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Importance Sampling Simulation for Evaluating the Lower-Bound BER
of the Bayesian DFE

Sheng Chen

Abstract—An importance sampling (IS) simulation technique,
originally derived by Iltis for Bayesian equalizers, is extended to
evaluate the lower-bound bit error rate of the Bayesian decision
feedback equalizer (under the assumption of correct decisions
being fed back. Using a geometric translation approach, it is
shown that the two subsets of opposite-class channel states are
always linearly separable. A design procedure is presented, which
chooses appropriate bias vectors for the simulation density to
ensure asymptotic efficiency of the IS simulation.

Index Terms—Asymptotic decision boundary, Bayesian de-
cision feedback equalizer, importance sampling, Monte Carlo
simulation.

I. INTRODUCTION

A MONG the equalizers with symbol-decision structure and
decision feedback, the maximuma posterioriprobability

or Bayesian decision feedback equalizer (DFE) [1]–[3] is known
to provide the best performance. Due to its complexity, the per-
formance of the Bayesian DFE is usually simulated using the
conventional Monte Carlo approach, which is computationally
very costly even for modest SNR conditions. Iltis [4] developed
a randomized bias technique for the importance sampling (IS)
simulation of Bayesian equalizers. Although asymptotic effi-
ciency of this IS simulation technique can only be guaranteed
for certain channels, it provides a valuable method in assessing
the performance of the Bayesian equalizer.

We extend this IS simulation technique to evaluate the lower-
bound bit error rate (BER) of the Bayesian DFE. By viewing
decision feedback as a geometric translation, the Bayesian DFE
is “converted” to the Bayesian equalizer in the translated space
[5], with a desired property that the subsets of opposite-class
channel states are always linearly separable. A design procedure
is developed, which determines the set of hyperplanes that form
the asymptotic Bayesian decision boundary and constructs the
convex regions associated with individual states by intersecting
hyperplanes that are reachable from the states concerned. This
provides the appropriate bias vectors for the simulation density
to ensure asymptotic efficiency of the IS simulation as defined
in [6].
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II. SPACETRANSLATION AND LINEAR SEPARABILITY

For the notational simplicity, we will assume the real-valued
channel modeled to be

(1)

where is the channel length, the channel taps, the Gaussian
white noise has zero mean and variance, and the symbol
sequence takes values from the set . A DFE uses
the observation vector and the
past detected symbol vector

to produce an estimate of . The
integers , , and are the decision delay and the feedforward
and feedback orders, respectively. Without the loss of generality,

, , and are chosen, as this choice
is sufficient to guarantee the linear separability (cf. Lemma 1).

The channel observation vector can be expressed as
, where ,

, the matrix
and matrix are defined by
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(2)

Under the assumption of correct decision feedback,
and the decision feedback translates the original space

into a new space as

(3)

Let the sequences of be , .
The set of the noiseless channel states in the translated space,

, can be partitioned into the
two subsets conditioned on as

(4)

Lemma 1: and are linearly separable.
The proof is straightforward. Choose the weights of a hyper-

plane to be . For any
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and , we have and
.

Lemma 1 states that it is always possible to construct a single
hyperplane to correctly separate opposite-class states for the
DFE, although the optimal decision boundary in general cannot
be realized by one hyperplane. In fact, the asymptotic decision
boundary of the Bayesian DFE for large SNR consists of
hyperplanes. Each of these hyperplanes is defined by a pair of
“dominant” opposite-class states
called Gabriel neighbors and the hyperplane is orthogonal to the
line connecting the pair of Gabriel neighbors. The proposition 1
in [4] and the simple algorithm in [7] show how theseGabriel
neighbor pairs can be found.

III. IS SIMULATION FOR THE BAYESIAN DFE

Utilizing the geometric translation, the Bayesian DFE can be
summarized as [8]

sgn with

(5)

where it has been assumed that channel states are equiprobable.
Since the Bayesian DFE is reduced to the Bayesian equalizer in
the translated space, the IS simulation technique of [4] can be
extended to evaluate its lower-bound BER as follows:

(6)

where the indicator function if causes an
error by (5) and otherwise, is the
true conditional density given , and is the
number of states in ; the sample is generated using
the simulation density chosen to be

(7)

In the simulation density (7), is the number of the bias vectors
for , , and . An

estimate of the IS gain, which is defined as the ratio of the num-
bers of trials required for the same estimate variance using the

Monte Carlo and IS methods, is given in [4]. To achieve asymp-
totic efficiency, must meet certain conditions [6]. The fol-
lowing procedure of constructing shows how these
conditions are met.

Each of the Gabriel neighbor pairs defines a
hyperplane , with the weight vector
and bias given by

(8)

Notice that the hyperplane defined by (8) is acanonicalhyper-
plane with ( ) as its two support vectors and having the
property and [9], [10].

A state is said to besufficiently separableby the
hyperplane if can separate correctly with

. Thus, if for ,
is sufficiently separable by and a separability index is
set to 1; otherwise . Similarly, if satisfies

, it is sufficiently separable by and
; otherwise . The reachabilityof from

can be tested by computing

(9)

If , is reachable from ( is
then a bias vector) and the reachability index , otherwise

. The process produces the separability and reachability
table shown at the bottom of the page.

To construct a convex region associated with
, select those hyperplanes that cansufficientlyseparate

and are reachable from and denote

and (10)

Then is the intersection of all the half-spaces

with . In fact, it is not necessary to use
every hyperplane defined in to construct . A subset
of these hyperplanes will be enough, provided that every oppo-
site-class state in can sufficiently be separated by at least
one hyperplane in the subset. If such a exists for each ,
the simulation density constructed with the bias vectors ,

...
...

...
...

...
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(a)

(b)

Fig. 1. The two typical cases of the asymptotic Bayesian decision boundary
for channela = [a a ] . The DFE structure is defined bym = 2, d = 1,
andn = 1.

, will achieve asymptotic efficiency, since all the hy-
perplanes defined in are reachable from and obvi-
ously at least one of is the minimum rate point and the
error region

(11)

with the half-spaces .

For the two-tap channel , the existence of
is guaranteed. This is because for the two-tap channel there exist
only two scenarios as illustrated in Fig. 1. Case (a) is trivial. In
case (b), there are three Gabriel neighbor pairs and the asymp-
totic decision boundary is made up of three hyperplanes.
and are reachable from , and one of

is the minimum rate point. Similarly, is reach-
able from and the error region is fully contained in the
half-space . Thus, for the two-tap channel, the simulation
density for the Bayesian DFE can always be constructed to sat-
isfy the conditions for asymptotic efficiency. This is in contrast
to the case of the Bayesian equalizer for the two-tap channel [4],
where asymptotic efficiency is not always guaranteed. Without
a rigorous proof, we believe that asymptotic efficiency of the IS
simulation for the Bayesian DFE can generally be ensured. This
is because of the linear separability and a much sparse state dis-
tribution due to decision feedback. We have tested a variety of
channels and no counter example has been found. A rigorous
proof of asymptotic efficiency is still under investigation.

IV. SIMULATION RESULTS

The IS technique for the Bayesian DFE was simulated using
two channels defined by

Channel
Channel

(12)

The bias vectors were generated using the procedure described
in the previous section. As in [4], the bias vectors were selected
with uniform probability in the simulation, i.e., ,

TABLE I
THE SEPARABILITY AND REACHABILITY TABLE FOR CHANNEL a =
[0:4 0:7 0:4] . THE DFE STRUCTURE IS DEFINED BY m = 3,

d = 2, AND n = 2. R = fr ; r ; r ; r g

(a)

(b)

Fig. 2. (a) The lower-bound BERs and (b) IS gain of the Bayesian DFE for
channela = [0:4 0:7 0:4] . The DFE structure is defined bym = 3, d = 2,
andn = 2.

. For all the cases, 10iterations at each SNR were
run, averaging over all the possible states in .

Channel 1 had a length and, therefore, the DFE struc-
ture was specified by , , and . The asymp-
totic decision boundary consisted of five hyperplanes. Table I
gives the separability and reachability table for this channel.
The state requires the two hyperplanes and to sep-
arate it from all the opposite-class states andand are
reachable from . Thus, there are two bias vector and

and . The states and are sep-
arated from by the two reachable hyperplanes and

and . The state is separated from
by the single reachable hyperplane. Asymptotic effi-

ciency of the IS simulation is therefore guaranteed for this ex-
ample. Fig. 2(a) shows the lower-bound BERs obtained using
the IS and conventional simulation methods, respectively. It can
be seen that the conventional Monte Carlo simulation results for
low-SNR conditions agreed with those of the IS simulation. The
estimated IS gains, depicted in Fig. 2(b), indicate that exponen-
tial IS gains were obtained with increasing SNR.
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TABLE II
THE SEPARABILITY AND REACHABILITY TABLE FOR CHANNEL a = [0:35 0:8 1:0 0:8] . THE DFE STRUCTURE ISDEFINED BY m = 4, d = 3

AND n = 3. R = fr ; r ; r ; r ; r ; r ; r ; r g

(a)

(b)

Fig. 3. (a) The lower-bound BERs and (b) IS gain of the Bayesian DFE for
channela = [0:35 0:8 1:0 0:8] . The DFE structure is defined bym = 4,
d = 3, andn = 3.

As channel 2 had a length , the DFE structure was
specified by , , and . The asymptotic de-
cision boundary was made up of seven hyperplanes. Table II
shows the separability and reachability table for this channel.
From Table II, a simulation density with asymptotic efficiency
was obtained. Fig. 3 depicts the lower-bound BERs obtained
using the IS and conventional Monte Carlo methods as well as
the estimated IS gains. It can be seen that the results of the con-
ventional Monte Carlo simulation for low SNRs agreed with
those of the IS simulation and exponential IS gains were ob-
tained with increasing SNR.

V. CONCLUSION

We have extended the randomized bias technique for IS simu-
lation to evaluate the lower-bound BER of the Bayesian DFE. A
design procedure has been presented for constructing the simu-
lation density that meets the asymptotic efficiency conditions.
For the two-tap channel, asymptotic efficiency is guaranteed
when using the IS simulation technique to estimate the lower-
bound BER of the Bayesian DFE. Although asymptotic effi-
ciency for the general channel has not rigorously been proved,
we are unable to find a counter example suggesting that the
asymptotic efficiency conditions are not met. The more difficult
problem of how to derive an upper-bound BER of the Bayesian
DFE, taking into account error propagation, remains an open
question and is still under investigation.
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