD, instead of a polynomial based PD, in the indirect-learning
structure. The work [17] presents an interesting algebraic PD
solution based directly on the Wiener HPA model parameters.
However, the design of [17] is incomplete, and the solution is
invalid for memory HPAs operating into the saturation region.
Moreover, the authors of [17] assume that the Wiener HPA
model parameters are known exactly and can directly be used
for the algebraic based PD design, which is unrealistic.

It is well understood that the memory HPA can be modeled
by the Wiener model consisting of a linear filter followed by a
memoryless nonlinearity [18]. Physically, the memoryless non-
linearity of the HPA is represented by the output amplitude
and phase response functions that are the nonlinear functions
of the input signal amplitude. Most of the researches, including
[10]–[17], adopt a two-parameters output amplitude response
model [19], which peaks at an input saturation amplitude. How-
ever, when the input amplitude increases beyond this saturation
point, the output amplitude of this model actually starts to fall.
This is in contrast to the physical intuition that the output am-
plitude should not fall off beyond saturation as is supported by
the real measurements of HPAs [18].

Against this background and motivated by the work [17], a
novel PD design is proposed based on a direct learning struc-
ture in this contribution. The parameters of the Wiener HPA
model are first identified using a particle swarm optimization
(PSO) algorithm [20]. PSO [20] is an efficient population-based
stochastic global optimization technique inspired by social be-
havior of bird flocks or fish schools, and it has been successfully
applied to wide-ranging optimization applications [21]–[27].
Owing to the effectiveness of PSO, an accurate Wiener HPA
model can be obtained, based on which an algebraic based PD
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solution can readily be derived. This is in contrast to polyno-
mial PD designs, which require expensive on-line adaptation
process as well as large number of storage units. Therefore, our
proposed PD enjoys a low computational cost. Furthermore,
it exhibits a natural pipeline data processing structure which
enables a simple VLSI hardware implementation. Although in
this contribution, we consider single-carrier QAM systems, our
approach is equally applicable to multi-carrier OFDM systems.
We now summarize our novel contributions in comparison with
the work [17].

1) The work [17] employs a memory HPA model where the
output amplitude continues to fall off after saturation,
while we adopt a more realistic memory HPA model
which exhibit true output saturation characteristics.

2) Unlike [17] which assumes the exact Wiener HPA param-
eters in obtaining the PD solution, we identify the param-
eters of the Wiener HPA model using the efficient PSO al-
gorithm, and obtain the PD solution using the estimated
Wiener HPA model.

3) The algebraic based PD solution presented in [17] is in-
complete. In fact, it is invalid for memory HPAs that op-
erate into the saturation region. By contrast, our PD so-
lution is properly designed and is capable of successfully
compensating serious saturation distortions caused by the
memory HPA operating in the output saturation region.

The rest of this contribution is organized as follows. The
Wiener model for memory HPAs is introduced in Section II,
where the PSO algorithm is also presented for an accurate iden-
tification of the Wiener HPA model. In Section III, the proposed
PD solution is detailed. The pipeline processing structure of the
proposed PD solution is also briefly outlined, which enables an
efficient VLSI hardware implementation of the PD. Simulation
results are presented in Section IV to demonstrate the effective-
ness of the proposed PD design approach, while our conclusions
are drawn in Section V.

II. MEMORY HIGH POWER AMPLIFIER MODEL

In order to construct an effective PD, it is critical to find an ap-
propriate HPA model. A widely used model for memory HPAs
is the Wiener model [18]. The Wiener model comprises a linear
system followed by a memoryless nonlinearity. An advantage
of adopting the Wiener model for PD design is that the exact
inverse system of the Wiener model can be represented by a
memoryless nonlinearity followed by a linear system, which is
known as the Hammerstein model.

A. Wiener Model for Memory HPAs

The Wiener HPA model consists of a linear filter followed
by a memoryless nonlinearity [18]. The linear filter of order

represents the memory effect on the input signal, and its
transfer function is defined by

(1)

while the linear filter coefficient vector is given by

(2)

Given the input signal to the memory HPA, the unobserv-
able linear filter output

(3)

is the input to the memoryless nonlinearity part of the HPA
model which we assume to be the travelling-wave tube (TWT)
nonlinearity [18], [19]. The baseband complex-valued input
signal to the TWT nonlinearity can be expressed as

(4)

where denotes the amplitude of and
its phase.

As the signal travels through the TWT nonlinearity, it is af-
fected by the nonlinear amplitude as well as phase functions
of the HPA, and the output signal is distorted mainly de-
pending on the input signal amplitude , yielding

(5)

The output amplitude and the phase
of the HPA are specified respectively by1

,
,

(6)

(7)

with the parameter vector that specifies the TWT nonlinearity
given by

(8)

where the saturating input amplitude is defined as

(9)

while the saturation output amplitude is given by

(10)

1Most works assume an output amplitude ���� � � ���� � � � �, which
peaks at � � � but falls off from the peak value � when � � � .
This is against the physical intuition that the output amplitude should not fall
off beyond saturation. Our output amplitude model (6) is more realistic and is
supported by the real measurements of HPAs [18].
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Fig. 1. Output ����, marked by �, of the memory HPA for the 64-QAM
input signal ����, marked by �, where the memory HPA, specified by
� � ������	��
��
������� and � � �	�
�
�
�
����	�
�, is operating at
the IBO of 10 dB.

Note that the underlying physics requires that .
We define the input back-off (IBO) of the HPA as

IBO (11)

where is the saturation input power and is
the average power of the signal at the input of the TWT nonlin-
earity. Note that is defined as the average power of ,
which is equal to the average power of the memory HPA’s input

scaled by the linear filter power gain . Consider the
memory HPA specified by

(12)

For the 64-QAM signal , Figs. 1 and 2 plot the output sig-
nals of the memory HPA for the IBO values of 10 dB and
5 dB, respectively, where the serious distortions caused by the
memory HPA can be clearly seen. Moreover, it can be seen from
Fig. 2 that the memory HPA is operating into the output satura-
tion region of in the case of .

B. Identification of the Wiener HPA Model With PSO

Given a block of training data , where
, the task is to estimate

the true parameter vector of the memory HPA, defined as

(13)

where . The measured memory HPA’s output may
be corrupted by the small noise and, therefore, it takes the form

(14)

Fig. 2. Output ����, marked by �, of the memory HPA for the 64-QAM
input signal ����, marked by �, where the memory HPA, specified by
� � ������	��
��
�������and � � �	�
�
�
�
����	�
�, is operating at
the IBO of 5 dB.

where the complex-valued nonlinear mapping
is specified by (3)–(7), while is the complex-valued
Gaussian white noise with . The Wiener
model output with the parameter estimate is expressed by

(15)

Let the error between the desired output and the model
output be defined as , yielding the
mean square error (MSE) cost function

(16)

The estimate of the true parameter vector is then defined as
the solution of the following optimization

(17)

where the search space is specified by

(18)

and the true parameter vector . The cost function (16)
is highly nonlinear and may contain local minima. Therefore,
conventional gradient-based estimators [28], [29] require a good
initial parameter estimate in order to avoid local minima, which
may be difficult to guarantee in practice. We use the PSO to
solve this challenging identification problem.

When applying a PSO [20] to solve the optimization

(17), a swarm of particles are “flying” in the
search space in order to find a solution , where is
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the size of the swarm and denotes
the th movement of the swarm. Each particle position

has a -dimensional
velocity to direct its
search, and with the velocity space defined by

(19)

where .

To start the PSO, the particles are initialized
randomly within , and the velocity for each candidate particle
is initialized to zero, namely, . The cognitive
information and the social information record the
best position visited by the particle and the best position vis-
ited by the entire swarm, respectively, during the movements.
The MSE costs associated with and are given by

and , respectively. The cognitive informa-
tion and the social information are used to update
the velocities and positions according to

(20)

(21)

where denotes the inertia weight, is the random
number uniformly distributed in [0, 1], and are the two
acceleration coefficients. Experimental results given in [25]
show that a better performance can be achieved by using

instead of a constant inertia weight. Adopting the
time varying acceleration coefficients (TVAC) [22], in which

(22)

can often enhance the performance of PSO. The search space

and the velocity space are used to confine
and derived from (20) and (21), respectively. If

, it is randomly re-initialized to a non-zero
value inside . The detailed PSO algorithm is summarized as
follows.

a) PSO initialization:

Specify the swarm size and the number of iterations

Randomly initialize in , and set

Compute the MSE costs , set

and

b) PSO evolution:

for

for

Calculate according to (20)

for

If :

If :

If :

Calculate according to (21)

for

If

If

Compute

If

If

c) PSO termination:

The solution is

III. PROPOSED PREDISTORTER DESIGN

Basically for the Wiener HPA model, the corresponding PD
should be the inverse of the Wiener model, which is a Hammer-
stein model consisting of a memoryless nonlinearity followed
by a linear memory filter. More specifically, the memoryless
nonlinearity of the Hammerstein PD should invert the memo-
ryless nonlinearity of the Wiener HPA, while the linear filter of
the Hammerstein PD should invert the linear filter of the Wiener
HPA.

A. Algebraic Solution for Predistorter

Let the transfer function of the Hammerstein PD’s linear filter
be

(23)
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Fig. 3. HPA’s amplitude response function ����, the amplitude predistortion
function � � � ��� of the PD, and the combined amplitude response function
��� � � ���� of the PD and HPA over the range of � � � � � , where the
HPA’s parameters � � �����	 and � � ����.

Fig. 4. Amplitude gain � ��� of the PD and its Taylor approximation 
� ���
with � � � over the range of � � � � � , where the HPA’s parameters
� � �����	 and � � ����.

where the delay if is minimum phase. The solution
of the PD’s linear filter can readily be ob-
tained by solving the set of linear equations specified by

(24)

To guarantee an accurate inverse, the length of should be
chosen to be two to three times of the length of .

The memoryless nonlinearity of the PD should introduce the
appropriate amplitude and phase predistortion functions that can
compensate the nonlinear amplitude and phase functions of the
HPA’s nonlinearity, as described by (6) and (7). Again denote
the amplitude of the input signal by . Let us
define the amplitude gain function of the PD’s nonlinearity by

, which means that the amplitude predistortion function of
this memoryless nonlinearity is , and the corresponding
phase predistortion function by . Noting (6), the required

Fig. 5. Error between the amplitude gain � ��� and the Taylor approximation

� ���with� � � as well as its 5-piecewise linear interpretation over the region
� �� 	 �� 
 with �� � � , where the HPA’s parameters � � �����	 and
� � ����.

correction equation for the amplitude predistortion function to
meet is2

for (25)

Joint considering (25) and (6) leads to

for (26)

which has the two solutions, and the required amplitude gain
function can be taken to be the smaller solution

(27)

Note that the solution (27) only has the meaning for
, or . Furthermore, for this

, implies . When
or , it is impossible to meet the condition

, because of the output saturation character-
istics of (6). In this situation, one may simply set .
Thus, the appropriate amplitude gain function is

, (28)

Noting (7), the required correction equation for the phase pre-
distortion function to meet is

(29)

Based on (29) and (7), the solution of the phase predistortion
function is given by

(30)

This phase predistortion function is valid for any .

2In the work [17], the correction equation (25) was mistaken to be valid
for any value of �. Even with the unrealistic HPA’s output amplitude function
���� � � �
��� � � � that does not exhibit the true output saturation char-
acteristics, the required amplitude gain function (27) only has the meaning for
� � � .
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Fig. 6. VLSI structure of the proposed predistorter over the range of � � � . Note that for � � � , � ��� � �.

TABLE I
ON-LINE COMPUTATIONAL COMPLEXITY FOR THE MEMORYLESS NONLINEAR

PREDISTORTION PART OF THE PROPOSED PD

For the HPA’s nonlinear amplitude response function (6)
specified by and , Fig. 3 plots the HPA’s
amplitude response function , the amplitude predistortion
function with given in (27), and the combined
amplitude response function of the PD and HPA,
for .

The amplitude gain function (27) includes a square root cal-
culation and division by . Division with may cause inac-
curate results when the signal is close to zero, while square-
root-free calculation is highly desired for a simple hardware im-
plementation. For these reasons, the solution (27) is expanded
with a Taylor series expansion. First let us define

(31)

Expand around by the Taylor series

for (32)

where , , are positive constants and is the
order of Taylor expansion. Note that corresponds to

. Therefore, the amplitude gain function of (27) can
be expressed as

for (33)

Thus, the amplitude gain function for can be
approximated by

for

(34)
Fig. 4 depicts the amplitude gain and its Taylor approxi-
mation with over the range of ,
where it can be seen that for the approximation error

is noticeable.
For the input signal with amplitude satisfying , a

small is sufficient to guarantee a negligibly small residual
, and with is very accurate. When the

HPA operates in the highly saturated region of , how-
ever, the resulting residual can no longer be ignored.
In this case, increasing to improve the accuracy of is
inadvisable. This is because an overly large not only im-
poses excessively high computational cost but also introduces
inaccuracy when is very small. Furthermore, when in-
creases to beyond 9, the rate of reduction in the approximation
error becomes very slow for . The solution
is to operate in the operation condition of and to
adopt a piecewise linear interpretation, similar to the interpreta-
tion LUT scheme in digital modems [30], to correct when
the HPA operates in the saturation region. Specifically, define
the residual between the true amplitude gain function of
(27) and the approximate amplitude gain function of (34)
by

for (35)

A small LUT of points, , is computed,
where and , while is identified as the
point at which . The -piecewise linear interpreta-
tion of is adopted over the amplitude range of
as

(36)

with

(37)
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Fig. 7. Normalized MSE cost averaged over 100 runs as the function of number
of cost evaluations for the PSO identification of the Wiener HPA: (a) the standard
deviation of the measurement noise � � ���, and (b) the standard deviation
of the measurement noise � � ����. The HPA’s parameters are given in (12),
while the PSO has the population size � � �� with the number of iterations
� � ��.

TABLE II
PSO IDENTIFICATION RESULTS OF THE WIENER HPA

where is assumed. Fig. 5 compares the true residual
with its 5-piecewise linear interpretation .

In summary, the designed amplitude gain function is specified
by

Fig. 8. Comparison of (a) the amplitude response and (b) the phase response
between the static nonlinearity of the true Wiener HPA (12) and that of the es-
timated Wiener HPA model (43).

,

,
(38)

where and are given in (34) and (36), respectively,
while the designed phase predistortion function is speci-
fied in (30).

B. Hardware Design and Computational Complexity

We now examine the VLSI structure for implementing the
proposed PD. We concentrate on hardware realization of the
PD’s memoryless nonlinearity part, as hardware realization of
the linear filter is standard. We note that the amplitude gain
function (34) has a natural pipeline processing structure. We
only need to examine the case of as, for ,

. Let us first define the coefficients

(39)

and the variable

(40)

Then can be expressed as

(41)
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Fig. 9. Sixty-four-QAM signal, marked by �, (a) after the proposed PD, marked
by�, and (b) after the combined PD and Wiener HPA, marked by�, where the
Wiener HPA is specified by the parameter vector (12) with ��� � � ��, while
the PD is designed based on the estimated parameter vector (43).

with the recursion for , , given by

,
.

(42)
The recursive expression (42) for provides an effective
VLSI structure for hardware realization of the memoryless non-
linearity of the proposed PD defined by (38) and (30).

The VLSI structure of the proposed PD shown in Fig. 6 con-
tains three parts. Part A implements the amplitude gain function

and part B realizes the phase predistortion function ,
while part C is for the realization of the linear filter of the pro-
posed PD. Most of the computation costs are for computing the
amplitude gain function. The hardware realization of , as
depicted in part A.1 of Fig. 6, shows that the computation of

requires only multiplications and additions.
The advantage of this structure is that data is processed with
an efficient pipeline. Additionally, multiplication units given in
part A.1 of Fig. 6 can process data in a parallel fashion. The
piecewise linear error compensation term is illustrated in
part A.2 of Fig. 6, which is only entered if . Table I
analyses the on-line complexity for computing the memoryless

Fig. 10. MSE versus IBO performance, where the Wiener HPA is specified
by the parameter vector (12), while the PD is designed based on the estimated
parameter vector (43).

nonlinear predistortion of the proposed PD design. The appro-
priate choice for the order of Taylor expansion is to 9.
Therefore, the proposed PD design has a very low on-line com-
putational complexity.

IV. SIMULATION STUDY

We considered the single-carrier 64-QAM system with the
static nonlinearity of the memory HPA described by (6) and (7).
The parameters of the memory HPA were given in (12).

A. PSO Based Identification Results

We first demonstrated the effectiveness of the PSO algorithm,
presented in Section II-B, for the identification of the Wiener
HPA model. The 64-QAM training set contained data
samples. With the swarm size and the number of it-
erations , Fig. 7 depicts the evolution of the MSE
cost (16), normalized by the average 64-QAM symbol power

, for the cases of the measurement noise standard de-
viation and , respectively, where the results
were averaged over 100 runs. The identification results using
the PSO are summarized in Table II. Fig. 8 compares the true
amplitude and phase response of the Wiener HPA with those of
the estimated Wiener HPA model given by

(43)

The results obtained show that an accurate Wiener HPA model
can be effectively identified using the PSO algorithm.

B. Proposed Predistorter Performance

We employed the estimated Wiener HPA model (43) to de-
sign the PD as detailed in Section III. The length of the linear
filter for the PD was set to , while a Taylor expansion
order and a -piecewise linear interpretation were
adopted for computing the amplitude gain function of the PD.
The achievable performance of the designed PD was assessed
using the MSE metric defined by

(44)
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Fig. 11. BER versus SNR performance, where the Wiener HPA is specified
by the parameter vector (12), while the PD is designed based on the estimated
parameter vector (43).

as well as the system’s BER, where was the total number
of test data, was the input signal and was the output of
the combined PD and memory HPA system. The channel signal
to noise ratio (SNR) was given by

(45)

where was defined as the energy per bit and the power of
the channel’s additive white Gaussian noise (AWGN).

The output signal constellations after the designed PD and
after the combined PD and Wiener HPA system are depicted in
Fig. 9 for the value of . It can be seen that even for

, the proposed PD can almost completely cancel
out the nonlinear distortions and memory effects of the Wiener
HPA. This is significant as the memory HPA is operating into the
saturation region of for the peak input amplitude in
the case of , see Fig. 2. 64-QAM
data were passed through the combined PD and Wiener HPA
system to compute the MSE (44), and the resulting MSE as the
function of IBO is plotted in Fig. 10.

The output signal after the memory HPA was then transmitted
over the AWGN channel, and the BER was then determined at
the receiver. The results so obtained are plotted in Fig. 11, in
comparison with the benchmark BER curve of the ideal AWGN
channel. It can be seen from Fig. 11 that the BER performance of
the combined PD and HPA system is practically indistinguish-
able from those of the ideal AWGN channel even under the op-
erating condition of , which again demonstrates the
effectiveness of the proposed PD design. The achievable BER
performance of the combined PD and Wiener HPA system are
further illustrated in Fig. 12 for the three values of the channel
SNR.

V. CONCLUSION

An novel digital predistorter design has been proposed to
compensate the distortions caused by Wiener memory HPAs
which exhibit true output saturation characteristics. An efficient

Fig. 12. BER versus IBO performance of the combined PD and HPA system,
where the Wiener HPA is specified by the parameter vector (12), while the PD
is designed based on the estimated parameter vector (43).

PSO based identification algorithm has been employed to esti-
mate an accurate memory HPA model, based on which an alge-
braic PD solution can be directly obtained. It has been shown
that the proposed PD design enjoys several important advan-
tages, including a natural pipeline data processing structure suit-
able for simple VLSI hardware realization and low on-line com-
putational complexity. The effectiveness of the proposed PD de-
sign has been illustrated by simulation results. In particular, it
has been shown that this novel digital PD is capable of success-
fully compensating serious nonlinear distortions caused by the
memory HPA operating into the output saturation region.
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