
4908 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 53, NO. 8, AUGUST 2023

Deep Cascade Gradient RBF Networks With
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Abstract—The main challenge for industrial predictive models
is how to effectively deal with big data from high-dimensional
processes with nonstationary characteristics. Although deep
networks, such as the stacked autoencoder (SAE), can learn use-
ful features from massive data with multilevel architecture, it is
difficult to adapt them online to track fast time-varying process
dynamics. To integrate feature learning and online adaptation,
this article proposes a deep cascade gradient radial basis function
(GRBF) network for online modeling and prediction of nonlinear
and nonstationary processes. The proposed deep learning method
consists of three modules. First, a preliminary prediction result is
generated by a GRBF weak predictor, which is further combined
with raw input data for feature extraction. By incorporating
the prior weak prediction information, deep output-relevant fea-
tures are extracted using a SAE. Online prediction is finally
produced upon the extracted features with a GRBF predictor,
whose weights and structure are updated online to capture fast
time-varying process characteristics. Three real-world industrial
case studies demonstrate that the proposed deep cascade GRBF
network outperforms existing state-of-the-art online modeling
approaches as well as deep networks, in terms of both online
prediction accuracy and computational complexity.

Index Terms—Deep learning, gradient radial basis func-
tion (GRBF) network, high-dimensional and nonstationary
processes, online adaptation, output-relevant features, stacked
autoencoder (SAE).

I. INTRODUCTION

TO ACHIEVE energy efficiency and operational effec-
tiveness, as well as to maintain safety for industrial

processes, it is essential to carry out real-time process control,
optimization, and monitoring [1]. This critically depends on
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timely identification and prediction of key process variables.
However, due to process drifts resulting from operating con-
dition changes, equipment aging, or catalyst deactivation, etc.,
most industrial processes exhibit severe nonstationary charac-
teristics [2]–[5]. Time-varying process dynamics impose the
need that nonlinear predictive models must have online adap-
tation capacity [6]–[8]. Another serious problem encountered
in industry is that abundant process data are often high dimen-
sional with strong correlations and redundancies. This may
lead to instability and poor robustness, as well as unsatisfac-
tory performance of predictive models. Hence, effective fea-
tures that contain essential and compressed data information
should be extracted first during process modeling [9]–[12].
This is often achieved by a deep network with multilevel fea-
ture extraction layers. However, integrating feature extraction
and online adaptation into one model is very challenging, since
it is prohibitive to adapt large deep networks within a small
sampling period in order to track fast time-varying process
dynamics. This motivates our current work to develop an effec-
tive model that combines both feature extraction and online
adaptation.

The radial basis function (RBF) network as a shallow learn-
ing model has found wide-ranging applications in diverse
engineering fields [13]–[17]. With a set of nonlinear kernels
imposed on training input data, the orthogonal least squares
(OLS) learning can be applied to construct a compact RBF
model [18]–[20]. This procedure can be interpreted as encod-
ing the process’s nonlinear dynamics in the hidden layer
nodes, with each RBF node storing an independent process
state. To provide some adaptive capability, the RBF network
can update its weight vector using some adaptive estimators,
such as the recursive least square (RLS) [21]–[23]. However,
during the online operation of nonstationary processes, the pro-
cess dynamics can vary dramatically and new process states
may appear. In order to capture the newly emerged process
state, the model structure should also be updated in real time.
An effective approach to achieve this goal is the fast tun-
able RBF (TRBF) [24]. Starting with an initial compact RBF
model, the TRBF method adjusts the RBF nodes as well as
the weights online to adaptively modeling nonstationary data.
The experimental results of [24] show that this TRBF outper-
forms many state-of-the-art online modeling approaches for
nonstationary data.

For nonstationary time series involving variations of local
mean and trend, the series can be made stationary by applying
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a difference operation on the raw data [25]. By integrat-
ing a similar mechanism of differencing the original time
series data into the RBF network and modifying each hidden
node as a local predictor, the gradient RBF (GRBF) network
was proposed for nonlinear and nonstationary time-series
prediction [26]. The OLS learning can also be applied to con-
struct a compact GRBF model from the training data. For time
series with highly time-varying characteristics other than varia-
tions of local mean and trend, a fast adaptive GRBF (AGRBF)
algorithm was proposed for online time-series modeling and
prediction [27]. A recent work [28] has extended this AGRBF
to online modeling and prediction of nonlinear and nonsta-
tionary dynamic processes. Similar to the TRBF [24], during
online operation when the error for the current data is unac-
ceptable, the AGRBF adapts the model structure by replacing
the worst node with a new node to encode the new data. Due
to the local prediction property of GRBF node, this new node
optimization is much more efficient than the TRBF, and it
imposes little online computation. This AGRBF outperforms
the TRBF, in terms of both online modeling accuracy and
computational complexity [28].

Beyond the aforementioned shallow networks, deep learning
has gained growing influence in machine learning [29], [30].
Due to the deep architecture with multilevel nonlinearities,
deep learning can learn hierarchical feature representations
effectively for large-scale complex data. Since deep networks
are good at discovering intricate data patterns through fea-
ture learning, they have been used for big data modeling
and achieved excellent results in the industrial field [31]–[33].
Deep learning methods for process modeling typically include
two models: 1) the recurrent neural network (RNN) or its
long short-term memory (LSTM) variant and 2) the stacked
autoencoder (SAE). RNN-like models are designed to extract
dynamic temporal information from data, and they have been
successfully applied to many prediction problems [34], [35].
However, with multiple loops and gates, the complex struc-
ture of RNN deters its use in online modeling task. The
SAE is generally used to extract latent useful features from
massive data, and a regression model is then developed
based on the extracted features for prediction [36]. Since
SAE can learn more complex and abstract features with
a hierarchical structure, it can provide a better approxi-
mation for complex nonlinear systems. Several works have
improved the performance of the SAE by incorporating
quality-relevant information [9], [31], [37] or data augmen-
tation [38] to enhance feature representation. To our best
knowledge, the most improvements in SAE are from a feature
learning perspective, and applying SAE in nonstationary envi-
ronments for online modeling remains largely understudied.
This is particularly challenging, since adapting a deep model
online is computationally very expensive, and it is impossible
to optimize the SAE’s structure in real time in order to track
fast time-varying process characteristics.

Since optimizing a deep model structure online is impos-
sible, an alternative solution is sought in this article, in
order to develop an adaptive deep model for online modeling
and prediction of nonlinear and nonstationary processes.
Specifically, we propose a deep cascade GRBF network that

integrates seamlessly the fast GRBF model adaptation and
deep layerwise feature extraction. The proposed method con-
sists of three components, namely: 1) the GRBF weak predic-
tor; 2) the SAE feature extraction; and 3) the GRBF adaptive
predictor. These three parts are connected in series. First, a
GRBF model is trained to produce a preliminary prediction
of the target value, which is called the weak prediction. This
GRBF weak predictor is a shallow network and its task is to
provide the prior output information to the SAE. After com-
bining the weak prediction with the raw input data, the new
expanded input vector that contains the output information is
ready for feature extraction. By stacking multiple autoencoders
(AEs), high-level output-relevant features are progressively
learned from their previous low-level ones layer by layer.
Finally, the extracted deep output-relevant features are fed
into an AGRBF predictor, whose weights as well as model
structure are updated online to capture time-varying process
characteristics. Our novel contributions can be summarized as
follows.

1) To effectively deal with high-dimensional and nonsta-
tionary data, a deep cascade GRBF network is proposed,
which integrates output-relevant feature learning and
online adaptation naturally.

2) The proposed scheme with very deep architecture is
computationally very efficient for online model adap-
tation to track time-varying process characteristics, and
it does not require any complicated online structure
optimization.

3) Extensive results demonstrate that our deep cascade
GRBF network outperforms existing state-of-the-art
online adaptive models as well as deep-learning models
for nonlinear and nonstationary data prediction.

The remainder of this article is organized as follows.
Section II reviews the related algorithms, including the GRBF
network and its online adaptive mechanism, as well as the
SAE feature extraction. Section III presents the proposed deep
cascade GRBF network in detail. Section IV evaluates the
proposed method with three case studies. Finally, Section V
concludes this article with remarks about future works.

II. REVISIT OF RELATED ALGORITHMS

A. GRBF Neural Network

The GRBF neural network is an effective tool for modeling
nonlinear and nonstationary data [26]–[28]. Consider a non-
linear and nonstationary process with ni system inputs ut =
[u1,t · · · uni,t]

T ∈ R
ni having input lag nu and the system output

yt ∈ R having output lag ny. Assume that we have collected
a training data set composed by {xt, dt; yt}N

t=1, where N is the
number of training samples, and

xt = [
(yt−1 − yt−2) · · · (yt−ny+1 − yt−ny

)
uT

t−1 · · · uT
t−nu

]T
(1)

denotes the input vector to the GRBF model, while

dt = yt − yt−1 (2)

is the system output gradient. Observe that the differenced past
outputs rather than the past outputs form the part of the input
vector xt. If the system output lag is ny = 0 or no output
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information is provided, the input vector is reduced to xt =
[uT

t−1 · · · uT
t−nu

]T , while for time series nu = 0 and the input
vector becomes xt = [(yt−1 − yt−2) · · · (yt−ny+1 − yt−ny)]

T .
Like the classic RBF node, the Gaussian function typically

serves as the GRBF node’s nonlinearity. The main difference
is that the response of a GRBF node is further multiplied by
an additional term (yt−1 + δ). Hence, the response of the jth
GRBF hidden node to the input vector xt is given by

pj(xt) = exp

(
−∥∥xt − cj

∥∥2

2σ 2

)

× (
yt−1 + δj

)
(3)

where σ is the width of Gaussian kernel, cj is the node center,
and δj is a scalar associated with the hidden node. The width σ

can be set to the maximum Euclidean distance among nodes,
and the term (yt−1+δj) can be interpreted as a local prediction
of yt by the jth hidden node [28]. From (3), if the input vector
is very similar to the jth center, the value of the jth Gaussian
function is close to 1 and the predictor (yt−1 + δj) becomes
fully active. Let M be the number of hidden nodes. The GRBF
network can then be formulated as the linear combination of
its hidden layer’s response to model yt as

yt =
M∑

j=1

pj(xt)θj + ξt (4)

where θ = [θ1 · · · θM]T is the weight vector, and ξt is a zero-
mean model residual sequence.

A compact M-term GRBF network with M � N can readily
be constructed from the training data set {xt, dt; yt}N

t=1 using
the OLS algorithm [18], [19]. In particular, if xt is selected as
the jth center cj, we set δj = dt to ensure that the jth hidden
node is a perfect local predictor of yt [27], [28]. In this way,
the problem of constructing a GRBF network is equivalent to
the task of selecting an M-term subset model {cj, δj}M

j=1 from
the full N-term model {xt, dt}N

t=1. The forward OLS selection
algorithm selects a subset of M centers cj and scalars δj one
by one from the full model. At each step, a candidate with the
maximum error reduction ratio (ERR) is chosen. The selection
procedure is terminated when some termination criterion is
met, yielding to an M-term subset model {cj, δj}M

j=1. Then, the
weight vector of the selected M-term subset GRBF network
can readily be solved by the backward substitution. The details
of the OLS model selection based on the ERR criterion can
be found in [18]–[20].

B. Online Adaptive Learning of GRBF Neural Network

During online operation, the weight vector of the GRBF
model can be updated using the RLS algorithm to pro-
vide some tracking capability for time-varying processes.
However, for highly nonstationary processes, this is insuf-
ficient, and the structure or the hidden layer of the GRBF
model needs to be adapted to encode the newly emerging
process state [28]. Thus, during online operation, the resid-
ual error of the GRBF network is monitored. Specifically, let
pt = [p1(xt) · · · pM(xt)]T denote the hidden layer response vec-
tor for the given input xt and θ t−1 = [θ1,t−1 · · · θM,t−1]T be
the weight vector obtained at the previous sample. Then, the

residual for the prediction of yt based on the current model is
given by

et = yt − pT
t θ t−1. (5)

The model performance can be measured by the cost

ẽt = e2
t

y2
t

(6)

with respect to a given threshold ε.
If ẽt < ε, then the model structure is unchanged and only

the weight vector is updated using the RLS algorithm
⎧
⎨

⎩

kt = �t−1pt

(
γ + pT

t �t−1pt

)−1

�t = (
�t−1 − ktpT

t �t−1
)
γ −1

θ t = θ t−1 + ktet

(7)

where kt ∈ R
M is the Kalman gain vector, 0.9 ≤ γ < 1

is the forgetting factor, and the inverse of covariance matrix
�t ∈ R

M×M is initialized to �0 = ϑIM in which ϑ is a large
positive constant and IM is the M × M identity matrix.

If ẽt ≥ ε, the model performs inadequately. Thus, the
network structure needs to be updated according to the newly
emerged process state by replacing the worst performing
node with a new node [28]. The node contribution to the
model performance is measured by the weighted node-output
variance (WNV) defined by

WNVj = (
θj,t−1pj(xt)

)2
, 1 ≤ j ≤ M. (8)

We can compare the nodes’ WNVs and select the one with
the smallest value as the worst performing node. Let

m = arg min
1≤j≤M

WNVj. (9)

Then, the mth node is the worst node and is replaced by a
new one. Since the goal of the new replacement node is to
encode the newly emerged process state, we can simply set
the new node center as cm = xt and scalar as δm = yt − yt−1
to ensure that the new mth node is a perfect local predictor
of yt. Because the set of centers now contains a new one, the
width of the Gaussian response σ is recalculated based on the
maximum Euclidean distance among the centers.

After the new hidden node is determined, the weight vector
of the new GRBF network is calculated by the regularized
least square (LS) estimator as

θ t = (
p̃t̃p

T
t + λIM

)−1
p̃tyt (10)

where p̃t is the new hidden layer response vector after the
new node replacement, and λ is a positive small regularization
parameter. After the regularized LS estimation (10), the inverse
covariance matrix is reinitialized according to

�t = (
p̃t̃p

T
t + λIM

)−1
(11)

to ensure a smooth transition from one mode to another at the
next sample. The threshold ε is the only algorithmic parameter
of this AGRBF algorithm.
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Fig. 1. Schematic of deep cascade GRBF network.

C. SAE

SAE is a deep network with hierarchical multiple AEs. Each
AE is a three-layer unsupervised self-learning network with
encoder and decoder. Let the inputs of the AE be x′

t. The
encoder projects x′

t from the input layer onto the hidden layer
ht = [h1(x′

t) · · · hs(x′
t)]

T by the nonlinear mapping f as

ht = f
(
Wx′

t + b
)

(12)

where s is the dimension of the hidden layer, and W and b
are the weight matrix and bias vector, respectively, connecting
the input layer to the hidden layer. The decoder reconstructs
the input vector x′

t by mapping ht onto the output layer as

x̃′
t = f̃

(
W̃ht + b̃

)
(13)

where f̃ is the output layer’s nonlinear mapping, and W̃ and b̃
are the connecting weight matrix and bias vector, respectively,
from the hidden layer to the output layer. From (12) and (13),
the task of AE is to learn a mapping F(x′

t) = f̃ (f (x′
t)) ≈ x′

t
that keeps the reconstructed output x̃′

t as similar as possi-
ble to the original input x′

t. Denote the training input data as
x′

t ∈ {x′
1, . . . , x′

N}, where N is the number of training samples,
and the corresponding features and reconstructed input data
as ht ∈ {h1, . . . , hN} and x̃′

t ∈ {̃x′
1, . . . , x̃′

N}, respectively. To
obtain the model parameters {W, W̃, b, b̃}, the AE is trained
by minimizing the mean squared reconstructed error

Junsup
(
W, W̃, b, b̃

) = 1

2N

N∑

t=1

∥∥̃x′
t − x′

t

∥∥2 (14)

using the gradient descend algorithm.
Multiple n AEs can be hierarchically stacked to construct

a deep SAE network. Training the SAE involves the layer-
wise unsupervised pretraining and supervised fine-tuning. In
pretraining, the first AE maps the raw input data onto its
hidden-layer features by minimizing the reconstruction error.
After the first AE is trained, its hidden layer parameters
{W1, b1} are fixed, and the obtained hidden layer features

hAE,1 serve as the input to the second AE. Then, the second
AE is trained to obtain its hidden layer parameters {W2, b2}
and the associated features hAE,2. In a progressive way, the
entire SAE is pretrained layer by layer until the last (nth) AE
is obtained.

After the unsupervised pretraining, a regression layer with
single output neuron having the weight vector wo and bias bo
is added on the top of the SAE to produce the prediction ỹt of
the process output yt based on supervised learning. The entire
network is fine-tuned by the backpropagation with the training
data {x′

t; yt}N
t=1 based on the cost function

Jsup(wo, bo, Wi, bi, 1 ≤ i ≤ n) = 1

2N

N∑

t=1

(̃yt − yt)
2 (15)

with the pretrained SAE’s parameters used to initialize the
hidden layers {Wi, bi}n

i=1 of the supervised SAE.
Since multiple AEs already provide highly nonlinear fea-

tures, adopting a linear regression layer in the supervised
fine-tuning is sufficient, and there is no need to employ a
nonlinear regression layer. The nonlinear output neuron in the
regression layer would possibly slow down training and lead
to premature convergence, both due to gradient modulation
effects in backpropagation.

III. DEEP CASCADE ADAPTIVE GRBF NETWORK

As depicted in Fig. 1, the proposed deep cascade GRBF
network consists of three parts: 1) the GRBF weak predictor;
2) the SAE for feature extraction; and 3) the GRBF adaptive
predictor. In the first part, the raw input data are fed into a
GRBF network trained as an initial or weak predictor of the
process output. In the second part, by combining the weak
prediction of the weak GRBF predictor and the raw input
data into a new input vector, the SAE is employed to extract
its useful features. Through layerwise feature extraction, deep
output-relevant features are obtained hierarchically. Finally, the
output-relevant features are fed into an AGRBF predictor to
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make the accurate prediction adaptively. The advantage of this
deep cascade GRBF network is twofold.

First, the weak predictor provides a preliminary prediction
of the target value. This output information is incorporated
into the layerwise feature extraction to extract the deep
output-relevant features by the SAE. It is well known that
enhanced nonlinear feature extraction can be achieved by
incorporating quality-relevant information [9], [31], [37] or
data augmentation [38] to the SAE. Explicitly, by incorpo-
rating the output information, namely, yt, into the input to the
SAE, it can extract better-quality nonlinear features. However,
in our predictive modeling application, the current output yt

is unknown. In fact, given the input xt, the sole purpose of
the SAE is to extract the nonlinear features for predicting
or modeling the unknown current output yt. In order to pro-
vide the SAE with the output-relevant information, we use the
“second-best,” that is, we provide the SAE with an estimate
ŷt for the unknown yt. This is achieved by the first GRBF
predictor. It is called the “weak” predictor for the reason that
its prediction ŷt is not our final prediction for the current out-
put yt. But this weak predictor provides the essential and vital
output-relevant information to the SAE feature extractor.

Second, the proposed method can handle severe nonstation-
arity in the process data well. This capability comes from the
GRBF adaptive predictor, not from the GRBF weak predictor
and the SAE feature extractor. True, the GRBF weak pre-
dictor differences the output variable in the raw input data
and it does make the underlying process less nonstationary,
since the difference operation removes the local mean and
trend [25]. But this GRBF weak predictor is fixed after train-
ing and only acts as a part of the input to the SAE during
online operation. The SAE is also fixed after training, as it is
impossible to optimize the multiple deep AE layers of the SAE
online. However, the GRBF adaptive predictor can track the
fast time-varying underlying process characteristics by updat-
ing its weights and structure effectively. It can be seen that
our deep cascade GRBF network consists of two learning
phases: initial training as well as online prediction and adaptive
modeling.

A. Training Deep Cascade GRBF Network

The construction of the deep cascade GRBF network
involves three stages, namely: 1) training the GRBF weak pre-
dictor; 2) training the SAE; and 3) training the GRBF adaptive
predictor, respectively. Both GRBF networks are constructed
using the OLS algorithm, while the SAE is trained by an unsu-
pervised pretraining and a supervised fine-tuning as discussed
in Section II-C.

In the first stage, we have the training data set DW =
{Xtr, dtr; ytr} = {xt, dt; yt}Ntr

t=1, where xt and dt are given by (1)
and (2), respectively, and Ntr is the number of training data,
while Xtr = [x1 x2 · · · xNtr ] ∈ R

ntr×Ntr , ytr = [y1 y2 · · · yNtr ]
T ∈

R
Ntr , and dtr = [d1 d2 · · · dNtr ]

T ∈ R
Ntr are the input, desired

output, and desired output difference data, respectively, with
ntr = ny − 1 + nuni being the input dimension. A compact
MW -term GRBF network is constructed from the training set
DW using the OLS algorithm. With this trained GRBF weak

predictor, the weak predictions ŷtr = [̂y1 ŷ2 · · · ŷN]T ∈ R
Ntr are

generated for the desired values ytr.
In the second stage, the training data set is expanded to

DF = {X′
tr; ytr} = {x′

t; yt}Ntr
t=1 by including the weak prediction

ŷtr as the part of the input to the SAE, where the training input
data x′

t for the SAE is defined as

x′
t = [

ŷt yt−1 · · · yt−ny uT
t−1 · · · uT

t−nu

]T ∈ R
(ntr+2). (16)

The new training data DF are fed into the SAE so as to learn
the corresponding useful features. Specifically, the layerwise
unsupervised pretraining is carried out from the first AE to the
last AE by optimizing the objective function (14). After the
pretraining, a linear regression output layer is added on the top
of the last AE to form the supervised SAE. With the true target
values ytr, the gradient descend optimization is employed to
minimize the objective function (15), so as to fine-tune the
entire SAE network. After the SAE is trained, the extracted
features Ftr can be obtained from the last AE for the input
X′

tr. Then, the regression output layer is removed, and the last
AE is connected to the GRBF adaptive predictor.

In the third stage, the extracted features Ftr by the SAE
serve as the input to the GRBF adaptive predictor. Note that
there is no differencing operation in the input layer of this
GRBF network. The training data set DA = {Ftr, dtr; ytr} is
utilized to construct a compact MA-term GRBF model using
the OLS algorithm. The output of this model provides the
prediction of the process output. After this stage, the train-
ing of the deep cascade GRBF network is completed, and
the trained deep cascade GRBF network is ready for online
prediction and modeling.

B. Online Prediction and Adaptive Modeling

During online operation, it is impossible to optimize the
entire deep cascade GRBF network within a small sampling
period for tacking the fast time-varying process characteristics.
Since the main focus of the first two components is feature
learning to provide the essential and compressed input data
for the third module, during online operation, it is sufficient
to fix the structures and parameters of the weak GRBF predic-
tor and the SAE, and only to adapt the final GRBF adaptive
predictor for tracking the time-varying underlying dynamics
between the extracted features and the process output.

Predicting Process Output: At sample time t, given the
process’s raw observations or the process input vector at t

xpt = [
yt−1 · · · yt−ny uT

t−1 · · · uT
t−nu

]T ∈ R
np (17)

the new input xt for the GRBF weak predictor is formed, and
the hidden layer response of the weak GRBF predictor pWt

is
obtained by the nonlinear mapping (3). The weak prediction
result is then produced as ŷt = pT

Wt
θW , where θW is the weight

vector of the weak predictor. The weak prediction ŷt is further
combined with the raw observations xpt to form the new input
vector x′

t to the SAE. Through forward propagation from the
first feature layer to the last one, the deep output-relevant fea-
tures are extracted at the last AE as f t. The extracted features
f t serve as the input to the AGRBF predictor, whose hidden
layer response vector pAt

is obtained according to (3). Then,
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the model output, which is produced as ỹt = pT
At

θAt−1 with
θAt−1 being the weight vector obtained at sampling time t −1,
provides the deep cascade GRBF network’s prediction of the
process output yt.

Adapting Deep Cascade GRBF Network: When the obser-
vation of the process output yt arrives, the newest output
difference dt also becomes available, and yt and dt are used
with the input vector f t to update the AGRBF predictor’s struc-
ture and weights. Specifically, given the prediction ỹt by the
current GRBF predictor, the modeling performance, defined
as ẽt = (yt − ỹt)

2/y2
t of (5) and (6), is measured. If ẽt < ε,

the model structure remains unchanged and only the current
weight vector θAt−1 is updated into the new one θAt with the
RLS (7). If ẽt ≥ ε, the node replacement takes place. The val-
ues of WNVj, 1 ≤ j ≤ MA, are calculated using (8), and the
worst performing node is identified by (9) as the mth node,
which is then replaced by a new node. To be specific, the
new mth node’s center and scalar are set to cm = xt and
δm = yt − yt−1, respectively, to ensure that it becomes a
perfect local predictor of yt. After the node replacement, the
new weight vector of the GRBF predictor θAt is calculated by
the regularized LS estimation (10), and the inverse covariance
matrix �t is updated with (11).

C. Algorithm Summary

The proposed deep cascade GRBF network is summarized
in Algorithm 1. Our proposed algorithm is computationally
very efficient during online operation. This is because the first
two components of the cascade network are both fixed, and
online complexity is determined by the AGRBF predictor. If
the GRBF adaptive predictor performs only weight adaptation,
the complexity comes from the RLS algorithm (7), which is
on the order of O(MA

2), while if the node replacement occurs,
the WNV calculation in (8) costs O(MA) and the regularized
LS estimator (10) has the complexity no more than O(MA

3).
Thus, the online computational complexity per sample of the
proposed algorithm is no more than O(MA

3), which is clearly
affordable as MA is very small.

We expect that the online complexity of the proposed
deep cascade GRBF network will be lower than that of the
AGRBF [28]. This is because the AGRBF has the same struc-
ture as the GRBF weak predictor. Specifically, the input to
the AGRBF is xt, which is also the input to the cascaded
network. But the input to the GRBF adaptive predictor in the
cascaded network is f t. Through layerwise feature compres-
sion and extraction in the deep cascade network, the dimension
of the input feature data f t to the GRBF adaptive predic-
tor is much smaller than the dimension of the original input
data xt. Consequently, the online computational complexity of
the GRBF adaptive predictor in the cascaded network will be
smaller than that of the original AGRBF.

IV. EXPERIMENTAL RESULTS

Three industrial applications, a debutanizer column process,
a microwave heating process, and a penicillin fermentation
process, are carried out to demonstrate the effectiveness of
our deep cascade GRBF network.

Algorithm 1 Deep Cascade GRBF Network
1: Initial training
2: Construct MW -term GRBF weak predictor based on train-

ing data set DW = {Xtr, dtr; ytr} using OLS algorithm.
3: Calculate model output ŷtr of trained weak predictor, and

combine it with original training data to form training data
set DF = {X′

tr; ytr} for SAE.
4: Utilize X′

tr as input to progressively pretrain multiple AEs
by minimizing cost (14) in unsupervised manner.

5: Stack multiple AEs with an output regression layer, and
fine-tune SAE based on DF by minimizing cost (15).

6: Obtain feature data Ftr from trained SAE, and form
training data set DA = {Ftr, dtr; ytr}.

7: Construct initial MA-term GRBF adaptive predictor based
on DA using OLS algorithm.

8: Online prediction and adaptive modeling
9: Set sample index t = 1.

10: Collect process’s observations xpt of (17).
11: Form input xt from xpt , and calculate GRBF weak predic-

tor’s output ŷt = pT
Wt

θW .
12: Combine ŷt with xpt to form input x′

t, and propagate x′
t

through SAE to obtain deep output-relevant features f t.
13: With input f t, calculate GRBF adaptive predictor’s output

ỹt = pT
At

θAt−1 , which is prediction of process output yt.
14: When measurement of yt arrives, form dt = yt − yt−1.
15: Calculate model performance ẽt using (5) and (6).
16: IF ẽt < ε:
17: Update GRBF adaptive predictor weight vector to θAt

with RLS algorithm (7).
18: ELSE IF ẽt ≥ ε:
19: Calculate WNV values for all MA nodes using (8), and

find m = arg min1≤j≤MA WNVj.
20: Replace mth node with a new node by setting new center

to cm = xt and new scalar δm = dt.
21: Calculate adaptive predictor’s weight vector θAt as

regularized LS estimate (10) and update �t with (11).
22: END IF
23: Set t = t + 1 and go to line 10.

A. Experimental Setup

To measure the online prediction performance of an adaptive
model, we consider the mean squared error (MSE)

MSEt = 1

t

t∑

i=1

(yi − ỹi)
2 (18)

and the mean absolute error (MAE)

MAEt = 1

t

t∑

i=1

|yi − ỹi| (19)

where ỹi denotes the model prediction for the process output yi.
The online computational complexity of the adaptive model
is quantified by the averaged computation time per sample
(ACTpS). The computer for carrying out the experiments has
the following configuration: Windows 10, 16 GB of RAM,
CPU i7-9750 (2.60 GHz), and MATLAB version R2018b.
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The proposed deep cascade GRBF network is compared
with existing well-known online modeling approaches, includ-
ing the RBF network [19], the GRBF network [28], which
is also presented in Section II-A of this article, the TRBF
network [28], and the AGRBF network [28], whose online
prediction and adaptive modeling procedure is also presented
in Section II-B of this article. In addition, two deep-learning
models, the SAE [9], [10] and the LSTM [34], are also used
for comparison. The original SAE [9], [10] is nonadaptive. We
extend this SAE model to the adaptive SAE, and use it as the
third deep-learning model benchmark. Explicitly, during the
online operation, the adaptive SAE utilizes the RLS algorithm
to update the weights of its linear regression layer.

The initial RBF, GRBF, TRBF, and AGRBF models are all
constructed from the training data set with the OLS learning.
During online operation, the RBF and GRBF networks only
perform weight adaptation by the RLS algorithm, while the
TRBF and the AGRBF adjust both weights and structure with
the online prediction and adaptive learning procedures given
in [24] and [28], respectively. For the SAE, multiple AEs are
first pretrained in an unsupervised way layer by layer. After
pretraining, a linear regression layer with single output neu-
ron is added on the top of the stacked AEs for supervised
fine-tuning. The entire SAE is trained by the stochastic gradi-
ent descent algorithm. For the LSTM with single hidden layer,
Adam optimizer [39] is used to train the model based on the
MSE cost. During online operation, the network structures and
parameters of both the SAE and LSTM are fixed. The adaptive
SAE has an identical training procedure to the SAE. During
online operation, however, the adaptive SAE utilizes the RLS
algorithm to update the weights of its linear regression layer.

The forgetting factor of the RLS algorithm is set to
γ = 0.98 for all adaptive models. The node replacement of
the TRBF involves a gradient descent optimization [24] whose
step size and iteration number are empirically set to 0.1 and 5,
respectively. The adaptive procedure of the AGRBF [28] is
identical to the one for the GRBF adaptive predictor in the
deep cascade network. The regularization parameter is set to
λ = 0.001 for the regularized LS estimator (10). The impor-
tant hyperparameters of all the models are chosen carefully by
experiments, as detailed in the three case studies.

B. Case Study-I: Debutanizer Column Process

The debutanizer column [9], [34], [37] is an important unit
of petroleum refinery industry, used to split desulfuration and
naphtha. For process and product quality control, it is neces-
sary to minimize butane content at the bottom of the column.
The butane content measurement is normally obtained by
the gas chromatography with large measurement delay. To
deal with this problem, predictive model can be employed
online to timely estimate the butane content. Seven process
variables measured by sensors have good relevance with the
quality variable, which can be used to construct the inferential
model. Since there are strong nonlinearities and nonstationar-
ity between the quality variable (output) and process variables
(inputs), the proposed method with deep feature extraction
capability is ideal for this online prediction and adaptive

TABLE I
VARIABLE DESCRIPTION IN THE DEBUTANIZER COLUMN PROCESS

modeling task. Descriptions of the process inputs and output
are given in Table I.

Based on the physiochemical insight and expert knowledge,
the debutanizer column process can be represented by the
following time-varying nonlinear system [9]:

yt = fsys
(
xpt ; t

)
(20)

where fsys(·; t) denotes the unknown time-varying nonlinear
mapping of the system, and the input vector xpt is given by

xpt = [
yt−1 yt−2 yt−3 yt−4 u1,t u2,t · · · u5,t
(
u6,t + u7,t

)
/2 u5,t−1 u5,t−2 u5,t−3

]T
. (21)

Since the size of xpt is np = 13, the dimension of the input
vector xt to the GRBF weak predictor is 12, and the dimension
of the input vector x′

t to the SAE unit in our deep model is 14.
A total of 2390 samples of {xpt ; yt} are collected from the
process, and the first 1000 samples are for training while the
rest of them are for online prediction and adaptive modeling.

The sizes of the RBF, GRBF, TRBF, and AGRBF networks
are all empirically chosen to be 10, as suggested in [28]. For
a fair comparison, the size of the GRBF weak predictor in the
proposed method is set to MW = 10. For simplicity, we also
set the size of the GRBF adaptive predictor to MA = 10. The
SAE unit in the proposed method consists of n = 3 AEs, and
the neurons in the first, second, and third hidden layers are
set to {10, 7, 4}, as suggested in [9]. With one output neuron
at its regression output layer, the SAE unit has the network
structure of {10, 7, 4, 1}. The training learning rate and maxi-
mum training epochs for the SAE unit are set to 0.01 and 200,
respectively, as the training achieves convergence within 200
epochs. The node replacement threshold ε for the GRBF adap-
tive predictor is a vital hyperparameter, and we conduct a
grid search over ε ∈ {1, 0.1, 0.01, 0.001, 0.0001, 0.00001}.
The results obtained are depicted in Fig. 2. It can be seen
that the best modeling accuracy is attained with ε = 0.001.
Hence, we set ε = 0.001. Fig. 2 also indicates that reduc-
ing ε increases the ACTpS. This is expected, as smaller ε

leads to more frequent node replacements, which, in turn,
increases the computational complexity. The node replacement
thresholds for the TRBF and AGRBF are also empirically
set to 0.01 and 0.001, respectively. The SAE model has the
same structure of the SAE unit in the proposed method. The
adaptive SAE has the same network structure as the SAE
model as well as the same training setting. For the LSTM,
the hidden-layer size is determined by the grid search over
the set of {16, 32, 64, 128, 256}, and the size of 32 is used as
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TABLE II
PERFORMANCE COMPARISON OF RBF, GRBF, LSTM, SAE, ADAPTIVE SAE, TRBF, AGRBF, AND PROPOSED METHOD

FOR DEBUTANIZER COLUMN PROCESS

Fig. 2. Impact of node replacement threshold on the adaptive modeling accu-
racy and the online complexity (the black number [ms] denotes the ACTpS)
of the proposed method for debutanizer column process.

Fig. 3. MSE learning curves for online modeling of debutanizer column
process by various models.

it attains the best performance. The learning rate and training
epochs for the LSTM are empirically set to 0.001 and 200,
respectively.

Both the training and online prediction performance attained
by the eight models are compared in Table II, while Fig. 3
depicts the MSE learning curves for online prediction by these
eight methods. It is well known that the performance of deep
neural networks, such as the SAE, adaptive SAE, LSTM,
and our deep cascade network, depend on initialization.
Therefore, the average MSE and MAE over 20 independent

experiments together with the corresponding standard devia-
tions are listed in Table II for the SAE, adaptive SAE, LSTM,
and the proposed method. The proposed method achieves
much smaller standard deviations for the test MSE and MAE
than those of the SAE and adaptive SAE. This means that our
method is more robust than the SAE and adaptive SAE regard-
ing initialization. Also, observe that the standard deviations of
our method are similar to those of the LSTM.

Clearly, the training performance of both the RBF and
TRBF is identical, while the training performance of the
GRBF and AGRBF is the same, as training is carried out
by the same OLS learning on the same training data. During
online prediction, however, the TRBF is more than 14 dB bet-
ter than the fixed-structure RBF while the AGRBF is more
than 11 dB better than the fixed-structure GRBF. The online
prediction performance of both the nonadaptive LSTM and
SAE as well as the adaptive SAE degrade considerably from
their respective training performance, particularly, the SAE
type models, because their parameters and/or structures are
fixed. This shows a serious drawback of applying deep neu-
ral networks, namely, inability to adapt their structures and
parameters online. The adaptive SAE does attain a better
performance when compared with the nonadaptive SAE, as it
adapts its weights of the linear regression layer. Our proposed
method outperforms all the other seven methods, attaining the
smallest test MSE and MAE values. In particular, the online
prediction MSE of our method is 2 dB lower than that of the
second-best AGRBF. Also, observe that the online prediction
MSE of the adaptive SAE is 4 dB higher than our method. This
clearly demonstrates an important advantage of our proposed
deep cascade GRBF network over the existing deep models,
namely, our model is capable of adapting its structure online
to track fast time-varying process characteristics.

In terms of online computational complexity, the RBF,
GRBF, and adaptive SAE have the lowest ACTpSs, as they
only update the models’ linear weights using the RLS. By
comparison, the ACTpSs of the TRBF, AGRBF, and our
proposed deep cascade GRBF network are higher, because
these models also adapt their networks’ structures. But these
three adaptive models all achieve very fast model struc-
ture updating at each sampling period, specifically, within
a fraction of millisecond (ms). Therefore, even the process
has a very high sampling rate, for instance, a sampling
period of 1 ms, all the six adaptive models are capable of
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completing their adaption well within the sampling period
constraint. Observe that the proposed deep cascade GRBF
network imposes lower online complexity than the AGRBF.
Specifically, the ACTpS of the AGRBF are 0.4989 ms,
which is twice of the proposed method. The reason for this
complexity reduction is explained in Section III-C.

To offer an intuitive comparison of the four adaptive models,
the adaptive SAE, TRBF, AGRBF, and proposed method, their
online predictions and errors are shown in Fig. 4. Observe that
the error curve of the TRBF shows large fluctuations, indicat-
ing that it contains unmodeled parts. The AGRBF performs
better but still has difficulty to predict some “turning points”
(around 150, 600, and 1000 test samples). The error curve of
the adaptive SAE also exhibits some unmodeled parts. The
proposed method enables best tracking of this time-varying
process with the smallest prediction errors.

C. Case Study-II: Microwave Heating Process

Microwave energy, as a source of heat, has been widely
used in industrial heating applications. However, due to the
electromagnetic waves propagation properties and permittivity
variation in materials, thermal runaway often occurs, leading
to destructive results [40]. Therefore, it is crucial to predict
the heating temperature online and detect thermal runaway in
advance. Microwave heating process is time varying in nature,
and the heating temperature is influenced not only by multi-
physical field coupling but also by the permittivity variation
in materials [41], [42]. This motivates us to investigate online
adaptive model for real-time temperature prediction.

In the laboratory-scale microwave heating system [43], there
are five microwave power sources of 3 kW each for a max-
imum power supply of 15 kW at 2.45 GHz. Microwave
generated by each microwave source is transmitted through
the corresponding waveguide, fed into multimode cavity, and
finally absorbed by heated materials. The conveyor belt, whose
speed is controlled by the motor driver, enables to continuously
transport materials. Material temperature is measured by fiber
optic sensors, which is sent to the host computer for moni-
tor and control purpose. Five microwave powers and conveyor
speed can be adjusted to control the temperature through the
programmable logic controller (PLC) linked to the computer.
Therefore, the process has six process input variables: the five
microwave powers upi,t, 1 ≤ i ≤ 5, and the conveyor speed
uv,t. The nonlinear time-varying relationship between the pro-
cess inputs and the output, namely, the temperature yt, can be
described by the system yt = fsys(xpt ; t), with the system input
vector defined by

xpt = [
yt−1 yt−2 yt−3 up1,t−1 · · · up5,t−1 uv,t−1

]T
. (22)

Since the dimension of xpt is np = 9, the dimension of the
input vector xt to the GRBF weak predictor is 8, and the
dimension of the input vector x′

t to the SAE unit in our
deep cascade network is 10. From this microwave heating
system, 3000 samples {xpt ; yt} are collected in a real experi-
ment [43]. We normalize the data into the range [0, 1], and
separate them into the training (1000 samples) and online
testing (2000 samples) sets.

(a)

(b)

(c)

(d)

Fig. 4. Online prediction and error of: (a) adaptive SAE, (b) TRBF,
(c) AGRBF, and (d) proposed method for debutanizer column process.

Again, the structures of all the models are carefully chosen
by trial and error. Specifically, the numbers of nodes in the
RBF, GRBF, TRBF, and AGRBF networks are all set to 10.
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TABLE III
PERFORMANCE COMPARISON OF RBF, GRBF, LSTM, SAE, ADAPTIVE SAE, TRBF, AGRBF, AND PROPOSED METHOD

FOR MICROWAVE HEATING PROCESS

Fig. 5. Impact of node replacement threshold on the adaptive modeling accu-
racy and the online complexity (the black number [ms] denotes the ACTpS)
of the proposed method for microwave heating process.

For our deep cascade network, we choose MW = MA = 10
for its weak and AGRBF predictors, while its SAE unit has
the structure of {7, 5, 3}. The learning rate and the number of
training epochs for the SAE unit are again set to 0.01 and 200,
respectively. Based on the results of Fig. 5, we set the node
replacement threshold for our proposed method to ε = 0.001.
The LSTM network has 64 hidden nodes, and the structure of
the SAE and adaptive SAE models are chosen to be {7, 5, 3, 1}.
The learning rate and the number of training epochs are again
set to 0.001 and 200, respectively, for the SAE, the adap-
tive SAE, and the LSTM. The node replacement thresholds
are empirically chosen to be 0.1 and 0.01 for the TRBF and
AGRBF, respectively.

Table III lists both the training and online prediction
performance achieved by the eight models, while Fig. 6 depicts
the online MSE learning curves for the various models com-
pared. Observe that both the SAE and adaptive SAE achieve
very similar performance. Clearly, our method attains the best
online prediction accuracy, and its online prediction MSE is
2 dB smaller than the second-best adaptive SAE. Moreover,
the performance of the adaptive SAE exhibits a large fluctua-
tion, due to its sensitivity to training initialization. Specifically,
the standard deviation of the adaptive SAE’s test MSE is
4.5475 dB, which is four times of our proposed method.
In terms of online computational complexity, the adaptive
SAE has the lowest ACTpS of 0.0020 ms among the three

Fig. 6. MSE learning curves for online modeling of microwave heating
process by various models.

weight-adapting models, since it only updates three weights,
while the proposed method attains the smallest ACTpS of
0.0121 ms among the three structure-adaptive models. Clearly,
all the these six adaptive models are capable of meeting a
very small sampling period constraint. The online predictions
and errors of the four adaptive models, the adaptive SAE,
TRBF, AGRBF, and proposed deep cascade network, are
presented in Fig. 7, where it can be seen that the TRBF
and AGRBF produce some large-magnitude online prediction
errors. The adaptive SAE model has much better online
prediction performance than the TRBF and AGRBF mod-
els, while the proposed method has the best online tracking
accuracy.

D. Case Study-III: Penicillin Fermentation Process

The penicillin fermentation process is an industrial bio-
chemical fed-batch process with nonlinear dynamics and
multimode characteristics, which has been widely adopted for
performance assessment of adaptive soft sensors [44], [45].
The biomass concentration is a hard-to-measure key variable
of this fermentation process, which is chosen as the system
output, while other ten process variables are used as the system
inputs, as tabulated in Table IV. This system can be repre-
sented by yt = fsys(xpt ; t) [44], [45], with the system input
vector specified by

xpt = [
u1,t u2,t · · · u10,t

]T
. (23)
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(a)

(b)

(c)

(d)

Fig. 7. Online prediction and error of: (a) adaptive SAE, (b) TRBF,
(c) AGRBF, and (d) proposed method for microwave heating process.

Thus, the dimension of xt is 10 and the dimension of x′
t

is 11. For this fermentation process, 800 samples are collected
from the PenSim tool [46] with default simulation condition.

TABLE IV
VARIABLE DESCRIPTION IN THE PENICILLIN FERMENTATION PROCESS

Fig. 8. Impact of node replacement threshold on the adaptive modeling accu-
racy and the online complexity (the black number [ms] denotes the ACTpS)
of the proposed method for penicillin fermentation process.

We separate them into the training (400 samples) and online
testing (400 samples) sets.

Similarly, the structures of all the models are carefully cho-
sen by experiments. Specifically, the numbers of nodes in the
RBF, GRBF, TRBF, and AGRBF networks are all set to 10.
For our deep cascade network, we choose MW = MA = 10
for its weak and AGRBF predictors, while its SAE unit has
the structure of {10, 7, 4}. Based on the results of Fig. 8, we
set the node replacement threshold to ε = 0.1 for the GRBF
adaptive predictor in our deep cascade network. The LSTM
network has 64 hidden nodes, and the structure of the SAE
and adaptive SAE models are both chosen to be {10, 7, 4, 1}.
The learning rate and and the number of training epochs for
these three deep models are the same as the previous case.
The node replacement thresholds are empirically chosen to be
0.1 and 1 for the TRBF and AGRBF models, respectively.

Table V lists both the training and online prediction
performance of the eight models compared, while Fig. 9 plots
the online MSE learning curves of these models. One may
observe in Table V that the SAE and the adaptive SAE attain
a spectacularly low training MSE performance but their online
prediction accuracy degrade dramatically from the training
performance. As expected, the adaptive SAE does attain the
better test MSE than its nonadaptive counterpart. Again, our
proposed deep method achieves the best online prediction
accuracy, as evidenced by the smallest test MSE and MAE.
The online prediction MSE of our method is 3 dB lower than
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TABLE V
PERFORMANCE COMPARISON OF RBF, GRBF, LSTM, SAE, ADAPTIVE SAE, TRBF, AGRBF, AND PROPOSED

METHOD FOR PENICILLIN FERMENTATION PROCESS

Fig. 9. MSE learning curves for online modeling of penicillin fermentation
process by various models.

the second-best adaptive SAE. Also, observe that the deep
cascade GRBF network imposes a lower online computational
complexity than the AGRBF. Specifically, the online ACTpS
of our deep model is less than 0.05 ms, compared to 0.06 ms
imposed by the AGRBF. The online predictions and errors of
the adaptive SAE, TRBF, AGRBF, and our proposed model
are presented in Fig. 10, which again demonstrates the supe-
rior online tracking performance of our proposed method over
the other models.

E. Discussion of the Results

The experimental results involving three real-world indus-
trial processes demonstrate that the proposed deep cascade
GRBF network achieves the state-of-the-art adaptive modeling
performance for high-dimensional nonlinear and nonstation-
ary processes. Our proposed method not only consistently
attains the best online prediction accuracy but also imposes
sufficiently low online adaptation computational complexity
that easily meets the constraint of small sampling period.
In particular, compared with the current state-of-the-art deep
neural network model, namely, the adaptive SAE, the online
prediction MSE attained by our method is significantly lower
than that of the adaptive SAE. Unlike our method, which can
adapt its GRBF predictor’s structure and weights online, the
adaptive SAE can only adjust its output regression layer’s
weights, which is insufficient for tracking fast time-varying

process’s characteristics. The same limitation of the adaptive
SAE, however, gives it an advantage in the online compu-
tational complexity, and the ACTpS of the adaptive SAE
is significantly lower than that of our deep cascade GRBF
network.

It can be seen that our proposed deep cascade GRBF
network is particularly well designed for highly nonstationary
data. If the underlying process is stationary or the pro-
cess’s dynamics only change slowly with time, our method
may lose its competitive edge over the adaptive SAE. For
high-dimensional slow time-varying nonlinear processes, the
fixed SAE latent space is capable of extracting the compressed
nonlinear features from raw data, and an adaptive linear regres-
sion layer becomes sufficient to track the slowly time-varying
process characteristics. However, we emphasize again that this
research is devoted specifically for severely time-varying data
with nonlinear high dimensionality, and for such challeng-
ing application area, our deep cascade GRBF network shows
considerable advantages over the existing state-of-the-art, as
evidenced by the experimental results.

V. CONCLUSION

In this article, we have proposed a deep cascade GRBF
network, consisting of a weak GRBF predictor, a SAE fea-
ture extractor, and a final GRBF adaptive predictor, aiming
online prediction and modeling of nonlinear and nonstationary
processes. The weak GRBF predictor provides a preliminary
prediction result, which is combined with the raw input data to
define the attribute input vector of a SAE. Deep output-relevant
features are then extracted by the SAE, which provide the
inputs of a GRBF adaptive predictor to improve modeling
performance. Our deep cascade network seamlessly integrates
deep learning with an AGRBF model. The proposed deep
model with multilevel architecture can perform model adap-
tation very efficiently, enabling real-time tracking of quick
changes in process dynamics within a small sampling period.
Applications to three real-world industrial processes have val-
idated the effectiveness of the proposed method over the
existing state-of-the-art online adaptive modeling approaches
and deep learning networks.

It is worth mentioning that supervised training of SAE with
error backpropagation is prone to the local minimum problem,
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(a)

(b)

(c)

(d)

Fig. 10. Online prediction and error of: (a) adaptive SAE, (b) TRBF,
(c) AGRBF, and (d) proposed method for penicillin fermentation process.

and therefore, the training is very sensitive to parameter ini-
tialization, which degrades the feature extraction robustness.
If the training of the SAE unit can be made more robust by

ensuring that the training procedure converges to a global or
near global optimal solution, the nonlinear modeling capabil-
ity of the entire deep cascade GRBF network can be further
enhanced. How to construct a robust and an optimal SAE
is an open research direction for a future works. A possi-
ble approach is adopting evolutionary optimization algorithms,
such as differential evolutionary algorithm and swarm particle
optimization, for supervised training.
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