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Adaptive Multioutput Gradient RBF Tracker
for Nonlinear and Nonstationary Regression
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Abstract—Multioutput regression of nonlinear and nonstation-
ary data is largely understudied in both machine learning and
control communities. This article develops an adaptive multiout-
put gradient radial basis function (MGRBF) tracker for online
modeling of multioutput nonlinear and nonstationary processes.
Specifically, a compact MGRBF network is first constructed with
a new two-step training procedure to produce excellent predictive
capacity. To improve its tracking ability in fast time-varying sce-
narios, an adaptive MGRBF (AMGRBF) tracker is proposed,
which updates the MGRBF network structure online by replac-
ing the worst performing node with a new node that automatically
encodes the newly emerging system state and acts as a perfect
local multioutput predictor for the current system state. Extensive
experimental results confirm that the proposed AMGRBF tracker
significantly outperforms existing state-of-the-art online multiout-
put regression methods as well as deep-learning-based models, in
terms of adaptive modeling accuracy and online computational
complexity.

Index Terms—Multioutput gradient radial basis function
(MGRBF) network, multivariate nonlinear and nonstationary
regression, online adaptive tracking, two-step training.

I. INTRODUCTION

MANY real-world systems are nonstationary, and they
operate in real time to continuously produce tremen-

dous amount of data in the form of fast arriving data
streams [1], [2], [3]. A regression model must be capable of
adapting to the newly emerging system state within a strictly
limited processing time. Recently, there is an increasing trend
of applying deep learning to nonlinear regression problem.
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Typically, deep networks with multilevel feature extraction
layers are adopted, such as stacked autoencoder (SAE) [4], [5]
or long short-term memory (LSTM) recurrent neural network
(RNN) [6], [7]. However, the online adaptation of these deep
nonlinear models is very challenging if not impossible, since
it is prohibitive to adapt large deep networks within a small
sampling period in order to track fast time-varying system
dynamics.

With the increasing demand for today’s complex deci-
sion making, the traditional single-output modeling is not
coping well with multitask predictions. Unlike single-output
modeling, multioutput modeling takes into account the com-
plex interactions and compound dependencies among the
multiple outputs [8], [9]. Multioutput modeling becomes
even more challenging under nonstationary environment.
Multioutput data gathered from heterogeneous sources come
in high speed and evolve over time with unforeseen drifts.
This motivates our current work to develop an effective multi-
output online predictive model to deal with fast time-varying
characteristics in multivariate data. Existing methods in the lit-
erature for online regression can be classified into two groups:
1) multiple local model learning and 2) single nonlinear model
learning.

The multiple local model learning strategy has been suc-
cessfully applied to industrial adaptive soft sensor design in
the presence of frequent operating condition deviations [10],
[11], [12]. The essence of this local learning strategy is to
partition a nonlinear and nonstationary process into multiple
local regions with a moving window. Each region is con-
sidered to be stationary and is modeled by a local linear
model. The selective ensemble-based multiple local model
(SEMLM) learning grows local linear models online to auto-
matically identify newly emerged process states and combines
the most up-to-date local models to make an accurate selective
ensemble regression (SER)-based prediction [13]. The grow-
ing and pruning SER (GAP-SER) can further prune the past
accumulated local models that are no longer relevant, thus,
significantly reduce the online computation burden in making
prediction [14]. Although the GAP-SER can achieve excel-
lent online prediction performance for modeling nonstationary
data, while imposing much less averaged computation time
per sample (ACTpS) than the SEMLM, it is still restricted to
single-output modeling. The more recent multioutput GAP-
SER (MGAP-SER) adopts a novel adaptive local learning
strategy based on multivariate statistic that enables growing
and pruning multioutput local linear models [15]. Unlike the
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single-output GAP-SER, the MGAP-SER exploits the complex
interactions between multiple output variables, and it attains
better prediction accuracy than using multiple single-output
GAP-SERs when modeling multioutput processes. A potential
drawback common to all multiple local model learning meth-
ods is that the size of the SER prediction model constructed
changes from sample to sample. It is hard to implement an
adaptive controller based on such a variable-size predictor.

The single nonlinear model learning strategy attempts to
capture the global nonlinear characteristics from the data using
a nonlinear model, such as a neural network. Among vari-
ous nonlinear models, the radial basis function (RBF) network
has become very popular, due to its elegant mathematical for-
mulation, ease of model optimization, and strong modeling
performance [16]. By formulating the RBF model training
as a subset selection problem, the orthogonal least squares
(OLSs) is used to identify appropriate RBF centers from train-
ing input data, and to estimate output weights simultaneously
in an efficient manner [17], [18], [19], [20], [21]. This proce-
dure can be easily extended to multioutput modeling, where
the subset selection is directly based on the trace of the error
covariance matrix [22], [23], [24], [25]. Some other hybrid
training algorithms have also been proposed for multioutput
RBF (MRBF) model construction [26], [27]. The RBF model
typically tracks the changing process dynamics by updating
its weight vector using the recursive least square (RLS) algo-
rithm [28], [29], [30]. However, in a highly time-varying
environment, the process dynamics can vary dramatically and
weight updating alone is insufficient. Hence, online model
structure adaptation is necessary. A typical way of online
adapting the RBF structure is to adaptively grow or prune
RBF nodes based on their significance, such as resource allo-
cating network (RAN) [31] and growing-and-pruning RBF
(GAP-RBF) [32]. Such an approach, however, produces a
variable-size nonlinear model, which is not helpful for imple-
menting an adaptive controller. To keep a fixed compact-size
RBF model, the fast tunable RBF (TRBF) of [33] adjusts the
individually tunable nodes to track the time-varying process
dynamics. Experimental results of [33] show that this TRBF
outperforms the RAN and GAP-RBF for online modeling of
nonstationary systems.

A novel extension to the RBF network, known as the
gradient RBF (GRBF) network, was proposed to deal with
time series exhibiting homogeneous nonstationary characteris-
tics [34]. Instead of sensing the trajectory of the series itself,
the hidden nodes of the GRBF network react to the gradient
of time series. Not surprisingly, this GRBF network trained
by the OLS algorithm outperforms the classic RBF network
in nonstationary time-series prediction [34]. To enhance its
adaptive prediction capability for highly nonstationary time
series, a fast adaptive GRBF (AGRBF) was proposed for
online time-series prediction [35], which was further extended
to online modeling and identification of nonlinear and time-
varying processes in [36]. Similar to the TRBF, during online
operation when the current modeling error becomes unaccept-
able, the AGRBF adapts the model structure by replacing an
insignificant node with a new node that automatically encodes
the current data. Owing to the local prediction property of the

GRBF node, the new node optimization is much more effi-
cient than the TRBF, which imposes little online computation.
Extensive experiments of [36] demonstrate that this AGRBF is
superior to various existing state-of-the-art adaptive nonlinear
models, including the TRBF and GAP-SER, in terms of both
online modeling accuracy and computational efficiency. Also,
the fixed compact size of AGRBF makes it more applicable
in an adaptive control scheme than the GAP-SER.

Although the AGRBF achieves great success in the online
regression of nonstationary data, it is suitable only for single-
output modeling. Due to the particular geometry structure
of the GRBF network, we cannot extend it to multioutput
modeling by simply adding multiple output neurons to the
single-output-neuron GRBF structure, because this does not
realize its full predictive capability. Note that this is unlike the
MRBF network, which can be obtained by adding the multiple
output neurons to the single-output-neuron RBF structure.
Also, the online adaptive strategies of the AGRBF [36],
TRBF [33], RAN [31], and GAP-RBF [32] are all restricted to
single-output modeling and they are not applicable to online
multioutput modeling. Although we may apply the multiple
single-output AGRBF models to identify multioutput systems,
this will not only increase the modeling effort considerably
but also degrades the achievable online modeling accuracy.
Therefore, it is necessary to develop the new online adaptive
multioutput model by extending the highly desirable GRBF
network to multioutput regression. This article proposes an
adaptive multioutput GRBF (AMGRBF) network for tracking
nonlinear and nonstationary processes. Our novel contributions
are summarized as follows.

1) We propose a new MGRBF network with excellent
predictive capacity for multioutput modeling. Due to
the multioutput nature of this new MGRBF structure,
the OLS learning cannot be directly applied to model
construction. Hence, we further propose a new two-step
training method to construct a compact MGRBF model.

2) To improve its tracking ability in highly nonstationary
environments, we derive an adaptive mechanism to effi-
ciently adjust the MGRBF model online. During online
operation, the MGRBF network adapts its structure by
replacing an insignificant node with a new node that
automatically encodes the newly emerging system state.
This proposed online tracker fully exploits the geomet-
ric structure of the MGRBF network, and it is capable
of timely capturing the fast-changing process dynamics
while maintaining a very low online complexity.

3) Extensive applications of real-world multivariate non-
linear and nonstationary regression demonstrate that
the proposed AMGRBF significantly outperforms the
existing state-of-the-art online adaptive multioutput
models, including the MGAP-SER and the new multi-
output TRBF (MTRBF), as well as deep-learning-based
models.

II. PROPOSED MGRBF NETWORK

We consider the generic multi-input–multi-output nonlin-
ear time-varying dynamic system that can be represented by
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Fig. 1. Proposed MGRBF network structure.

the following multivariate nonlinear autoregressive moving
average (NARMA) model [25]:

yt+(K−1) = f sys
(
xt; t

)
(1)

where K ≥ 1 is the prediction step, yt = [yt,1 · · · yt,no ]T ∈ R
no

is the no-dimensional system output vector, f sys(•; t) is the no-
dimensional unknown and time-varying system mapping, and
the overall system input xt ∈ R

(nony+ninu) is given by

xt = [
yT

t−1 · · · yT
t−ny

uT
t−1 · · · uT

t−nu

]T (2)

in which ut = [ut,1 · · · ut,ni ]
T ∈ R

ni is the ni-dimensional
system input vector, and ny and nu are the system output and
input lags, respectively. Without loss of generality, we focus
on one-step-ahead prediction modeling, that is, K = 1. All the
results are, however, equally applicable to the case of K > 1.

Two special cases of this NARMA model are the multi-
variate nonlinear autoregressive (NAR) model or time-series
prediction in which xt = [yT

t−1 · · · yT
t−ny

]T , and the multi-
variate nonlinear moving average (NMA) model in which
xt = [uT

t−1 · · · uT
t−nu

]T .

A. MGRBF Network Structure

The modeling task is to build a prediction model ŷt =
f mod(xt;�) to predict yt given the input xt of (2), where
� denotes the model parameter matrix. We propose a novel
MGRBF network, as illustrated in Fig. 1, to perform this
task. This MGRBF network is very different from the MRBF
network of [22], [23], and [24]. It also has a significant
difference with the single-output GRBF network [36].

First, unlike the MRBF network, the input layer of the
MGRBF network automatically differences the past outputs
in xt to yield the actual network input vector x′

t ∈ R
nc as

x′
t = [

(yt−1 − yt−2)
T · · · (yt−ny+1 − yt−ny

)T uT
t−1 · · · uT

t−nu

]T

(3)

where nc = (no(ny − 1) + ninu). Differencing helps to
eliminate trend and seasonality and makes the series less time-
dependent [37]. For the NAR regression task, the input vector

xt does not contain the past system outputs, and the MGRBF
network will not implement this difference operation.

Also, an MGRBF hidden node is very different from that
of the single-output GRBF network. Specifically, unlike the
single-output GRBF network, where each Gaussian node’s
response is modified by a single-output local predictor, the
no local predictors are required in each MGRBF hidden node.
Let M be the number of hidden nodes in the MGRBF network.
Observe from Fig. 1 that each MGRBF hidden node con-
tains the no local one-step predictors that modify the Gaussian
node’s response. The response of the ith local predictor in the
jth MGRBF node to the input vector x′

t is given by

φj,i(x′
t) = exp

(
−∥∥x′

t − cj
∥
∥2

2σ 2

)

× (
yt−1,i + δj,i

)

for i = 1, . . . , no, j = 1, . . . ,M (4)

where σ is the width of the Gaussian kernel, which is typically
set as the maximum Euclidean distance among nodes [38],
cj ∈ R

nc is the node center, and δj,i is a scalar associated with
the ith local predictor of the jth node. It can be observed
from (4) that the multiple local predictors in the hidden node
share the same Gaussian center cj, but with different multipli-
cation terms (yt−1,i + δj,i), 1 ≤ i ≤ no. The term (yt−1,i + δj,i)

can be interpreted as a local one-step prediction of yt,i by the
ith local predictor. The essence of the MGRBF node is that
if the input vector x′

t is very similar to the jth center cj, the
value of the jth Gaussian function is close to 1 and all the
local predictors (yt−1,i + δj,i) for 1 ≤ i ≤ no become fully
active.

The output layer of the MGRBF network consists of the
no output nodes, which form the no linear combiners of the
M hidden layer responses to produce the model output vector
ŷt = [̂yt,1 · · · ŷt,no ]T ∈ R

no . Let φt,j ∈ R
no be the response

vector of the jth node to x′
t, that is

φt,j = [
φj,1(x′

t) · · ·φj,no(x
′
t)
]T (5)

and denote the connection weight vector from the jth hidden
node’s response vector to the ith output node as

θ i,j = [
θi,j,1 · · · θi,j,no

]T
. (6)

Then, the ith output of the MGRBF network is given by

ŷt,i =
M∑

j=1

φT
t,jθ i,j. (7)

Further define the overall response vector ϕM̄,t ∈ R
M̄ of the

hidden layer to the input x′
t as

ϕT
M̄,t

= [
φT

t,1 · · ·φT
t,M

]
(8)

where M̄ = noM, as well as the overall output layer connection
matrix �M̄×no

∈ R
M̄×no

�M̄×no
=

⎡

⎢⎢
⎢
⎣

θ1,1 θ2,1 · · · θno,1
θ1,2 θ2,2 · · · θno,2
...

...
. . .

...

θ1,M θ2,M · · · θno,M

⎤

⎥⎥
⎥
⎦
. (9)
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Fig. 2. Difference of the regression matrices between the MGRBF network and the RBF/MRBF/GRBF network.

The output vector of the MGRBF network to x′
t is given by

ŷT
t = ϕT

M̄,t
�M̄×no

. (10)

Remark 1: The hidden neuron node in all the existing neu-
ral network architectures produces a single response to the
input. In contrast, the hidden neuron node in our MGRBF
network produces multiple response to the input. This rep-
resents an innovative idea in the artificial neural network
design.

B. Two-Step Training of MGRBF

The task of building an MGRBF model is to choose appro-
priate centers cj, and scalars δj = [δj,1 · · · δj,no ]T based on the
given set of training inputs and outputs {x′

t; dt, yt}N
t=1, where

N is the total number of training samples, and

dt = yt − yt−1. (11)

Specifically, we choose the centers cj, 1 ≤ j ≤ M, from the
training input data {x′

t}N
t=1. In particular, if x′

t is selected as the
jth center cj, we set δj = dt to ensure that the jth hidden node
response φt,j is a perfect local predictor of yt. Thus, by consid-
ering every data point (x′

t, dt) as a candidate hidden node, the
problem of constructing the MGRBF network is equivalent to
the task of selecting an M-term subset model {cj, δj}M

j=1 from
the full N-term model {x′

t, dt}N
t=1.

Formally, by using every (x′
t, dt) as a candidate hidden node,

we obtain the full N-hidden-node MGRBF network with the
overall output layer connection matrix �N̄×no

∈ R
N̄×no , where

N̄ = noN, as well as the overall response matrix �N×N̄ ∈
R

N×N̄ of the hidden layer to the inputs {x′
t}N

t=1

�N×N̄ =

⎡

⎢⎢
⎢⎢
⎣

ϕT
N̄,1
ϕT

N̄,2
...

ϕT
N̄,N

⎤

⎥⎥
⎥⎥
⎦

=
[
�
(1)
N×no

�
(2)
N×no

· · ·�(N)N×no

]
(12)

where �(l)N×no
∈ R

N×no is the response matrix of the lth can-
didate node whose center vector is cl = x′

l and scalar vector

is δl = dl. Since each hidden node contains no local pre-
dictors and N hidden nodes are employed to form the full
MGRBF model, the size of the regression matrix is N × N̄.
For 1 ≤ l ≤ N, �(l)N×no

can be expressed as

�
(l)
N×no

=
[
φ
(l)
N,1 φ

(l)
N,2 · · ·φ(l)N,no

]
(13)

with φ(l)N,i = [φl,i(x′
1) · · ·φl,i(x′

N)]
T being the response of the

ith local predictor of the lth node to {x′
t}N

t=1. Constructing the
M-term MGRBF network {cj, δj}M

j=1 for M � N becomes
a subset selection problem of selecting the M matrix bases
{�(lj)N×no

}M
j=1 from the full regression matrix �N×N̄ .

Remark 2: Note that this subset selection problem is very
different from constructing an M-term MRBF network. The
latter task is to select a subset of the M basis vectors from the
full set of the N basis vectors, and the multioutput OLS algo-
rithm [22], [23], [24] can readily be applied to efficiently solve
this subset selection problem. In contrast, our current subset
selection problem is to select a subset of M basis matrices
from the full set of the N basis matrices, and it is mathemat-
ically infeasible to directly employ the OLS to select these
basis matrices from the candidate pool. Fig. 2 highlights this
main difference of the two subset selection tasks by displaying
the full regression matrices or candidate pools for these two
tasks. Also, the hybrid constructive algorithms of [26] and [27]
cannot be used to train the MGRBF network. To the authors’
best knowledge, we are not aware any existing subset selection
algorithm which can select subset matrix bases.

We propose to solve the problem of constructing the
MGRBF network by separating it into two parts. First, we
select appropriate centers from the training dataset {x′

t; yt}N
t=1.

This subset selection problem can be formulated as the
problem of constructing an “equivalent” M-term MRBF
network with the OLS algorithm. Second, with the selected
centers {cj = x′

tj}M
j=1 from the constructed MRBF model, their

associated scalar vectors are assigned to {δj = dtj}M
j=1 so as to

complete the MGRBF hidden layer. The output weight matrix
of this constructed M-node MGRBF network is finally solved
by the regularized least square (LS) estimation method. This
two-step construction procedure is detailed as follows.
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OLS-Based Center Selection: The aim is to select the M
center vectors of the MGRBF network from the training
dataset. This is equivalent to construct an M-node subset
MRBF network with the OLS algorithm. By using every input
data x′

t as a candidate center vector, we can model the training
dataset {x′

t; yt}N
t=t with the full N-node MRBF network as

YN×no = �N×N�N×no + EN×no (14)

where �N×no ∈ R
N×no is the output-layer connection weight

matrix of the full N-node MRBF network, and �N×N ∈ R
N×N

is the corresponding full regression matrix given by

�N×N = [
ψ1 ψ2 · · ·ψN

] =

⎡

⎢
⎢⎢
⎣

ψ1,1 ψ1,2 · · · ψ1,N
ψ2,1 ψ2,2 · · · ψ2,N
...

...
. . .

...

ψN,1 ψN,2 · · · ψN,N

⎤

⎥
⎥⎥
⎦

(15)

in which ψt,j denotes the response of the jth node to x′
t, while

YN×no =
⎡

⎢
⎣

yT
1
...

yT
N

⎤

⎥
⎦ ∈ R

N×no (16)

and EN×no ∈ R
N×no is the modeling residual matrix.

Let the orthogonal decomposition of �N×N be

�N×N = WN×NAN×N

= [
w1 w2 · · · wN

]

⎡

⎢⎢⎢
⎣

1 a1,2 · · · a1,N
0 1 · · · a2,N
...

. . .
. . .

...

0 · · · 0 1

⎤

⎥⎥⎥
⎦

(17)

with orthogonal columns that satisfy wT
i wj = 0, for i �= j.

The space spanned by the set of bases {wj} is the same space
spanned by the bases {ψ j}, and (14) can be rewritten as

YN×no = WN×NGN×no + EN×no (18)

where the weight matrix GN×no for the space spanned by the
columns of WN×N , namely

GN×no =
⎡

⎢
⎣

g1,1 · · · g1,no
... · · · ...

gN,1 · · · gN,no

⎤

⎥
⎦ (19)

is linked to the weight matrix �N×no by the triangular system
AN×N�N×no = GN×no . The classic Gram–Schmidt method
can be used to perform this orthogonal decomposition [22].

For multioutput case, the contribution of a candidate basis
to the trace of the desired output covariance matrix is used
to define how significant this basis is, and the trace of the
covariance of YN×no can be expressed as [22], [23], [24]

tr
(
YT

N×no
YN×no/N

) =
N∑

j=1

( no∑

i=1

g2
j,i

)
wT

j wj/N

+ tr
(
ET

N×no
EN×no/N

)
. (20)

The error reduction ratio due to wk can be defined as

[err]k =
(∑no

i=1 g2
k,i

)
wT

k wk

tr(YT
N×no YN×no )

, 1 ≤ k ≤ N. (21)

Based on this radio, significant nodes can be selected in a
forward regression procedure. At the kth step of the selection
procedure, a candidate node with the largest value of [err]k

is selected, from among the rest of N − k + 1 candidates.
The selection procedure is terminated when 1 −∑M

j=1 [err]j is
smaller than a preset threshold, and this yields a regression
model with M hidden nodes or centers {cj = x′

tj}M
j=1.

MGRBF Construction and Weight Estimation: After the
significant centers {cj = x′

tj}M
j=1 have been obtained, they are

used as the centers of the M-node MGRBF network, and
the associated scalar vectors are assigned as {δj = dtj}M

j=1.
This completes the construction of the hidden layer of the
MGRBF network. To determine the output layer connection
matrix �M̄×no

of the constructed MGRBF network, express
the network output matrix to the inputs {x′

t}N
t=1 by

ŶN×no = �N×M̄�M̄×no
(22)

where �N×M̄ is the hidden layer response matrix. We can cal-
culate the weight matrix �M̄×no

by minimizing the regularized
LS cost function

J = ∥∥YN×no − ŶN×no

∥∥2 + λ
∥∥�M̄×no

∥∥2 (23)

where λ ≥ 0 is the regularization parameter. Typically, a small
positive λ is used, and λ = 0 corresponds to no regularization.
The closed-form regularized LS solution of (23) is given by

�M̄×no
= (

�T
N×M̄

�N×M̄ + λIM̄

)−1
�T

N×M̄
YN×no (24)

where IM̄ denotes the M̄ × M̄ identity matrix.

III. MGRBF TRACKER

With the above two-step training procedure, we can con-
struct a compact MGRBF network by including the most
significant training data states to accurately model the training
data. Each selected hidden-node center encodes a significant
system state from the training data and the node response vec-
tor is a perfect local predictor for the system output related to
this system state. In a time-varying scenario, however, the pro-
cess dynamics can vary dramatically and new data states may
emerge, making some of the past data dynamics encoded in
the hidden nodes of the MGRBF network obsolete. Therefore,
it is vital for the MGRBF network to forget the most out-of-
date old system states encoded in the hidden layer so as to
free up space for capturing the newly emerged data dynamics
as fast as these new states appear.

The single-output AGRBF [36] adopts an effective online
adaptive strategy to address the above-mentioned problem.
Specifically, it carries out weight updating at every sampling
time as usual. If the prediction performance of the GRBF
network becomes unacceptable, it replaces the hidden node
that contributes the least with a new node to capture the newly
emerging data dynamics. We modify this effective adaptive
strategy to be suitable for the MGRBF network and propose
the MGRBF tracker, which contains the weight adaptation
and tunable node adaptation components.
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A. Weight Adaptation

The weight matrix �M̄×no
of the MGRBF network can

be simply updated by the RLS algorithm to track smooth
data variations. At sample t, given x′

t, the MGRBF network
produces the output according to (10) as

ŷt = �T
M̄×no,t−1ϕM̄,t (25)

where �M̄×no,t−1 is the weight matrix obtained at sample t−1.
Then, the prediction error et ∈ R

no is given as

et = yt −�T
M̄×no,t−1ϕM̄,t. (26)

The RLS algorithm adapts the weight matrix according to
⎧
⎪⎨

⎪⎩

gt = 
t−1ϕM̄,t

(
γ + ϕT

M̄,t

t−1ϕM̄,t

)−1


t = (

t−1 − gtϕ

T
M̄,t

t−1

)
γ−1

�M̄×no,t = �M̄×no,t−1 + gte
T
t

(27)

where gt ∈ R
M̄ is the Kalman gain vector, 0.9 ≤ γ < 1 is

the forgetting factor, and 
t ∈ R
M̄×M̄ is the inverse of the

covariance matrix which is usually initialized to 
0 = ϑIM̄
with ϑ being a large positive constant.

B. Tunable Node Adaptation

The RLS weight adaptation itself is insufficient under a
highly nonstationary environment. When the MGRBF network
performs poorly, the current MGRBF structure will need
updating. The normalized average output error is used to
measure the MGRBF performance at every sampling time

ẽt = ‖et‖2/∥∥yt

∥∥2
. (28)

Based on this metric, we have the following criterion:
{

if ẽt < ε: MGRBF structure unchanged
if ẽt ≥ ε: worst node replaced by new node

(29)

where ε is a preset threshold. In general, the smaller ε is,
the better modeling accuracy can be achieved, but the more
frequent node replacement may occur.

When ẽt ≥ ε, the worst node with the least contribution to
the overall performance is replaced with a new one. The con-
tribution of a node is revealed by its sum of squared weighted
local predictor outputs, which is defined by

contrij =
no∑

i=1

(
φT

t,jθ i,j

)2
, 1 ≤ j ≤ M. (30)

We find the node with the smallest contri

m = arg min1≤j≤M contrij (31)

and replaced it by a new node. Since each MGRBF hidden
node contains a center and no local predictor scalars, they
need to be replaced together.

The center cm and scalars δm of the new replacement node
can be determined or “optimized” easily by exploiting the
geometric property of MGRBF hidden node, similar to the
AGRBF [35], [36]. Specifically, we simply set cm = x′

t and
δm = dt to ensure that the new replacement node m encodes
the newest data state and is a perfect local multioutput pre-
dictor of yt. Since the set of centers now contains a new one,

the Gaussian width σ needs to be updated based on the new
maximum Euclidean distance among the centers.

After the new node is determined, the weight matrix of the
updated network needs to be recalculated. We use the p latest
data {xt−i, yt−i}p−1

i=0 to compute the regularized LS estimate

�M̄×no,t = (
�T

p×M̄,t
�p×M̄,t + λIM̄

)−1
�T

p×M̄,t
Yp×no,t (32)

where the desired output matrix Yp×no,t ∈ R
p×no and the

regression matrix �p×M̄,t ∈ R
p×M̄ are given, respectively, by

Yp×no,t =

⎡

⎢⎢⎢
⎣

yT
t

yT
t−1
...

yT
t−p+1

⎤

⎥⎥⎥
⎦
, �p×M̄,t =

⎡

⎢⎢⎢⎢
⎣

ϕT
M̄,t

ϕT
M̄,t−1
...

ϕT
M̄,t−p+1

⎤

⎥⎥⎥⎥
⎦
. (33)

In general, the number of the latest data p trades off estimation
accuracy and tracking performance. For severely drifting or
nonstationary data streams, a small p is preferred.

If the tunable node adaptation takes place at sample t, the
RLS weight updating (27) does not take place. Instead, the
weight matrix is updated with the regularized LS estimate (32),
and we need to initialize the inverse covariance matrix to


t = (
�T

p×M̄,t
�p×M̄,t + λIM̄

)−1
. (34)

This ensures a smooth transition from one adaptation mode to
another at the next sample.

C. Algorithm Summary

The proposed MGRBF tracker is summarized in
Algorithm 1. During the online operation, our MGRBF
tracker adapts the model according to the current environ-
ment. If the process undergoes smooth variation, it operates
only by the weight adaptation with the RLS algorithm. When
abrupt changes occur in the system, it updates the model
structure by replacing the worst performing node with the
new one that automatically encodes the newly emerged data
state and acts as the perfect local predictor of the current
system output.

From a learning perspective, our MGRBF tracker achieves a
balanced tradeoff between the “stability” and “plasticity” [35].
Specifically, it retains the acquired knowledge in the hid-
den layer of the MGRBF network (stability), with each node
encoding an independent local data state learned from the his-
tory. At the same time, it adapts to new knowledge with a
fast recovery (plasticity)—every time when a new system state
emerges, it “frees” the memory by “forgetting” the most out-
of-date knowledge to encode the newly emerged knowledge.
It can be seen that our MGRBF tracker is designed to have
fast tracking capability for accurately capturing the underly-
ing characteristics of nonstationary data while maintaining low
online computation complexity.

IV. NUMERICAL EXPERIMENTS

We perform extensive experiments, including modeling of
real-world river flow time series as well as two industrial
soft sensor applications, to evaluate the proposed MGRBF
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Algorithm 1 AMGRBF Tracker
1: Two-step training: Construct M-node MGRBF network

from N-sample training set with centers and local predic-
tors {cj, δj}M

j=1 and weight matrix �M̄×no
.

2: Hyperparameters: Node replacement threshold ε, band-
width p, regularization parameter λ, forgetting
factor γ .

3: Initialization: Set sample index t = 1, 
t−1 = ϑIM̄ ,
�M̄×no,t−1 = �M̄×no

.
4: Online prediction: Given x′

t, compute MGRBF network
prediction ŷt with (25).

5: Online adaptation: When yt is available, compute ẽt with
(26) and (28).

6: IF ẽt < ε: Weight adaptation mode
7: Update weight matrix to �M̄×no,t with RLS (27).
8: ELSE IF ẽt ≥ ε: Tunable node adaptation mode
9: Compute contributions for all M nodes with (30).

10: Find worst node m with (31), and replace it with new
node by setting cm = x′

t and δm = yt − yt−1.
11: Compute new Gaussian width σ with new maximum

Euclidean distance among centers.
12: Use p latest data {xt−i, yt−i}p−1

i=0 to compute weight
matrix �M̄×no,t with regularized LS estimate (32).

13: Calculate 
t according to (34).
14: END IF
15: Set t = t + 1 and go to step 4.

network. Two metrics, the mean-square error (MSE) and
the determinant of the error covariance log(det(Cov(E)))
over the test data, are utilized to evaluate each single-output
and multioutputs online modeling performance, respectively.
Additionally, the coefficient of determination (R2) is also uti-
lized. Since each output has an R2 value, the averaged R2 over
all the outputs is used to evaluate the multioutputs modeling
performance. The online computation complexity of an adap-
tive model is quantified by ACTpS. The computer for carrying
out the experiments has the following configuration: Windows
10, 16 GB of RAM, CPU i7-9750 (2.60 GHz), and MATLAB
version R2018b.

A. State-of-the-Art Benchmarks

We compare with the following state-of-the-art benchmarks.
1) MGAP-SER [15], consisting of multioutput local model

growing and pruning as well SER-based online multiout-
put predictor, is a powerful multiple local model learning
approach for multioutput nonstationary data modeling.
The window size W, bandwidth p, and threshold ξ are
the three algorithmic parameters, and their influence on
the modeling performance can be found in [13], [14],
and [15].

2) MTRBF is an extension of the single-output TRBF [33]
to adaptive multioutput modeling. During online opera-
tion, it adopts a similar adaptive mechanism of [33] to
replace the worst performing node with a new node. This
new node replacement is achieved by iterative gradient
descent optimization to determine the new center. Hence,

the MTRBF imposes much higher online complexity
than our MGRBF tracker. We empirically set the step
size and the number of iterations for gradient descend to
0.1 and 5, respectively. The node replacement threshold
ε and bandwidth p are the two algorithmic parameters
to be determined.

3) Multiple AGRBFs: We also employ the multiple (no)

AGRBFs, one for each output of the multioutput systems
in our experiments. The node replacement threshold ε
and bandwidth p are the two algorithmic parameters, and
their sensitivity analysis can be found in [35] and [36].

4) SAE is a deep network that learns hierarchical feature
representations from data with multilevel feature lay-
ers [4], [5], [39], [40]. First, multiple autoencoders (AEs)
are pretrained in an unsupervised way layer by layer.
After pretraining, a linear regression layer with multi-
output neurons is added on the top of the stacked AEs,
and the whole SAE is trained by the stochastic gradi-
ent descend algorithm. The trained SAE is fixed during
online operation, since it is impractical to adapt it in real
time.

5) LSTM is a variant of RNN that is designed to extract
dynamic temporal information from data [6], [7], [41],
[42], [43]. For the LSTM with a single hidden layer
and multioutput neurons, the Adam optimizer [44] is
used to train the model based on the MSE cost. The
trained LSTM is fixed during online operation, as it is
impossible to adapt it in real time.

6) MRBF is a nonadaptive version of MTRBF. A compact
MRBF network is constructed by the multioutput OLS
algorithm [22], [23], [24] during the training, and the
trained model is fixed during online prediction.

7) Multiple LSSVMs: A least-squares support-vector
machine (LSSVM) is a least-squares version of the
SVM [45], [46], [47], [48]. The trained multiple
LSSVMs are fixed during online prediction, as it is
difficult to adapt them online.

8) Multiple RVMs: The relevance vector machine (RVM)
has a similar form to the SVM but requires fewer kernel
functions and provides higher sparseness [49], [50],
[51], [52], which is computationally more efficient than
the SVM for modeling. The trained RVMs are fixed dur-
ing online prediction, as it is difficult to adapt them in
real time.

For the LSSVM and RVM, the Gaussian function is adopted
as their nonlinear kernels. For the adaptive models, the forget-
ting factor of the RLS algorithm is set to γ = 0.98, and the
regularization parameter is set to λ = 0.001. Other impor-
tant hyperparameters are chosen carefully and empirically, as
detailed in the following case studies.

B. River Network Flow Time Series

The river flow domain is a temporal prediction task designed
to test predictions on the flows in a river network for 48 h
in the future at specific locations [53]. The datasets were
obtained from the U.S. National Weather Service and include
hourly flow observations for eight sites in the Mississippi
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TABLE I
TEST PERFORMANCE COMPARISON OF MRBF, MULTIPLE LSSVMS, MULTIPLE RVMS, LSTM, SAE, MGAP-SER,

MTRBF, MULTIPLE AGRBFS, AND PROPOSED METHOD FOR RIVER FLOW PREDICTION

Fig. 3. Impact of node replacement threshold ε and bandwidth p on modeling
performance of AMGRBF for river flow prediction.

River network in the United States from September 2011 to
September 2012. This domain is a natural candidate for multi-
target regression because there are clear physical relationships
between readings in the contiguous river network [53]. We
select the four sites in the river network with time-lagged
observations from 6, 18, and 36 h in the past as the model
inputs

xt = [
yt−6,1 yt−18,1 yt−36,1 yt−6,2 yt−18,2 yt−36,2

· · · yt−6,4 yt−18,4 yt−36,4
]T ∈ R

12 (35)

to predict the river flows at the four sites 48 h in the future

yt+48 = [
yt+48,1 yt+48,2 yt+48,3 yt+48,4

]T ∈ R
4. (36)

From the four sites, 2000 samples are collected with the
first 500 samples as the training set and the remaining 1500
samples for online prediction and adaptive modeling.

The sizes of the MTRBF and each AGRBF network are
empirically chosen to be M = 10, as suggested in [35]
and [36]. Hence, the no = 3 AGRBFs have a total of 40 hid-
den nodes. For a fair comparison, the MRBF and our proposed
method also have a network size of M = 10. The node replace-
ment threshold ε and bandwidth p are two key algorithmic
parameters for the proposed method, and we conduct a grid
search, yielding the results depicted in Fig. 3. According to
Fig. 3, we set ε = 10e−2 and p = 1 for our method. The node
replacement thresholds are empirically chosen to be 10e − 2
and 10e−3 for the AGRBFs and MTRBF, respectively, while
their bandwidths are both set to be 1. We set the window size
W = 50, bandwidth p = 5, and threshold ξ = 0.4 for the

Fig. 4. Comparison of test log(det(Cov(E))) learning curves of various
models for river flow prediction.

MGAP-SER empirically. The LSTM network has 32 hidden
nodes, and the structure of the SAE model is [9, 6, 3]. The
learning rate and training epochs for both the SAE and LSTM
are 0.001 and 200, respectively. The Gaussian kernel widths
for the LSSVM and RVM are set to 1 and 10, respectively.

The online prediction performance by the nine models is
tabulated in Table I, and their online error covariance learn-
ing curves are compared in Fig. 4. It is well known that the
performance of deep neural networks, such as SAE and LSTM,
depends on initialization. Therefore, the average MSEs and
log(det(Cov(E))) over 20 independent experiments together
with the corresponding standard deviations are listed in Table I
for the SAE and LSTM. Observe that the nonadaptive meth-
ods, including the MRBF, multiple LSSVMs, multiple RVMs,
LSTM, and SAE, are the worst models, as evidenced by their
large test log(det(Cov(E))). In Table I, the black boldface
value indicates the best performance and the blue boldface
value indicates the second best one. Observe from Fig. 4 that
all the adaptive models significantly outperform the nonadap-
tive models, while our method exhibits the fastest reduction
in the error covariance among the adaptive models. The test
prediction accuracies achieved by the four adaptive models
are quite close, but our method is undoubtedly the winner, in
terms of both online prediction accuracy and computational
complexity. In particular, its ACTpS is only 0.1159 ms, which
is nearly five times smaller than the second best multiple
AGRBFs. Fig. 5 depicts the river flow prediction results by the
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Fig. 5. Online prediction of river network flows by proposed AMGRBF:
(a) site 1, (b) site 2, (c) site 3, and (d) site 4.

TABLE II
VARIABLE DESCRIPTION IN SRU PROCESS

proposed method, which clearly demonstrates that our method
is capable of effectively capturing the real-time time-varying
dynamics of the river flows in the four different sites.

C. Sulfur Recovery Unit Process

The sulfur recovery unit (SRU) [54] is used to remove envi-
ronment pollutions from the acid gas streams. Specifically, it
is widely used in petrochemical industry to recover H2S as
elemental sulfur through the Claus reaction

2H2S + SO2 � 3S + 2H2O.

The sulfur recovery rate of the Claus process is about
95%–97%. The tail gas normally contains unrecovered sul-
fur H2S and SO2, which are harmful to human health.
Therefore, their concentrations must be properly monitored
before released to atmosphere. However, these two kinds of
acid gas can seriously damage hardware sensors by corro-
sion and consequently the hardware instruments are frequently
removed for maintenance. To avoid this costly maintenance
and to provide continuously monitoring, soft sensors are often
employed to estimate the concentrations of H2S and SO2
online. Five process variables and the concentrations of H2S
and SO2 are considered as the process inputs and outputs for
the soft sensor, which are tabulated in Table II.

Based on expert knowledge and physical insight, the input
vector to the SRU process can be expressed as [54]

xt = [
ut,1 ut−5,1 ut−7,1 ut−9,1 ut,2 · · ·

ut−9,4 ut,5 ut−5,5 ut−7,5 ut−9,5
]T ∈ R

20 (37)

and the process output vector is yt = [yt,1 yt,2]T ∈ R
2. Because

xt does not contain the past system output, we have x′
t = xt.

Fig. 6. Impact of node replacement threshold ε and bandwidth p on modeling
performance of AMGRBF for online modeling of SRU process.

Fig. 7. Comparison of test log(det(Cov(E))) learning curves of various
models for online modeling of SRU process.

Total of 3000 samples are collected from the SRU dataset,
among which the first 1000 samples are used for training and
the rest of 2000 samples for online prediction.

Similarly, we set node replacement threshold ε = 10e − 2
and bandwidth p = 2 for the proposed method accord-
ing to Fig. 6. The node replacement thresholds are set to
be 10e − 2 and 10e − 3 for the AGRBFs and MTRBF,
respectively, while their bandwidths are both set to be 2.
We set window size W = 90, bandwidth p = 4, and thresh-
old ξ = 0.9 for the MGAP-SER by trail and error. The
LSTM network has 128 hidden nodes, and the structure of
the SAE model is [15, 10, 7]. The structure parameters for the
MRBF, LSSVM, RVM, LTSM, and SAE are identical with
the previous simulation.

Table III lists the online prediction results attained by the
nine models, and Fig. 7 compares their online learning curves.
The average R2 of the SAE is extremely poor, as it can
hardly predict this process. Our method attains slightly bet-
ter prediction accuracy than the second best AGRBFs while
imposing an ACTpS half of the later. The MGAP-SER and
MTRBF achieve comparable performance, but the former costs
much higher computation time. Again, the nonadaptive mod-
els are inferior to the adaptive models. The online prediction
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TABLE III
TEST PERFORMANCE COMPARISON OF MRBF, MULTIPLE LSSVMS, MULTIPLE RVMS, LSTM, SAE, MGAP-SER,

MTRBF, MULTIPLE AGRBFS, AND PROPOSED METHOD FOR ONLINE MODELING OF SRU PROCESS

Fig. 8. Online modeling of SRU process by AMGRBF: (a) H2S and (b) SO2.

results of H2S and SO2 by our method are shown in Fig. 8,
which again demonstrates its excellent tracking capacity.

The aforementioned results are the one-step-head predictive
models’ performance. Our proposed method is equally applica-
ble to the multistep prediction, similar to the other multioutput
adaptive models. We further compare the multistep ahead
prediction performance of three multioutput adaptive models,
namely, the MGAP-SER, MTRBF, and our proposed method
in Fig. 9. It is evident that the proposed method consistently
outperforms the other two methods at any prediction step. In
terms of online computational complexity, a multistep-ahead
predictor has similar ACTpS as its one-step-ahead counterpart.
The best multistep-ahead prediction accuracy and the lowest
online computational complexity together with a fixed compact
network size make our AMGRBF network ideal for adaptive
controller implementation.

D. Wastewater Treatment Plant

The wastewater treatment plant (WWTP) [55] is a large non-
linear and time-varying system subject to large perturbations in
influent flow rate and pollutant load, together with uncertain-
ties concerning the composition of the incoming wastewater.
As shown in Fig. 10, the benchmark plant contains a five-
compartment activated sludge reactor consisting of two anoxic

Fig. 9. Comparison of multistep-ahead prediction performance for SRU
process by MGAP-SER, MTRBF, and proposed method.

Fig. 10. Schematic overview of WWTP.

TABLE IV
VARIABLE DESCRIPTION IN THE WWTP

tanks followed by three aerobic tanks. The activated sludge
reactor is followed by a secondary clarifier. The aim of this
process is to remove organic matter and perform nitrification
and denitrification. The purpose of this study is to establish
an adaptive multioutput soft sensor to simultaneously estimate
the soluble biodegradable organic nitrogen SND, particulate
biodegradable organic nitrogen XND, and flow rate, which are
three key variables. The process inputs and outputs are listed
in Table IV. Hence, the process input vector is
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TABLE V
TEST PERFORMANCE COMPARISON OF MRBF, MULTIPLE LSSVMS, MULTIPLE RVMS, LSTM, SAE, MGAP-SER,

MTRBF, MULTIPLE AGRBFS, AND PROPOSED METHOD FOR ONLINE MODELING OF WWTP

Fig. 11. Impact of node replacement threshold ε and bandwidth p on
modeling performance of AMGRBF for online modeling of WWTP.

xt = [
ut,1 ut,2 ut,3 ut,4 ut,5

]T ∈ R
5 (38)

and the process output vector is

yt = [
yt,1 yt,2 yt,3

]T ∈ R
3. (39)

The influent data are collected under severe weather condition
(a combination of dry weather and a long rain period), which
makes the underlying process dynamics strongly nonstationary
and imposes an enormous challenge on the performance of soft
sensor [56]. We collect 1300 samples from the WWTP dataset,
among which the first 500 samples are used for training, while
the rest of them are for online prediction.

Again, we carefully set all algorithmic parameters of the
nine models by trail and error. From Fig. 11, the node replace-
ment threshold and bandwidth for the proposed method are
set to ε = 10e − 2 and p = 2, respectively. The MTRBF has
the identical algorithmic parameter settings with the proposed
method, while the AGRBFs choose ε = 10e − 1 and p = 1
to achieve the best performance. For the MGAP-SER, we
set window size W = 15, bandwidth p = 1, and thresh-
old ξ = 0.9. The LSTM network has 64 hidden nodes,
and the structure of the SAE model is [5, 4, 3]. The MRBF,
LSSVM, and RVM have the identical structure settings with
the previous simulation.

Table V presents the online modeling performance achieved
by the nine models, and Fig. 12 compares their online error
covariance learning curves. The results again show that our
proposed method achieves the best online estimation accu-
racy while imposing the lowest computational complexity. It

Fig. 12. Comparison of test log(det(Cov(E))) learning curves of various
models for online modeling of WWTP.

is interesting to observe that although the MGAP-SER attains
the smallest MSEs for estimating SND and XND, its flow rate
prediction is the worst among all the models, which is also
reflected in its extremely poor average R2. This may be due
to that the local multioutput linear models of the MGAP-SER
do not handle the severe nonlinear relationship between the
multiple output variables. The SAE achieves a comparable
performance with the MGAP-SER and is slightly better than
the multiple AGRBFs. However, its performance has a large
fluctuation. Another interesting phenomenon can be seen from
Fig. 12 is that the performance of all the nine models degrade
significantly at nearly 800 samples. This can be explained
from Fig. 13, which depicts the three process outputs. It can
be clearly seen that all the three process outputs experience
abrupt changes around t = 800, particularly for the flow rate.
As mentioned before, this dataset is collected under severe
weather conditions, and this abrupt drift can be contributed to
the abrupt weather changes. The online prediction results of
SND, XND, and flow rate by our method are depicted in Fig. 13,
in comparison with the three true outputs of the WWTP. The
results of Fig. 13 clearly demonstrate the excellent tracking
capacity of the proposed MGRBF tracker.

Since multistep ahead process control is essential for
WWTP, we also compare the multistep ahead prediction
performance of the three adaptive multioutput models, and the
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Fig. 13. Online modeling of WWTP by AMGRBF: (a) SND, (b) XND, and
(c) flow rate.

Fig. 14. Comparison of multistep-ahead prediction performance for WWTP
by the MGAP-SER, MTRBF, and proposed method.

results are presented in Fig. 14. Again, our method consistently
outperforms the other two methods. Our method has the addi-
tional advantage of imposing the lowest online computational
burden.

Experimental results involving three real-world multioutput
nonlinear and nonstationary processes demonstrate that the
proposed AMGRBF tracker achieves the state-of-the-art adap-
tive modeling performance. Our method not only consistently
attains the best tracking accuracy but also imposes very low
computational complexity in online adaptation. Unlike adopt-
ing multiple single-output AGRBFs, our method is capable of
capturing the complex interactions among the multiple process
outputs and simultaneously tracking fast time-varying dynam-
ics of the different process outputs. Moreover, the proposed

method has excellent multistep-ahead prediction capability,
which is highly desired for nonlinear model predictive control
design.

V. CONCLUSION

We have proposed a novel AMGRBF network for online
modeling of multioutput nonlinear and time-varying processes.
First, we have designed a new MGRBF network structure with
strong multioutput predictive modeling capacity. A two-step
training procedure has been proposed to construct a com-
pact MGRBF network, with each hidden node encoding an
independent data state and acting as a perfect local predic-
tor of the system output vector corresponding to this system
state. Second, we have designed a new adaptive tracking
mechanism to efficiently adapt the MGRBF network in real
time. Specifically, during online operation, the MGRBF tracker
replaces the worst performing node with a new one that auto-
matically captures the newly emerged process state. Extensive
experiments involving real-world river network flow time-
series prediction and two industrial soft sensor applications
have demonstrated that our proposed AMGRBF model outper-
forms the existing state-of-the-art online multioutput modeling
methods, in terms of both online prediction accuracy and
computation complexity. Our results have also confirmed that
state-of-the-art online adaptive models are superior over non-
adaptive deep neural networks for online adaptive modeling
of multivariate nonlinear and fast time-varying data. With
the advantages of excellent adaptive modeling capability and
very low online computational complexity together with a
small fixed-size network structure, our proposed AMGRBF
network offers an ideal platform for implementing an adaptive
nonlinear control scheme.

In addition to nonlinear and nonstationary characteristics,
many real-world systems are highly dimensional with strong
correlations among variables. A popular way to deal with
high dimensionality is to employ deep-learning models to
extract deep latent features from raw data. Due to the complex
architecture of deep neural networks, it is difficult to adapt
them online to track fast time-varying data dynamics. Hence,
the integration of deep-learning models with the proposed
AMGRBF offers an important future research direction for
handling high-dimensional nonlinear and nonstationary data
tracking.
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