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Abstract—Joint Timing and Channel Estimation (JTCE)
for bandlimited long-code-aided Multi-Carrier Direct-Sequence
Code Division Multiple Access (MC-DS-CDMA) systems is
investigated. We establish the optimal multiuser timing and
channel estimates for the uplink MC-DS-CDMA receiver by
minimising a weighted least squares cost function with respect
to K independent parameters, where K is the number of active
users. A guided random search procedure known as Repeated
Weighted Boosting Search (RWBS) is invoked for numerically
solving this challenging multivariate optimisation problem, and
thereby for producing near-optimal timing and channel estimates.
The Cramér-Rao Lower Bound (CRLB) for the JTCE problem
of interest is derived to benchmark the performance of the
proposed RWBS based estimator. Quantitatively, for the scenario
of K = 10 users, Eb/N0 ≥ 3 dB where Eb is the energy per bit
and N0 the single-sided noise power spectral density, and for a
near-far ratio of 10 dB, the RWBS based estimator using an ob-
servation window of 20 symbols is shown to approach the CRLB
at a complexity 10 orders of magnitude lower in comparison
to its full maximum likelihood search based counterpart. The
proposed algorithm does not require the transmission of known
pilots, yet it is capable of handling time-variant channel states.

Index Terms—Joint timing and channel estimation (JTCE),
multi-carrier direct-sequence code division multiple access
(MC-DS-CDMA), repeated weighted boosting search (RWBS),
Cramér-Rao lower bound (CRLB).

I. INTRODUCTION

AS a physical-layer enabling technique which combines
the merits of both Multi-Carrier (MC) modulation

and Direct-Sequence Code Division Multiple Access (DS-
CDMA), MC-DS-CDMA has long been favoured by both
academia and industry for its robustness and flexibility in
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terms of supporting the next-generation wireless network [1]–
[4]. In order to combat the Multiple Access Interference (MAI)
and to exploit the attainable frequency diversity, the channel
parameters, such as the propagation delay and the subcarrier-
specific attenuation as well as phase offset, must be estimated
for each user at the UpLink (UL) MC-DS-CDMA receiver
[5]. Conventional timing and channel estimation schemes are
often based on idealised simplifying assumptions, such as
short spreading codes and (or) rectangular chip pulses [6]–
[12]. In our previous work [13], channel parameter estimation
designed for bandlimited long-code based MC-DS-CDMA has
been studied. More particularly, in [13] a Parallel Interference
Cancellation (PIC) aided structured scheme was conceived,
which directly estimated the channel parameters by exploiting
the a priori knowledge of the bandlimited chip waveform.
This scheme was shown to outperform two of its unstructured
counterparts, which operated in a “two-step” fashion by first
estimating the Composite Channel Impulse Response (CCIR)
vector and then extracting the channel parameters with the
assistance of classic correlation techniques. It should be noted
that all the three algorithms studied in [13] were designed
for quasi-stationary channels and required the transmission of
a known pilot sequence. These two properties are, however,
disadvantageous when time-variant channel conditions prevail,
since the pilot overhead is commensurate with the vehicular
speed and hence reduces the effective throughput. More re-
cently, in [14] we studied the timing acquisition conceived for
bandlimited long-code-based Single-Carrier (SC) DS-CDMA
signals communicating over doubly selective channels. The
algorithm presented in [14] was structured and dispensed
with pilot sequences, but it was basically considered from a
single-user perspective, with the MAI treated as white or non-
white Gaussian noise. As a result, its performance might be
significantly degraded in the presence of strong near-far effect.

Against this backcloth, we design a new blind Joint Timing
and Channel Estimation (JTCE) scheme for bandlimited long-
code-based MC-DS-CDMA systems, which is capable of
handling time-variant channel conditions. We commence in
Section II by outlining the system model. The organisation of
the rest of this paper and its novel contribution are summarised
as follows:

1) By generalising the results of our previous work [14],

0090-6778/13$31.00 c© 2013 IEEE
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Fig. 1. Architecture of the UL MC-DS-CDMA receiver. Note the other (U − 1) frequency-multiplexed branches have exactly the same signal vectorization
structure as that of the u-th one, and their details are hence omitted in the diagram. The operator “∗” denotes convolution, while the abbreviations JTCE and
MUD stand for Joint Timing and Channel Estimation and Multi-User Detection, respectively.

in Section III we develop a new structured formulation of the
discrete MC-DS-CDMA signal, which accounts in a collective
way for many practical design considerations, such as the
long cell-specific spreading codes, the bandlimited chip pulses,
the time-varying channel conditions, the absence of pilot
sequences, as well as the tradeoff between the attainable
frequency diversity and the achievable bit rate.

2) Given this potent formulation, in Section IV, we start
by demonstrating that the optimal Maximum Likelihood (ML)
multiuser timing and channel estimates may be obtained by
minimising a Weighted Least-Squares (WLS) Cost Function
(CF) with respect to K independent real-valued parameters,
where K is the number of active users. However, solving this
optimal JTCE problem by full ML search imposes an exces-
sive complexity and this naturally motivates us to develop
near-optimal solutions operating at an affordable computa-
tional complexity. Thus, Section IV is mainly devoted to the
presentation of a Guided Random Search (GRS) procedure,
known as the Repeated Weighted Boosting Search (RWBS)
[15], [16], invoked for solving the above-mentioned ML opti-
misation. It is found that the filling algorithm or the generation
initialisation scheme adopted by the RWBS procedure plays
a key part in avoiding the local minima of the CF. Hence,
we propose an ad-hoc filling algorithm termed as Parallel
One-Dimensional Randomisation (PODR), which turns out
to be far more efficient for the problem at hand than other
existing generation initialisation alternatives, such as Pure
Randomisation (PR) [15] or Mutation (Mut) [17].

3) In order to benchmark the performance of the proposed
RWBS-PODR based estimator, we derive the Cramér-Rao
Lower Bound (CRLB) [18] for the blind JTCE problem of
interest in Section V, while in Section VI we briefly outline
the differential De-Correlation (DC) and Minimum Mean
Square Error (MMSE) receivers relying on the proposed low-
complexity near-optimal RWBS based blind JTCE algorithm.

4) Our simulation results and complexity analysis are pro-
vided in Section VII. Quantitatively, for the case of K = 10,
Eb/N0 ≥ 3 dB, where Eb is the energy emitted per bit and

N0 the single-sided noise Power Spectral Density (PSD), and
a 10 dB near-far ratio, the RWBS-PODR based estimator using
an observation window of 20 symbols is shown to reach the
CRLB, while imposing a complexity that is 10 orders of
magnitude lower than its full ML search based counterpart.
We also investigate the BER performance of the differential
DC and differential MMSE receivers based on the estimate
provided by the blind RWBS-PODR estimator, in comparison
with that of an ideal differential MMSE detector which relies
on the perfect Channel State Information (CSI).

Notations: Throughout the discussion, RM×N and C
M×N

stand for the M × N real- and complex-valued spaces,
respectively. Boldface capital and lower-case letters (like A
and α) stand for matrices and vectors, respectively. Given
A ∈ RM×N or CM×N and α ∈ RM×1 or CM×1, A〈i, j〉,
α〈i〉 and A〈:, j〉 denote the (i, j)-th entry of A, the i-th entry
of α and the j-th column of A, respectively. The (M ×M )-
element identity matrix and the N -dimensional zero vector are
written as IM and 0N , respectively. Moreover, the operators
E(·), (·)∗, (·)T and (·)H represent the expectation, conjugate,
transpose and conjugate transpose operations. Finally, N+ �
{1, 2, 3, · · · }, j =

√
−1, while � denotes the element-wise

Hardmard product operator.

II. SYSTEM MODEL

We consider the asynchronous MC-DS-CDMA UL shared
by K active subscribers, all of whom transmit on the
same U subcarriers with the center frequencies being
{f1, f2, · · · , fU}. The architecture of a typical uplink MC-
DS-CDMA receiver is illustrated in Fig. 1, and the signals
at each point of the receiver are defined in Eqs. (1) to (10b)
given below. As in [1] and [6], the U frequency-multiplexed
subchannels are assumed to be sufficiently far apart so that
they do not overlap with each other. Hence, the equivalent
baseband signal received from the u-th subchannel at the UL
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receiver can be formulated as:

r̃(u)(t) =

K∑
k=1

+∞∑
q=0

ḃ
(u)
k (q)

∫ +∞

−∞
s̃
(u)
k,q(t− τ − qTb)c

(u)
k (t; τ)dτ

+ w(u)(t), (1)

where w(u)(t) denotes the additive noise on the u-th subchan-
nel, which is modelled as a complex-valued zero-mean white
Gaussian process with a uniform two-sided PSD of N0/2;
ḃ
(u)
k (q) ∈

{
exp

(
jπ4
)
, exp

(
j3π4

)
, exp

(
j 5π4

)
, exp

(
j7π4

) }
represents the Differential Quadrature Phase Shift Keying
(DQPSK) symbol sent by the k-th user on the u-th subcarrier
during its q-th signalling interval of length Tb; s̃

(u)
k,q(t) =∑N−1

n=0 β
(u)
k,q (n)ϕ̄(t−nTc) is the signature waveform employed

by the k-th user to spread its q-th symbol on the u-th
subcarrier, where N is the spreading gain, Tc = Tb/N is the

chip interval, and β(u)
k,q =

[
β
(u)
k,q (0) β

(u)
k,q (1) · · ·β

(u)
k,q (N − 1)

]T

is the long (aperiodic) spreading code that changes from
symbol to symbol. Here we use ϕ̄(t) to denote the impulse
response of the bandlimited Chip Pulse Shaping Filter (CPSF),
which is typically a unit-energy Square Root Raised Cosine
(SRRC) waveform having a roll-off factor of γ and time-
supported over the interval of [0, DTc) with D ∈ N+ and
2D ≤ N [19]. Finally, c(u)k (t; τ) stands for the low-pass,
time-varying unit impulse response that characterises the UL
fading channel experienced by the k-th user on its u-th sub-
carrier. The wireless channel under consideration is assumed
as frequency-selective, where each subband signal suffers
independent non-frequency-selective fading [20]. Hence we
have c

(u)
k (t; τ) = α

(u)
k (t)δ(t − τk), where 0 ≤ τk < Tb is

the propagation delay of the k-th user, and the time-variant
Complex Channel Gains (CCGs)

{
α
(u)
k (t)

∣∣k = 1, · · · ,K;u =
1, · · · , U

}
are modelled as independent circularly-symmetric

complex Gaussian random processes obeying the well-known
Jakes auto-correlation function [21].

For each of the U frequency-multiplexed subchannel at the
receiver there is a Chip Pulse Matched-Filter (CPMF) whose
impulse response is ϕ(t) = ϕ̄(DTc − t), followed by an
Analog-to-Digital Converter (ADC) sampling at the rate of
1

Tsmp
= M/Tc. At the design stage, let us regard c

(u)
k (t; τ)

as being constant for about (Tb + Tm + DTc) seconds with
Tm � max{τk|k = 1, 2, · · · ,K}, and thereby define the so-
called CCIR function that jointly accounts for the effects of
the CPSF, the CPMF and the time-variant channel as follows
[14], [22]:

g
(u)
k (t; q) =Ak

∫ +∞

−∞
ψ(t− τ − qTb)c

(u)
k (qTb + τk; τ)dτ

=α
(u)
k [q]ψ(t− τk − qTb). (2)

In Eq. (2) we have α(u)
k [q] � Akα

(u)
k (qTb + τk) and ψ(t) �∫ +∞

−∞ ϕ̄(τ)ϕ(τ − t)dτ . Obviously, ψ(t) a raised cosine wave-
form having a time-domain support range of [0, 2DTc). With
the aid of Eq. (2), it can be readily shown that upon feeding
r̃(u)(t) to the CPMF, the output signal r(u)(t) assumes the

following form:

r(u)(t) =

K∑
k=1

+∞∑
q=−∞

ḃ
(u)
k (q)

N−1∑
n=0

β
(u)
k,q (n)g

(u)
k (t− nTc; q)︸ ︷︷ ︸

h
(u)
k (t;q)

+ n(u)(t) =

K∑
k=1

+∞∑
q=−∞

ḃ
(u)
k (q)h

(u)
k (t; q)︸ ︷︷ ︸

y
(u)
k (t)

+n(u)(t)

=

K∑
k=1

y
(u)
k (t) + n(u)(t), (3)

where n(u)(t) �
∫ +∞
−∞ w(u)(τ)ψrx(τ−t)dτ is the filtered (non-

white) noise. Recalling 0 ≤ Tm < Tb, one may verify that
g
(u)
k (t; q) and h

(u)
k (t; q) exhibit non-zero values only for t ∈

[qTb + τk, qTb + τk + 2DTc] ⊆ [qTb, (q + 1)Tb + 2DTc)
and t ∈ [qTb, (q + 2)Tb + (2D − 1)Tc], respectively, which
in turn suggests that during the q-th symbol interval of Tq �
[qTb, (q + 1)Tb], the term y

(u)
k (t) in Eq. (3) is determined by

at most three consecutive symbols, namely, ḃk(q−2), ḃk(q−1),
and ḃk(q). In order to accommodate bandlimited chip pulses,
r(u)(t) has to be oversampled, i.e. the oversampling ratio M ∈
N+ must be higher than 1. By stacking the MN samples of
r(u)(t) over Tq , we obtain the following MN -dimensional
data vector:

r(u)(q) =
K∑

k=1

0∑
p=−2

ḃ
(u)
k (q + p)h

(u)
k (q + p) + n(u)(q)

=

K∑
k=1

y
(u)
k (q) + n(u)(q), (4)

where h(u)
k (q−2), h(u)

k (q−1), h(u)
k (q), y(u)

k (q), and n(u)(q)

comprise the MN samples of h(u)k (t; q − 2), h(u)k (t; q − 1),
h
(u)
k (t; q), y(u)k (t) and n(u)(t) within Tq , respectively. Upon

invoking the relationships documented in Equation (8) of
[19], we have h(u)

k (q − 2) = C
(u)
k,−2(q)g

(u)
k (q − 2), h(u)

k (q −
1) = C

(u)
k,−1(q)g

(u)
k (q − 1), and h(u)

k (q) = C
(u)
k,0(q)g

(u)
k (q),

where g
(u)
k (q) ∈ C(MN+2MD−1)×1 is the CCIR vector,

which contains the samples g
(u)
k (qTb + nTc

M ; q) for n =
1, 2, · · · ,M(N + 2D) − 1, and the code-dependent matrices{
C

(u)
k,p(q) ∈ CMN×(MN+2MD−1)|p = −2,−1, 0.

}
are com-

posed by appropriately shifted versions of β(u)
k,q [13], [19].

Hence Eq. (4) can be rewritten in the form:

r(u)(q) =

K∑
k=1

0∑
p=−2

ḃ
(u)
k (q + p)C

(u)
k,p(q)g

(u)
k (q + p)

+ n(u)(q). (5)

In the next section, Eq. (5) will be used as the starting point
for developing the structured formulation of bandlimited long-
code-based MC-DS-CDMA signals.

III. STRUCTURED FORMULATION OF THE RECEIVED

SIGNAL

The proposed JTCE scheme operates in a block-by-block
manner. More specifically, based on the data records

{
r(u)(q)

∣∣
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u = 1, · · · , U ; q = 1, · · · , Q
}

collected from the U subchan-
nels within the observation window T � [Tb, (Q+ 1)Tb] =
∪Q
q=1Tq , we aim for estimating the propagation delay as

well as the amplitude and phase of the subcarrier-specific
time-varying CCGs for all users without relying on any a
priori knowledge about the transmitted symbols

{
ḃ
(u)
k (q)

∣∣k =
1, · · · ,K;u = 1, 2, · · · , U ; q = −1, · · · , Q

}
. For this pur-

pose, instead of Eq. (5), we need an alternative structured for-
mulation which characterises the dependence of the received
signal on the channel parameters in a more explicit way.

To begin with, let us assume that the UL channel is solely
occupied by user k. Then Eq. (5) reduces to:

r(u)(q) =

0∑
p=−2

ḃk(q + p)C
(u)
k,p(q)g

(u)
k (q + p) +n(u)(q), (6)

Recalling Eq. (2), we now have g(u)k (q + p) = α
(u)
k [q +

p]ψ(τk), with ψ(τk) =
[
ψ(Tc

M − τk) · · ·ψ(Tb + (2MD−1)Tc

M −
τk)
]T ∈ R(MN+2MD−1)×1. Hence Eq. (6) can be alternatively

written as:

r(u)(q) =H
(u)
k,q(τk)

[
ρ
(u)
k (q − 2) ρ

(u)
k (q − 1) ρ

(u)
k (q)

]T

+ n(u)(q), (7)

where we have H(u)
k,q(τk) =

[
C

(u)
k,−2(q)ψ(τk) C

(u)
k,−1(q)ψ(τk)

C
(u)
k,0(q)ψ(τk)

]
∈ R

MN×3 and the Symbol Weighted CCGs

(SW-CCGs) are defined as
{
ρ
(u)
k (q + p) = ḃk(q + p)

α
(u)
k [q + p]

∣∣p = −2,−1, 0
}

. Stacking the Q consec-
utive data records collected from the entire observation
interval, we arrive at a QMN - element vector r(u) =[
[r(u)(1)]T [r(u)(2)]T · · · [r(u)(Q)]T

]T
which, after some al-

gebraic manipulation, can be formulated as:

r(u) = diag
{
H

(u)
k,1(τk),H

(u)
k,2(τk), · · · ,H

(u)
k,Q(τk)

}
F︸ ︷︷ ︸

A
(u)
k (τk)∈RQMN×(Q+2)

ρ
(u)
k

+ n(u) = A
(u)
k (τk)ρ

(u)
k + n(u). (8)

In Eq. (8), we have F =
[
F T

1 F
T
2 · · ·F T

Q

]T
where F q ∈

R3×(Q+2) is defined in the way that F q〈i, j〉 = 1 if j − i =
q − 1 and F q〈i, j〉 = 0 otherwise, while the SW-CCG vector
ρ
(u)
k takes the form ρ

(u)
k =

[
ρ
(u)
k (−1) ρ

(u)
k (0) · · · ρ(u)k (Q)

]T

∈ C(Q+2)×1. Furthermore, the noise term n(u) =
[
[n(u)(1)]T

[n(u)(2)]T · · · [n(u)(Q)]T
]T ∈ CUQMN×1 is a complex-valued

circularly-symmetric Gaussian vector with a zero mean and
a covariance matrix of Λ̄ ∈ RQMN×QMN , which satisfies
Λ̄〈i, j〉 = N0ψ(

|i−j|Tc

M + 2DTc).
In order to jointly exploit the observations collected from all

subcarriers for parameter estimation, let us proceed by stack-
ing the components

{
r(1), r(2), · · · , r(U)

}
into a UQMN -

element vector r. Upon invoking Eq. (8), the structured
expression of r may be obtained as follows:

r = Ak(τk)ρk + n, (9)

where Ak(τk) = diag
{
A

(1)
k (τk),A

(2)
k (τk), · · · ,A(U)

k (τk)
}
∈

RUQMN×U(Q+2) and ρk =
[
[ρ

(1)
k ]T [ρ

(2)
k ]T · · · [ρ

(U)
k ]T

]T ∈
CU(Q+2)×1. The covariance matrix of the zero-mean Gaussian

noise vector n =
[
[n(1)]T [n(2)]T · · · [n(U)]T

]T ∈ CUQMN×1

takes the form Λ = diag
{
Λ̄, Λ̄, · · · , Λ̄

}
∈ RUQMN×UQMN .

We now extend Eq. (9) to the multiuser system. For a K-
user MC-DS-CDMA system, we readily have:

r =

K∑
k=1

Ak(τk)ρk + n (10a)

= A(τ )ρ+ n, (10b)

where τ = [τ1 τ2 · · · τK ]T ∈ RK×1, A(τ ) = [A1(τ1)
A2(τ2) · · ·AK(τK)] ∈ RUQMN×U(Q+2)K , and ρ =

[
ρT
1

ρT
2 · · · ρT

K

]T ∈ CU(Q+2)K×1. We note that instead of the
CCGs, it is the SW-CCGs together with the user-specific
propagation delays that are treated as the unknown parameters
in Eq. (10). Incorporating the transmitted symbols into the
SW-CCGs is necessary, since it allows us to perform JTCE
without relying on the assistance of pilot sequences. Although
the amplitudes of the SW-CCGs remain the same as those of
the CCGs, their phases are determined by the random DQPSK
symbols. Fortunately, this symbol-induced ambiguity will not
pose a problem for the Multi-User Detector (MUD) provided
differential encoding and decoding are adopted, as advocated
in many existing blind channel estimators [6]–[8] as well as
in this work. The relationship between the differentially coded
symbols ḃ(u)k (q) and the information-bearing Quadrature Phase
Shift Keying (QPSK) symbols b

(u)
k (q) is defined by the

following formula:

b
(u)
k (q) = ḃ

(u)
k (q) ·

(
ḃ
(u)
k (q − 1)

)∗
, (11)

where we assume furthermore that the four possible values of
b
(u)
k (q) (modulo-2π) are mapped onto the quaternary alphabet
{00, 01, 11, 10} by Gray coding [21].

IV. NEAR-OPTIMAL JTCE BASED ON RWBS

A. Maximum Likelihood Joint Timing and Channel Estimates

Given Eq. (10b), the ML joint estimate of τ and ρ can be
determined from:

{τ̂ , ρ̂}ML = arg min
{τ̃ ,ρ̃}

JWLS(τ̃ , ρ̃), (12)

where JWLS(τ̃ , ρ̃) = [r −A(τ̃ )ρ̃]
H
Λ−1 [r −A(τ̃ )ρ̃] is the

(Weighted Least Squares) WLS cost function. Once ρ̃ML is
obtained, the corresponding amplitude and phase estimate can
easily be extracted. At the first glance, Eq. (12) seems to pose a
(U(Q+2)+1)K-dimensional optimisation problem. However,
a closer inspection reveals that for any given choice of τ̃ ∈
RK×1, the best candidate of ρ̃ ∈ CU(Q+2)K×1 that minimises
JWLS(τ̃ , ρ̃) is given by

ρ̃WLS(τ̃ ) =
(
AH(τ̃ )Λ−1A(τ̃ )

)−1
AH(τ̃ )Λ−1r. (13)

That is, ρ̃ is linked to τ̃ by Eq. (13), and the “independent”
parameters are the K propagation delays. Hence Eq. (12) may
be equivalently converted into the following reduced-scale K-
dimensional optimisation problem

τ̂ML = argmin
τ̃
JWLS

(
τ̃ , ρ̃WLS(τ̃ )

)
= argmin

τ̃

[
r −A(τ̃ )ρ̃WLS(τ̃ )

]H
Λ−1

[
r −A(τ̃ )ρ̃WLS(τ̃ )

]
.

(14)
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Once τ̂ML is found, the corresponding ML estimate of ρ
follows immediately as ρ̂ML = ρ̃WLS(τ̂ML).

The optimal ML estimate
(
τ̂ML, ρ̂ML) requires solving

the optimisation problem (14), which is defined over the
continuous K-dimensional space [0, Tb)

K since τk ∈ [0, Tb)
for 1 ≤ k ≤ K . Finding the ML estimate τ̂ML by a brute-force
exhaustive search over the space [0, Tb)

K is computationally
prohibitive. Even using the conventional grid search based
scheme to find a near-ML solution is known to be NP-hard, or
to impose an exponentially increasing complexity. Given that
the symbol period is Tb = NTc with Tc being the chip period,
we quantise the chip interval into the R equally-spaced bins.
Then [0, Tb) is quantised into the RN equally-spaced bins,
and the number of candidates that will be visited by the K-
dimensional exhaustive grid search is (RN)K . Therefore, the
complexity of this exhaustive grid based ML search is dictated
by its number of CF evaluations, which is given by

NML
CF−Eva = (RN)K . (15)

The positive integer R denotes the resolution, which therefore
determines how close the solution found by the exhaustive
grid based ML search is to the true ML estimate. Observe the
exponential complexity increase suggested by Eq. (15).

B. Motivation

Since direct solution of Eq. (14) via an exhaustive search
seems unrealistic because of its formidable complexity, low-
complexity suboptimal alternatives tend to have more appeal
for practical applications. In our previous work [13], a PIC
assisted suboptimal multiuser channel estimation scheme has
been proposed, which may be readily invoked for the problem
at hand. To be more specific, at the initial stage of the PIC we
may just treat

∑K
k′=1,k′ �=kAk′ (τk′ )ρk′ in Eq. (10a) as part

of the background noise and estimate {τ k,ρk} by invoking
the Structured Least Squares Search (SSLS) algorithm as
suggested in [13]. From the second stage onwards, we will first
regenerate the other (K−1) users’ contribution to the received
signal along with their respective channel estimates obtained
at the last stage, then subtract these restored components
from r and use the resultant decontaminated signal for the
channel estimation of a specific user. Omitting the detailed
analysis (c.f. [13]), we note that the above-mentioned PIC
based approach entails a fairly modest complexity on the
order of O(UQ2MN2KV ), where V is the number of stages
involved in the PIC. However, as it will be demonstrated by
our simulation results, the performance of this PIC based
approach remains poor even for a small number of users
and high Signal-to-Noise-Ratios (SNRs). To interpret this
limitation further, recall that in [13] we assumed a stationary
channel state and pilot-assisted transmissions, hence there
were only (U+1)K parameters1 to be estimated. By contrast,
as blind estimation of time-varying channels is considered in
this contribution, we now have as many as (U(Q+2)+ 1)K
unknowns in Eq. (9). Given the same amount of received
data r ∈ CUQMN×1, an increase in the number of unknown
parameters renders the estimation process to become more

1More specifically, each of the K active users has 1 propagation delay and
U subcarrier-specific CCGs that had to be estimated.

vulnerable to impairments, such as noise and interference. As
a result, the channel estimates produced by the initial stage of
the PIC are usually insufficiently accurate. The regeneration
and cancellation based on such inaccurate (or even wrong)
estimates tends to amplify, rather than mitigate the MAI [23],
which corrupts the following stages.

Clearly, the above-mentioned suboptimal PIC based ap-
proach is unsatisfactory. It is therefore highly desirable to find
the optimal or near-optimal solution of the JTCE problem at
an affordable complexity. For this objective, we turn to a popu-
lation based Guided Random Search (GRS) procedure, known
as the Repeated Weighted Boosting Search (RWBS) [15],
[16], for solving the optimisation problem in Eq. (14). The
RWBS algorithm belongs to the class of so-called Evolution-
ary Algorithms (EAs), which are further exemplified by the
family of Genetic Algorithms (GAs) [24], [25], Ant Colony
Optimisation (ACO) [26], [27], Particle Swarm Optimisation
(PSO) [28], [29] and Differential Evolution Algorithm (DEA)
[30], [31], just to name a few. The research on EA has long
been among the hottest topics in the computational intel-
ligence community. Vast amounts of empirical results exist
in the literature, which have demonstrated that appropriately
configured EAs are capable of finding the global optimum
or a near-optimum solutions even for the most challenging
optimisation problems at an affordable computational com-
plexity. Moreover, the theoretical analysis of EAs has made
significant progresses in the past few years (see [32] and the
references therein). More specifically, we now know that many
NP-hard problems can be turned into the so-called EA-easy
class [32] and then solved by a well-configured EA algorithm
at a complexity which increases at most polynomially instead
of exponentially with the problem size. Besides, both empir-
ical experience and theoretical analysis have suggested that
whether a particular NP-hard problem can be turned into an
EA-easy one by a given EA critically depends on whether the
algorithmic parameter settings of this EA are appropriately
matched to the given problem.

The RWBS algorithm [15], [16] was proposed as a pop-
ulation based GRS global optimisation algorithm. A number
of successful applications have since been reported, cover-
ing the diverse fields of machine learning, chaotic system
stabilisation, image and signal processing as well as wire-
less communication designs [17], [33]–[46]. The RWBS is
essentially a multi-start search technique [47], constituted by
a stochastic search component and a local search component,
like most EAs. The local optimisation mechanism within the
RWBS is based on an iterative, adaptive, weighted convex
combination of the population of individuals. In conjunction
with a reflection operator, the convex combination generates
new solutions in a manner similar to the simplex method,
but the adaptive weight update process, which is based on
a modified boosting technique [48], significantly boosts the
power of this local optimiser. The stochastic or global search
is constituted by repeating the local search a number of times
throughout the generations, where each generation starts from
a randomly initialised population of individuals combined
with an elitism mechanism. Interestingly, the RWBS shares
a number of similarities with the GA that employs a convex
crossover operator, single offspring selection, and elitism [15],
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Fig. 2. The flowchart of the proposed RWBS-based JTCE scheme.

[16]. Both algorithms are population-based techniques which
combine a local search based on current members of the
population, i.e. convex combination in RWBS and crossover in
a GA, as well as a stochastic search, i.e. randomly initialised
population members in RWBS and mutation in a GA, for
the sake of preventing the algorithm from converging towards
local optima. The appeal of RWBS lies in its two prominent
merits: 1) it has an extremely simple structure that may be
implemented at modest complexity, and 2) it has only a
small number of tunable parameters that have to be tailored
according to the specific problem of interest. In the following
discourse, we will demonstrate that the RWBS-based JTCE
estimator offers ML-estimation quality, while only imposing
a fraction of the full ML-based estimator’s complexity.

C. Algorithm

Fig. 2 depicts the flowchart of our RWBS-based JTCE
estimator. In particular, the RWBS procedure adopted to
solve the optimisation given in Eq. (14) consists of an inner
Weighted Boosting Search (WBS) loop nested in an outer
generation updating loop, which searches for the optimal or
near-optimal delay estimates and subsequently extracts the ML
SW-CCG estimates. Referring to Fig. 2, we now detail every
component of the RWBS-based estimator.

Outer Loop. Initialisation: Initialisation is performed at
every generation of the RWBS process by creating a popu-
lation of PS potential solutions or individuals, where PS is

referred to as the population size. The individuals represent
legitimate candidates for the multi-user propagation delay
vector τ , and they are denoted by

{
τ̃ (g,i)|g = 1, 2, · · · ; i =

1, 2, · · · , PS

}
, with g being the generation index and i being

the index of the individual in the population. For the first
generation,

{
τ̃ (1,i)|i = 1, 2, · · · , PS

}
are uniformly and

randomly initialised in the K-dimensional parameter space
[0, Tb)

K . For the g-th generation (g > 1), an elitism strategy
is adopted by setting τ̃ (g,1) = τ̂ (g−1), where τ̂ (g−1) denotes
the best solution found in the (g− 1)-th generation, while the
remaining (PS−1) individuals in the population are generated
using a certain filling algorithm2. Following the initialisation
of the population, the WBS loop index is set to l = 1.

CF Evaluation: The quality of an individual is reflected
by its CF value. The lower the CF value of an individual, the
higher its “fitness”, and vice versa. The CF values associated
with {τ̃ (g,i)|i = 1, 2, · · · , PS} are evaluated:

Ji = JWLS
(
τ̃ (g,i), ρ̃WLS(τ̃ (g,i))

)
, 1 ≤ i ≤ PS .

Inner Loop. Sorting: The best and worst individuals in
the g-th generation population are determined:⎧⎨⎩ τ̃ (g,best) = τ̃ (g,i�), where i� = arg min

1≤i≤PS

{Ji},

τ̃ (g,worst) = τ̃ (g,i�), where i� = arg max
1≤i≤PS

{Ji}.

For convenience, let us define:

Jbest � JWLS
(
τ̃ (g,best), ρ̃WLS(τ̃ (g,best))

)
, (16a)

Jworst � JWLS
(
τ̃ (g,worst), ρ̃WLS(τ̃ (g,worst))

)
. (16b)

Normalisation: The normalised CF values corresponding
to {τ̃ (g,i)|i = 1, 2, · · · , PS} are simply given as

J̄i =
Ji

PS∑
i′=1

Ji′

, 1 ≤ i ≤ PS .

Unlike Ji, The normalised CF value J̄i provides the relative
merit associated with τ̃ (g,i), which serves as a reasonable
metric for guiding the search toward the optimal solution.

Combination Weight Generation: The algorithm generates
a new individual as the convex combination of all the indi-
viduals in the population. Intuitively, the individuals with low
CF values should have high weights so that the new individual
generated by the convex combination may have an even lower
CF value. Therefore, the weight-generation procedure should
augment the influence of meritorious individuals (having low
CF values) with the aid of larger weights, while suppressing
the deficient individuals (having high CF values) using smaller
weights. The weight ωi(l) assigned to the i-th individual τ̃ (g,i)

(where 1 ≤ i ≤ PS) in the l-th iteration of the inner WBS loop
is self-adapted in the following way [15]. First, a weighting
factor βl is computed according to

βl =
ηl

1− ηl
with ηl =

PS∑
i=1

ωi(l − 1)J̄i. (17)

2It is worth mentioning that the efficiency of the RWBS procedure
conceived for the problem at hand substantially depends on the specific choice
of filling algorithm. For this reason, we will elaborate on this issue later in a
dedicated paragraph.
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Then the weights ωi(l) are updated from their previous values
ωi(l − 1) according to the formulae:{

ω̃i(l) = ωi(l − 1)βJ̄i

l , if 0 ≤ βl ≤ 1,

ω̃i(l) = ωi(l − 1)β
(1−J̄i)
l , if βl > 1,

(18)

ωi(l) =
ω̃i(l)

PS∑
i′=1

ω̃i′(l)

. (19)

The reason for the two different scenarios of weight updating
in Eq. (18) according to βl � 1 is that the exponential
function βx

l is monotonically increasing when βl > 1 and it is
monotonically decreasing for βl < 1, where 0 < x < 1. Since
we would like to increase the weights of individuals having
lower CF values and to decrease the weights of individuals
having higher CF values, the weights are therefore updated
using the two rules of Eq. (18). The weights computed by
the formulae (18)-(19) reflect the fitness ratios of their corre-
sponding individuals, as is desired. Moreover, for 1 ≤ i ≤ PS ,
we have 0 ≤ ωi(l) ≤ 1 and

∑PS

i=1 ωi(l) = 1, which meet
the requirements for a convex combination. Naturally, at the
initial stage we have no reason to favour any of the individuals.
Therefore, before starting the WBS inner loop, all the initial
weights can be set to ωi(0) = 1/PS , 1 ≤ i ≤ PS .

Constructing New Individuals: A new individual is con-
structed as the convex combination of the existing PS individ-
uals based on their associated weights:

τ̃ (g,PS+1) =

PS∑
i=1

ωi(l)τ̃
(g,i).

A “mirror image” of τ̃ (g,PS+1) with respect to τ̃ (g,best) along
the direction of τ̃ (g,best) − τ̃ (g,PS+1) is also generated

τ̃ (g,PS+2) = τ̃ (g,best) +
(
τ̃ (g,best) − τ̃ (g,PS+1)

)
.

Since the influence of the meritorious individuals having low
CF values have been augmented by higher weights, typically
τ̃ (g,PS+1) or τ̃ (g,PS+2) will exhibit a CF value even lower
than Jbest.

Population Update: The CF values for the two new
individuals, τ̃ (g,PS+1) and τ̃ (g,PS+2), are computed, and they
are denoted by JPS+1 and JPS+2, respectively. Define

i∗ � arg min
i=PS+1,PS+2

{Ji}.

Then the current worst individual
{
Jworst, τ̃

(g,worst)} is re-
placed by the newly generated individual

{
Ji∗ , τ̃

(g,i∗)
}

. It can
readily be seen that at each iteration of the WBS inner loop,
the population is guaranteed to improve, because the average
CF value of the population is reduced.

Inner Loop Termination. The convergence of the WBS
inner loop is detected by the following Test:

If ‖τ̃ (g,PS+1) − τ̃ (g,PS+2)‖ ≤ EB , where EB specifies
the accuracy of the WBS, or alternatively, if l ≥ NB , where
NB denotes the maximum allowed WBS inner loop iterations,
then the WBS inner loop is terminated with the output τ̂ (g) =
τ̃ (g,best).

Otherwise, set l = l + 1 and the inner loop continues by
returning to the point Inner Loop.

Outer Loop Termination. The convergence of the gener-
ation outer loop is detected by the following Test:

If ‖τ̂ (g)−τ̂ (g−1)‖ ≤ EG, where EG specifies the accuracy
of the RWBS, or alternatively, if g ≥ NG, where NG

denotes the maximum allowed generation outer loop iterations,
then the generation outer loop is terminated with the output
τ̂RWBS = τ̂ (g).

Otherwise, set g = g + 1 and the outer loop continues by
returning to the point Outer Loop.

SW-CCG estimation: Perform the SW-CCG estimation
as ρ̂RWBS = ρ̃WLS(τ̂ RWBS), and if necessary, extract the
associated amplitude and phase estimates. �

For a convenient implementation, the termination tests for
the inner and outer loops are usually simplified as l ≥ NB

and g ≥ NG, respectively. It can be readily shown that the
computational complexity of this RWBS-based JTCE estima-
tor is determined by the total number of its CF evaluations,
which is given by [15]

NRWBS
CF−Eva =

(
PS − 1 + 2NB) ·NG. (20)

In Section VII, we will demonstrate that NRWBS
CF−Eva is only a

fraction of NML
CF−Eva given in Eq. (15). Two comments on the

above RWBS procedure are in order.
Comment 1. The filling algorithm or initialisation scheme:

As discussed in Subsection IV-B, given a particular NP-hard
optimisation problem and a specific EA, whether this EA can
turn the given problem into an EA-easy one critically depends
on whether this EA is appropriately configured to match
the given problem [32]. An important algorithmic parameter
of the RWBS is the choice of its initialisation scheme or
filling algorithm invoked for creating the initial population
of each generation. We introduce an ad-hoc filling algorithm
that will be referred to as the Parallel One-Dimensional
Randomisation (PODR), which proves to matche well the
optimisation problem at hand.

To augment the role played by the filling algorithm in
handling local minima of the CF, let us consider a simple
K = 3 scenario, where the true multiuser propagation delay
vector is assumed to be τ =

[
τ1 τ2 τ3

]T
. In our simulations, it

is frequently observed that at the end of a certain generation,
say generation g, the above RWBS procedure may yield a
temporary estimate such as τ̂ (g) =

[
τ̂
(g)
1 τ̂

(g)
2 τ̂

(g)
3

]T
, where

τ̂
(g)
k ≈ τk for example holds for k = 1 and 2 but not for
k = 3. Hence, τ̂ (g) is a local minimum of the CF, and due
to the elitist strategy mentioned above, it will be retained
in the (g + 1)-th generation as τ̃ (g+1,1). As suggested by
[15], a convenient way of “filling” the (g + 1)-th generation
is the Pure Randomisation (PR), i.e. we simply choose the
other (PS−1) individuals {τ̃ (g+1,2), τ̃ (g+1,3), · · · , τ̃ (g+1,PS)}
on the parameter space in a totally random basis. This PR
initialisation scheme has been shown to work well for many
practical applications, as it is an effective means to explore
other areas of the parameter space. However, for our current
problem, as τ̃ (g+1,1) is already a local minimum, unless we
are lucky enough to come across a new candidate τ̃ (g+1,i)

with i = 1 satisfying {τ̃ (g+1,i)
k ≈ τk|k = 1, 2, 3}, τ̃ (g+1,1)

will perpetually receive the highest weight in the boosting
process or convex combination, and τ̂ (g+1) shall therefore
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be (at least approximately) equal to τ̃ (g+1,1), namely, τ̂ (g).
In other words, the RWBS procedure might get stuck around
the local minimum τ̂ (g). Another popular filling algorithm for
RWBS is based on the Mutation (Mut) [17], which generates
{τ̃ (g+1,i)|i = 1} according to τ̃ (g+1,i) = τ̂ (g) + ξ, where
ξ is a real-valued Gaussian random vector with a zero mean
and a covariance matrix of σ2IK . In order to maintain a good
convergence performance, σ has to be quite small, e.g. in [17]
σ = 0.04 is chosen. As the (PS − 1) new individuals are all
generated within close proximity of τ̂ (g), The Mut scheme
may also be inefficient, especially when for example τ̂ (g)3 is
distant from τ3.

In order to circumvent the difficulty associated with the two
existing initialisation schemes described above, we propose the
PODR filling algorithm. Let us define an operator X which
takes a K-dimensional vector τ ∈ RK×1 as well as a positive
integer 1 ≤ k ≤ K as its input, and produces a K-dimensional
output vector τ̄ = X(τ , k) ∈ RK×1, so that τ̄ 〈k〉 is a random
variable uniformly distributed over [0, Tb), while the other
(K − 1) entries of τ̄ remain the same as their corresponding
counterparts in the input vector τ . Then, as the first step
of PODR, we divide the (Ps − 1) individuals that have to
be generated into (K + 1) groups {G1,G2, · · · ,GK+1}, each
group having the same size of P̄S = (PS − 1)/(K +1).3 The
P̄S individuals belonging to the last group, namely, GK+1,
will be generated by the PR. By contrast, for 1 ≤ k ≤ K ,
the P̄S individuals belonging to Gk will be generated by
independently invoking X(τ̂ (g), k) P̄S times.

If the PODR is used as our filling algorithm for the above
K = 3 example, for instance, the (g + 1)-th generation of
the RWBS shall comprise τ̃ (g+1,1), G1, G2, G3, and G4. Note
that all the P̄S individuals in G3 inherit the first two entries
of τ̂ (g), which have already been accurately estimated, and
it is only their third entries that are randomised. In this way,
there is a far better chance to come up with a new individual
in G3 that approaches the global minimum, than by the PR
which re-guesses all the entries, or by the Mut which only
searches around τ̂ (g). We will give a quantitative comparison
among the PODR, PR and Mut initialisation schemes using
our numerical results in Section VII.

Comment 2. Possible rank-deficiency of Ak

(
τ̃
(g,i)
k

)
and A

(
τ̃ (g,i)

)
: Let us assume that τ̃ (g,i) is the i-th

individual in the g-th generation and τ̃
(g,i)
k its k-th

entry. Then special attention should be paid to the
issue that when τ̃

(g,i)
k ∈ [0, Tb − (2D − 1)Tc],

we will have Ak

(
τ̃
(g,i)
k

)
〈:,m〉 = 0UQMN for

m = 1, ((Q + 2) + 1), · · · , ((U − 1)(Q + 2) + 1), because
the received signal r in this case is completely independent
of ḃk(−1) or

{
ρ
(1)
k (−1), ρ

(2)
k (−1), · · · , ρ(U)

k (−1)
}

. To avoid
A(τ̃ (g,i)) =

[
A1(τ̃

(g,i)
1 ) A2(τ̃

(g,i)
2 ) · · ·AK(τ̃

(g,i)
K )

]
becoming

rank-deficient, we have to delete these all-zero columns and
thereby shrink A(τ̃ (g,i)) to a UQMN × U((Q+ 2)K − 1)-
dimensional matrix. By applying the reduced-size
A
(
τ̃ (g,i)

)
to Eq. (13), we arrive at ρ̃WLS(τ̃ (g,i)) =[

[ρ̃WLS
1 (τ̃ (g,i))]T [ρ̃WLS

2 (τ̃ (g,i))]T · · · [ρ̃WLS
K (τ̃ (g,i))]T

]T

∈ CU((Q+2)K−1)×1, where ρ̃WLS
k (τ̃ (g,i)) ∈ CU(Q+1)×1

3Here we assume P̄S ∈ N+.

is the estimate for
[
ρ
(1)
k (0) ρ

(1)
k (1) · · · ρ(1)k (Q) ρ

(2)
k (0) · · ·

ρ
(U)
k (0) · · · ρ(U)

k (Q)
]T

. Note that sometimes there might be
more than one entries of τ̃ (g,i) falling into [0, Tb−(2D−1)Tc].
If that is the case, all the associated all-zero columns should
be deleted from A(τ̃ (g,i)), which implies that the number
of columns contained in the reduced-size A(τ̃ (g,i)) (and
therefore the dimension of ρ̃WLS(τ̃ (g,i))) deviates from
U(Q+ 1)K to U(Q+ 2)K , depending on how many entries
of τ̃ (g,i) are located within [0, Tb − (2D − 1)Tc].

V. CRAMÉR-RAO LOWER BOUND

In order to evaluate the performance of the proposed
RWBS-based estimator, in this section we derive the CRLB
[18] for the blind JTCE problem at hand, following the
approach proposed in [19]. By treating each SW-CCG as a
function of its amplitude and phase, Eq. (10b) can be rewritten
as4:

r = A(τ )ρ (a, θ) + n, (21)

where a and θ are two real-valued vectors having the same
size of ρ so that for 1 ≤ m ≤ U(Q+ 2)K, it holds
that ρ〈m〉 = a〈m〉 exp (jθ〈m〉). Given Eq. (21), the Log-
Likelihood Function (LLR) of the received signal r condi-
tioned on the unknown channel parameters η =

[
τ T aT θT]T

can be shown to obey:

lnL (r|η) =− [r −A(τ )ρ (a, θ)]
H
Λ−1 [r −A(τ )ρ (a, θ)]

− UQMN ln
(
πdet(Λ)

)
. (22)

For space economy, we have to report the Fisher Information
Matrix (FIM) [18] as follows without providing its detailed
derivation:

F =E

{[
∂ lnL (r|η)

∂η

] [
∂ lnL (r|η)

∂η

]T
}

=

⎡⎢⎣F ττ F τa F τθ

F
T
τa F aa F aθ

F
T
τθ F

T
aθ F θθ

⎤⎥⎦ , (23)

In the above expression, F ττ ∈ RK×K ,
F τa ∈ RK×U(Q+2)K , F τθ ∈ RK×U(Q+2)K ,
F aa ∈ RU(Q+2)K×U(Q+2)K , F aθ ∈ RU(Q+2)K×U(Q+2)K ,

4Note that the considerations raised in Comment 2. of Section IV also apply
to Eq. (21), i.e. if some entries of τ fall into [0, Tb − (2D − 1)Tc], then
the corresponding all-zero columns should be deleted from A(τ ). Therefore,
we need to remove the corresponding entries from ρ, a and θ, which in
this situation have no influence on the received signal r and therefore cannot
be estimated by any means. With the reduced-sized A(τ ), ρ, a and θ, the
following derivation of the CRLB bears little difference from the regular case
where no entry of τ falls into [0, Tb − (2D − 1)Tc], as is assumed in this
section for simplicity.
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and F θθ ∈ RU(Q+2)K×U(Q+2)K are defined as:

F ττ 〈k, k′〉 = 2R

{
ρH ∂AH

∂τ 〈k〉Λ
−1 ∂A

∂τ 〈k′〉ρ
}
, (24a)

F τa〈k,m〉 = 2R

{
ρH ∂AH

∂τ 〈k〉Λ
−1A

∂ρ

∂a〈m〉

}
, (24b)

F τθ〈k,m〉 = 2R

{
ρH ∂AH

∂τ 〈k〉Λ
−1A

∂ρ

∂θ〈m〉

}
, (24c)

F aa〈m,n〉 = 2R

{
∂ρH

∂a〈m〉A
HΛ-1A

∂ρ

∂a〈n〉

}
, (24d)

F aθ〈m,n〉 = 2R

{
∂ρH

∂a〈m〉A
HΛ-1A

∂ρ

∂θ〈n〉

}
, (24e)

F θθ〈m,n〉 = 2R

{
∂ρH

∂θ〈m〉A
HΛ-1A

∂ρ

∂θ〈n〉

}
, (24f)

where ∂ρ
∂a〈m〉 =

[
0 · · · 0 exp(jθ〈m〉) 0 · · · 0

]T
, ∂ρ

∂θ〈m〉 =[
0 · · · 0 ja〈m〉 exp(jθ〈m〉) 0 · · · 0

]T
, and ∂A

τ〈k〉 can be com-
puted by the following “formula chain” (c.f. Eqs.(8)-(10)):

∂A

∂τ 〈k〉 =

[
O · · · O ∂Ak(τk)

∂τk
O · · · O

]
, (25a)

∂Ak(τk)

∂τk
=diag

{
∂A

(1)
k (τk)

∂τk

∂A
(2)
k (τk)

∂τk
· · · ∂A

(U)
k (τk)

∂τk

}
,

(25b)

∂A
(u)
k (τk)

∂τk
=diag

{
∂H

(u)
k,1(τk)

∂τk

∂H
(u)
k,2(τk)

∂τk
· · ·

∂H
(u)
k,Q(τk)

∂τk

}
F , (25c)

∂H
(u)
k,q(τk)

∂τk
=

[
C

(u)
k,−2(q)

∂ψ(τk)

∂τk
C

(u)
k,−1(q)

∂ψ(τk)

∂τk

C
(u)
k,0(q)

∂ψ(τk)

∂τk

]
. (25d)

In Eq. (25d), we have ∂ψ(τk)
∂τk

=
[
ψ̇
(

Tc

M − τk

)
· · ·

ψ̇
(
Tb +

(2MD−1)Tc

M − τk

)]T
∈ R(MN+2MD−1)×1. Here

ψ̇(t) represents the 1st-order derivative of ψ(t), for which a
closed-form formula has been provided in [49]. Finally, given
F , the CRLB may be obtained as the diagonal entries of(
F
)−1

.

VI. DIFFERENTIAL MUD BASED ON BLIND JTCE

Let us now briefly portray our differential (non-coherent)
MUD with the aid of the proposed blind JTCE scheme. Given
the estimated SW-CCG vector:

ρ̂ =
[
ρ̂
(1)
1 (−1) · · · ρ̂(1)1 (Q) · · · ρ̂(U)

1 (−1) · · · ρ̂(U)
1 (Q)

ρ̂
(1)
2 (−1) · · · ρ̂(1)2 (Q) · · · ρ̂(U)

2 (−1) · · · ρ̂(U)
2 (Q)

... · · ·
...

ρ̂
(1)
K (−1) · · · ρ̂(1)K (Q) · · · ρ̂(U)

K (−1) · · · ρ̂(U)
K (Q)

]T
,

(26)

the decision statistics for b(u)k (q) can be formed as:

b̂
(u)
k (q) = ρ̂

(u)
k (q)

(
ρ̂
(u)
k (q − 1)

)∗
. (27)

To see the validity of Eq. (27), let us assume that the SW-
CCG vector has been estimated with satisfactory reliability, i.e.
the relationship ρ̂(u)k (q) ≈ ρ

(u)
k (q) is true for all the possible

values of u, k and q involved in Eq. (26). In this case, Eq. (27)
can be further developed as:

b̂
(u)
k (q) ≈ρ(u)k (q)

(
ρ(u)(q − 1)

)∗
=ḃ

(u)
k (q)

(
ḃ
(u)
k (q − 1)

)∗
α
(u)
k (q)

(
α
(u)
k (q − 1)

)∗
≈b(u)k (q)

∣∣∣α(u)
k (q)

∣∣∣2 . (28)

The last approximation in the above expression follows from
the assumption that the time-variant CCGs remain approxi-
mately constant within at least two consecutive symbol inter-
vals [7], [8]. As shown by Eq. (28), b̂(u)k (q) is an estimate of
b
(u)
k (q) up to an amplitude of

∣∣α(u)
k (q)

∣∣2. Hence by decoding

the quadrant where arctan
(
b̂
(u)
k (q)

)
falls, we can obtain an

estimate of the two information bits carried by b(u)k (q).
Clearly, the estimation of the SW-CCG vector ρ plays a cen-

tral part in the demodulation process, and to a great extent it
predetermines the overall achievable BER performance. Recall
the last component of the proposed RWBS-based estimator in
Subsection IV-C, SW-CCG estimation, where the SW-CCG
vector estimate ρ̂RWBS = ρ̃WLS(τ̂RWBS) is obtained by setting
τ̃ = τ̂ RWBS in Eq. (13). From a MUD point of view, Eq. (13)
amounts to recovering the SW-CCGs with the aid of a De-
Correlation (DC) receiver5, and it is in general inferior to its
Minimum Mean Squared Error (MMSE) counterpart, which
takes the form:

ρ̂MMSE = AH(τ )CH
ρ

(
A(τ )CρA

H(τ ) +ΛH)−1
r, (29)

where Cρ denotes the auto-correlation matrix of the SW-CCG
vector ρ, i.e. Σρ = E

(
ρρH

)
. As the SW-CCGs associated

with different users, subcarriers, or symbols (i.e. different k,
u or q) may be assumed to be independent of each other,
Cρ ∈ RU(Q+2)K×1 is a diagonal matrix with its diagonal
elements given by ρ� ρ∗. This implies that Cρ is dependent
only on the squared amplitude of the fading gains. In practice,
Eq. (29) can be implemented by replacing the matrices A(τ )
and Cρ with their RWBS-based estimates A(τ̂ RWBS) and
C ρ̂RWBS , respectively.

The above discussion has assumed that independent infor-
mation streams are transmitted on each subcarrier to achieve
maximum uplink bit rate. In the cases where some users prefer
to send the same information stream on several subcarriers
simultaneously to achieve frequency diversity, the decision
statistic formulated in Eq. (27) has to be modified to:

b̂ lk(q) =
∑
u∈U l

k

λ
(u)
k (q)ρ̂

(u)
k (q)

(
ρ̂
(u)
k (q − 1)

)∗
, (30)

5In contrast to the classic form of DC receiver (e.g. Eq. (6.28) of [3]),
Eq. (13) in the current paper has been adapted to accommodate bandlimited
noise.
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where U l
k represents the set of subcarriers employed for

transmitting the l-th information stream of user k, and λ(u)k (q)
is a combining weight, which may be optimised for example
according to the Maximum signal-to-noise Ratio Combining
(MRC) rule, as discussed in [7].

VII. PERFORMANCE EVALUATION

A. Simulation System Set Up and Performance Metrics

The system parameters adopted in our simulations are
M = 2, N = 16, D = 4, U = 2, γ = 0.22 and fd = 0.2,
where fd is the Doppler frequency normalised by the symbol
rate 1/Tb. The long spreading codes are generated as random
bipolar sequences, where every chip has the same probability
of being +1 or −1. We assume A2 = A3 = · · · = AK

and refer to 20 log
(
A2

A1

)
as the Near-Far Ratio (NFR). Unless

otherwise stated, the asynchronous MC-DS-CDMA uplink is
assumed to be shared by K = 10 users with the NFR tied
to 10 dB, and we will always report the results associated
with the lowest-power user, i.e. user 1, for characterising the
near-far resistance of the proposed channel estimator. As in
all other applications [15]–[17], the algorithmic parameters
of RWBS have to be determined empirically. For our PODR
assisted RWBS procedure (RWBS-PODR), we have found
PS = (20(K + 1) + 1) (i.e. P̄S = 20), NG = 40, NB = PS ,
and EG = EB = 0.000001 to be appropriate.

The primary performance criteria of our interest include
the probability of correct acquisition (denoted as Pca), the
Mean Square Error (MSE) of the delay, amplitude and phase
estimates, as well as the Bit Error Rate (BER) of the dif-
ferential multiuser detectors with the aid of the proposed
blind JTCE scheme. Note that the acquisition of a specific
user is deemed as “correct” only when the corresponding
delay estimation error has an absolute value less than Tc/2
[13], [14], [19], [22], [49]. Moreover, to highlight how the
system’s performance is impacted by the tradeoff between the
achievable frequency diversity and the bit rate, in conducting
our simulations, we have considered the following two specific
scenarios: 1) a single information stream is transmitted via
all available subcarriers for achieving MAXimum frequency
DIVersity (MAXDIV), and 2) an independent information
stream is assigned to each subcarrier for attaining MAXimum
BiT Rate (MAXBTR).

B. Evaluation of RWBS-Based JTCE Estimator

In Fig. 3-A, the Pca values of the RWBS-based channel
estimators which adopt different filling algorithms or initiali-
sation schemes are plotted against the number of active users
K , in comparison with those of the PIC-based counterparts
relying on different number of stages V . The results appearing
in Fig. 3 are generated for a fairly benign environment of
Eb/N0 = 15 dB and NFR = 0 dB, where Eb is the energy
per bit. It is observed from Fig. 3-A that the acquisition
capabilities of the RWBS procedures assisted by the PR and
Mut initialisation schemes (abbreviated hereafter as RWBS-PR
and RWBS-Mut, respectively) suffer a substantial degradation
when K increases from 2 to 3. By contrast, the proposed
RWBS-PODR estimator does not exhibit such deficiency. To
obtain further understandings into this remarkable distinction,
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Fig. 3. A: Pca v.s. number of active users K , and B: value of the cost
function v.s. generation index for the case of K = 5, given Eb/N0 = 15 dB
and NFR = 0 dB. The results presented in the figure are generated for the
MAXDIV scenario and are averaged over 1000 independent runs. Simulation
results for the MAXBTR scenario under the same conditions demonstrate a
quite similar trend to their MAXDIV counterparts shown in this figure, and
they are hence not shown here for space reason.

we plot the CF value against the generation index for the
RWBS-PR, RWBS-Mut and RWBS-PODR in Fig. 3-B, with
K set to 5. It is observed that when the PODR is adopted as the
filling algorithm, the CF value can reach its global minimum
as the population evolves, which shows that the RWBS-PODR
is capable of capturing the ML estimate with the number
of generation iterations g ≥ 15. On the other hand, the CF
values yielded by the RWBS-PR and RWBS-Mut upon their
convergence are well above the global minimum. This implies
that they tend to frequently get trapped at a local minimum
of the CF, and therefore cannot guarantee reliable parameter
estimation for all users. Furthermore, as indicated in Fig. 3-A,
the PIC-based schemes are also incompetent for reliable blind
JTCE. The reason is that, owing to the “error-propagation”
effects mentioned in Subsection IV-B, some of the cancellation
stages are in fact detrimental rather than beneficial as the
number of users K increases.

Figs. 4 and 5 are dedicated to the performance evaluation of
the proposed RWBS-PODR aided channel estimator. Indeed,
it would be meaningful to provide a comparison between
the RWBS-PODR estimator and its optimal ML counterpart
based on exhaustive search. However, the latter is excessively
complex and its simulation turns out to be unacceptably time-
consuming even for a moderate number of users. Instead,
we compare the MSE of the RWBS-PODR estimator to the
CRLB, which serves as a lower bound for the attainable
MSE of all unbiased estimators [18], including the ML and
the RWBS-PODR based ones. To quantify the dependence
of the JTCE quality on the length of observation window,
all the results in Figs. 4 and 5 have been generated for
the cases of Q = 10 and Q = 20, respectively. Figs. 4-A
plots the Pca values achieved against the Eb/N0 values for
both the MAXDIV and MAXBTR scenarios, where it can
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averaged over 1000 independent runs.

be seen that for the observation window of Q = 20, Pca

reaches the value of 1 for all the Eb/N0 values tested. For
the observation window of Q = 10, however, Pca approaches
1 only when Eb/N0 ≥ 3 dB for the MAXBTR case, or
when Eb/N0 ≥ 6 dB for the MAXDIV case. In Fig. 4-
B, the “unconditioned” MSE of the delay estimation and its
counterpart conditioned on correct acquisition (ca) are plotted
along with their corresponding CRLB. We observe that the
MSE within the high Eb/E0 range and the corresponding
CRLB are 3 dB better in the MAXBTR scenario than in
the MAXDIV scenario. This can be explained by the fact
that a MAXBTR receiver actually enjoys a 10 log10 (U) dB
SNR gain compared to a MAXDIV one, provided that they
both operate under the same Eb/N0, since the latter has a
spreading gain (in the time and frequency domains) which is
twice (U = 2) as much as that of the former. As to the effect
of the observation window length, considering the MAXDIV
scenario as an example, we note that in the case of Q = 10,
the unconditioned and conditioned MSEs coincide with each
other when Eb/N0 exceeds 6 dB, for the proposed channel
estimator achieves Pca ≈ 1 under this SNR condition as shown
in Fig. 4-A. If the observation window lasts for 20Tb, the same
phenomenon occurs for Eb/N0 ≥ 0 dB. More importantly, the
MSE of delay estimation approaches its CRLB in the case
of Q = 10 for Eb/N0 ≥ 9 dB, while for Q = 20, only
Eb/N0 ≥ 6 dB is required. The advantage associated with
a longer observation window has also been confirmed in the
MAXBTR scenario.

Similar trends to those described above can also be found
in Fig. 5-A and Fig. 5-B, where the amplitude and phase
estimation performance are investigated, respectively. How-
ever, there are two distinctions worth mentioning. Firstly, the
gap between the conditioned and unconditioned MSE is less
evident for the amplitude or phase offset estimation than for
the delay estimation. This behaviour has also been witnessed
in [13], where pilot-assisted timing and channel estimation
was invoked for bandlimited long-code-based MC-DS-CDMA
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Fig. 5. A: the MSE of amplitude estimation (normalized by the mean value of
the true squared amplitude) v.s. Eb/N0, and B: the MSE of phase estimation
(normalized by 4π2) v.s. Eb/N0. K = 10 users, NFR = 10 dB, and all
results are averaged over 1000 independent runs.

systems transmitting over quasi-static fading channels. Sec-
ondly, from Fig. 4-B we observe that when Q is increased
from 10 to 20, the performance of the delay estimation
exhibits a 4.8 dB improvement in the high Eb/N0 range for
both the MAXDIV and MAXBTR scenarios. By contrast,
the amplitude and phase estimations hardly benefit from an
extended observation window, as can be seen in Fig. 5. To
gain a deeper insight into this interesting discrepancy, let
us consider a 20Tb-long observation window, which can be
conceptually divided into two parts, i.e. the original part and
the extended part, each having a length of 10Tb. Since the
propagation delay is deemed to be constant over the entire
observation window, both the original and extended parts may
be exploited for the delay estimation. Thus the delay estimator
relying on the entire observation window tends to be better
than those relying on the original part or the extended part
alone. On the other hand, the CCGs are assumed to be time-
variant and their values can only be viewed as stationary on
the symbol duration level. Therefore, the extended part of
the observation window cannot improve the estimation of the
CCGs (and hence their amplitude and phase) associated with
the original part, or vice versa. It follows the inference that an
extended observation window does not necessarily guarantee
to improve the accuracy of the amplitude or phase estimation.

C. Evaluation of Differential MUD Based on Proposed Blind
JTCE

In Fig. 6, we report the BERs of the differential DC and
MMSE detectors based on the proposed blind RWBS-PODR
JTCE estimator, in comparison to that of the idealised dif-
ferential MMSE detector relying on the perfect channel state
information. From Fig. 4, we note that a 20Tb-long observation
window brings about 4.8 dB advantage for the delay estima-
tion against its 10Tb-long counterpart, while from Fig. 5, we
seen that an extended observation window does not guarantee
an improvement in the accuracy of the CCG estimate because
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of the time-varying nature of the CCGs. Interestingly, Fig. 6
also demonstrates that the BER improvement due to increasing
the observation window from Q = 10 to Q = 20 becomes
less evident and may even be imperceptible as the Eb/N0

grows, and this conclusion holds for both the MAXDIV
and MAXBTR setups. Another interesting observation is that
although the MAXBTR setting offers the 3 dB superiority
over the MAXDIV counterpart as far as the channel estimation
is concerned, it is generally inferior to the latter in terms of
BER. Obviously, the MAXDIV receiver can effectively exploit
frequency diversity and thereby enhances the reliability of the
decision statistics when independent fading is present on each
subcarrier. Overall, the results shown in Fig. 6 confirm that the
proposed blind JTCE algorithm is effective, since the multiuser
detectors using the delay and channel estimates provided by
this blind estimator achieve satisfactory BER performance.

D. Complexity Analysis

Let us now compare the complexity of our RWBS-PODR
estimator with that of its ML counterpart. Recalling Eq. (14),
we note that both the RWBS-PODR and ML based estimators
rely on searching for the minimum of the CF within the
K-dimensional parameter space [0, Tb)

K . Therefore, the
complexity of these two estimators may be evaluated by a
common formula

C = CCF-Eva ·NCF-Eva, (31)

where NCF-Eva is the total number of CF evaluations involved
in the search process, and CCF-Eva is the complexity per CF
evaluation. Since CCF-Eva is independent of the estimation
scheme, the complexity of the RWBS-PODR and ML based
estimators are mainly dictated by their corresponding NCF-Eva

values, denoted as NRWBS-PODR
CF-Eva and NML

CF-Eva, respectively. Fur-
thermore,NRWBS-PODR

CF-Eva is specified in Eq. (20), while NML
CF-Eva is

specified in Eq. (15) for the exhaustive grid-based ML search
with R being the number of equally-spaced bins for quantising
the chip interval.

To gain a more tangible impression on the efficiency of
the proposed RWBS-PODR estimator with respect to its ML
counterpart, given K = 10 and N = 16 in the simulation
system, let us now calculate NML

CF-Eva assuming R = 2 as
the quantisation resolution6 and NRWBS-PODR

CF-Eva using the RWBS
algorithmic parameters adopted in our simulation, namely,
PS = (20(K+1)+1) = 221, NG = 40 and NB = PS = 221.
It is straightforward to arrive at:

NML
CF-Eva = (2 · 16)10 ≈ 1.126× 1015, (32a)

NRWBS-PODR
CF-Eva = (221− 1 + 2 · 221) · 40 = 26 480,

(32b)

NML
CF-Eva/N

RWBS-PODR
CF-Eva = 1.126× 1015/26 480 ≈ 4.25× 1010.

(32c)

To conclude our complexity analysis, we note that CCF-Eva is
principally determined by the computational overhead required
for calculating ρ̃WLS(τ̃ ), which is formulated in Eq. (13).
Skipping the detailed analysis, it may be worked out that the
calculation of Eq. (13) entails a complexity of

CCF-Eva ≈U3(Q3 + 2Q2)KM2N2 + U2(Q2 + 2Q)KMN

+ U2(Q + 2)2K2 + U3(Q+ 2)2QK2MN

+ ηU3(Q+ 2)3K3, (33)

where the term ηU3(Q + 2)3K3 is contributed by[
AH(τ̃ )Λ−1A(τ̃ )

]−1
, and η is a constant relying on

the specific approach invoked for this matrix inversion.

VIII. CONCLUSIONS

In this paper, we have conceived a JTCE scheme based
on the RWBS optimisation algorithm for bandlimited long-
code-aided MC-DS-CDMA systems, which requires neither
the transmission of known pilots nor the assumption that the
channel state remains constant within the entire observation
window. An ad-hoc filling algorithm named the PODR is
proposed to work in conjunction with the RWBS procedure,
which is capable of effectively avoiding local minima of the
CF, and is shown to be more efficient than existing generation
initialisation alternatives for the problem at hand. The CRLB
corresponding to the JTCE task of interest has been derived
as a performance benchmark. Quantitatively, for the case of
K = 10 users, Eb/N0 ≥ 3 dB and a 10 dB NFR, the RWBS-
PODR estimator using an observation window of 20Tb is
shown to approach the CRLB at a complexity which is 10
orders of magnitude lower in comparison to its full ML-based
counterpart relying on exhaustive grid-based search. Hence
our solution strikes a very efficient and practical near-optimal
low-complexity alternative to the ML-based estimator.

As a closing remark, we note that albeit the RWBS has a
concise structure which allows easy programming and tuning,
a whole host of other EAs may be applied to the multi-variate
optimisation problem under consideration (c.f. Eq. (14)). For
future work, a comparative study in the context of JTCE
may be pursued to compare the RWBS, in terms of both

6In fact, R = 2 is the minimum possible value for the resolution of the grid
search and it is often insufficient for achieving the necessary timing accuracy
in practice. Here by choosing R = 2 we expect to obtain a lower bound for
the complexity of the ML estimator.
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performance and efficiency, with other EA alternatives, such
as the GA, ACO, PSO and DEA.
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