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Deep Learning-Assisted TeraHertz QPSK Detection
Relying on Single-Bit Quantization
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Abstract— TeraHertz (THz) wireless communication consti-
tutes a promising technique of satisfying the ever-increasing
appetite for high-rate services. However, the ultra-wide band-
width of THz communications requires high-speed, high-
resolution analog-to-digital converters, which are hard to
implement due to their high complexity and power consumption.
In this paper, a deep learning-assisted THz receiver is designed,
which relies on single-bit quantization. Specifically, the imperfec-
tions of THz devices, including their in-phase/quadrature-phase
imbalance, phase noise and nonlinearity are investigated. The
deflection ratio of the maximum-likelihood detector used by our
single-bit-quantization THz receiver is derived, which reveals the
effect of phase offset on the demodulation performance, guiding
the architecture design of our proposed receiver. To combat the
performance loss caused by the above-mentioned distortions,
a twin-phase training strategy and a neural network based
demodulator are proposed, where the phase offset of the received
signal is compensated before sampling. Our simulation results
demonstrate that the proposed deep learning-assisted receiver is
capable of achieving a satisfactory bit error rate performance,
despite the grave distortions encountered.

Index Terms— TeraHertz communication, hybrid distortion,
single-bit receiver, phase compensator, deep feedforward neural
network.
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I. INTRODUCTION

G IVEN the ever-increasing data transmission demands,
TeraHertz (THz) communication (from 0.1 to 10 THz),

which provides ultra-broad bandwidth reaching dozens or even
hundreds of GHz, has become a promising research area in
wireless communications [1]–[4], because it is capable of
supporting bandwidth-thirsty holographic video conferencing,
ultra-high-definition video transmission, fiber extender and
other demanding applications [5]. Therefore, THz commu-
nication may be viewed as one of the key technologies in
next-generation wireless communication systems [6].

As the carrier frequency increases, THz signals tend to
suffer from more severe pass-loss than their counterparts
operating at lower frequencies, including both the free space
path-loss and the molecular absorption loss [7]. Moreover,
the imperfections of the radio frequency (RF) devices, includ-
ing the in-phase/quadrature-phase (I/Q) imbalance of the RF
chains [8], the nonlinearity of the power amplifier (PA) [9],
and the phase noise of the local oscillator (LO), becomes
more aware, imposing severe so-called hybrid distortions [10].
Moreover, given the extremely wide bandwidth, it is also hard
to digitize the THz signals, since high-speed high-resolution
analog-to-digital converters (ADCs) have a high complexity
and high power consumption, which is a key challenge of THz
receivers [11], [12].

Single-bit quantization, which can be realized by a fast
comparator, has the potential of reducing both the power
consumption and complexity [13], [14]. Therefore, single-bit
ADCs have been viewed as promising techniques of facil-
itating ultra-high rate communications [12], [15]–[17]. For
instance, Hoyos et al. [15] proposed a matched-filter based
single-bit receiver for binary phase shift keying (BPSK) mod-
ulation, while Yin et al. [16] conceived an alternative digital
monobit-receiver architecture for impulse radio modulation.
As a further development, Wang et al. [17] took the impact of
I/Q imbalances into consideration in the design of single-bit
quadrature phase shift keying (QPSK) receivers. Neuhaus et al.
proposed a temporal oversampling based single-bit receiver
for THz communications, but the impact of hybrid distortions
has not been considered in [12]. Moreover, Yin et al. [17]
have shown that the phase offset has a significant effect on
the receiver performance both in additive white Gaussian
noise (AWGN) channels and multipath channels. But again,
the influence of phase offset has not been studied in as much
detail as the methodology of phase offset compensation in
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TABLE I

CONTRASTING OUR CONTRIBUTION TO THE LITERATURE

single-bit receivers. Accordingly, the state-of-the-art phase
synchronization schemes designed for single-bit receivers,
such as the Bayesian scheme of [19], [20], fail to perfectly
compensate the phase offset under hybrid distortions. More
particularly, the phase offset, which is the dominant factor in
degrading the performance of single-bit receivers, cannot be
adjusted, once the signals have been digitized by the single-bit
ADC. As a result, the phase offset must be adjusted before
sampling, which is one of the key technical challenges in
single-bit THz receiver design.

Both the strong nonlinearities of single-bit quantization and
hybrid distortions of these high-frequency devices make THz
signals hard to process by state-of-the-art techniques. Although
Singh and Madhow [18] proposed a sophisticated phase quan-
tization technique for mitigating the I/Q phase imbalance, their
scheme required four single-bit ADCs, which increases both
the complexity and cost.

A. Background of Deep Learning
Benefiting from its superior ability in handling com-

plicated and nonlinear issues, deep learning, also known
as deep neural network, has been widely regarded as a
promising direction in solving intractable wireless communi-
cation problems [21]. Motivated by its promising potential,
various deep-learning assisted techniques [22]–[25] have been
exploited for processing the single-bit signals. For example,
Balevi and Andrews [22] developed a novel deep learn-
ing based single-bit receiver for orthogonal frequency divi-
sion multiplexing (OFDM), where generative supervised deep
neural networks and unsupervised autoencoder detection meth-
ods are utilized for estimating the channel and detecting the
signal, respectively. Balevi and Andrews [23] also transformed
the design of hand-crafted channel codes into the learning
of a specially designed autoencoder relying on single-bit
quantization. Jeon et al. [24] utilized reinforcement learning,
while Zhang et al. [25] used deep learning, respectively, for
signal detection and for channel estimation in multiple-input
multiple-output (MIMO) systems. In a nutshell, by relying on
deep learning assisted techniques, the signals quantized by
single-bit ADCs can be more beneficially processed than by
conventional techniques.

In this work, deep feedforward neural network (DFNN)
[26] is utilized to realize efficient single-bit receiver over THz
channel. Specifically, a DFNN typically consists of a cascade
of an input layer, L hidden layers and an output layer.
All the layers of the DFNN are fully connected, and the
output of one layer becomes the input to its subsequent layer.
Mathematically, the output xl of the l-th hidden layer can be

expressed as

zl = Wlxl−1 + bl, (1)

xl = f
(
zl
)
, (2)

where Wl and bl are the weight matrix and the bias vec-
tor of the l-th layer, respectively, while f (·) denotes the
element-wise activation function. Based on DFNN, it is capa-
ble of approximating a mapping between the received signal
and the demodulation result, which facilitates our single-bit
receiver.

B. Contributions
Against this background, we develop a novel deep learning

assisted single-bit receiver architecture. Our main contribu-
tions are boldly and explicitly contrasted to the state-of-the-art
in Table I at a glance as well as in more detail below:

• We analytically analyze the receiver performance of
the optimal single-bit receiver operating in THz chan-
nels in the face of hybrid distortions with the help of
the so-called deflection ratio, which reveals the effect
of phase offsets on the demodulation performance and
guides the design of the single-bit THz receiver. Accord-
ingly, a new phase offset difference estimator is newly
developed, which is capable of facilitating the phase
offset compensation before sampling, thus improving the
overall detection performance.

• We design the overall architecture of a THz receiver,
which is capable of coping with severe hybrid distortions,
despite using low-resolution quantization. The receiver
consists of four modules, namely the phase estimator,
phase compensator, single-bit ADCs, and the demodula-
tion network. In contrast to the state-of-the-art single-bit
receiver, the phase offset is compensated before sampling
for realizing reliable demodulation.

• In order to reliably detect the single-bit quantized THz
signals, we propose a twin-phase training strategy, where
the phase offset is compensated before training the
neural network based demodulator. In particular, a deep
learning-assisted single-bit detection methodology is pro-
posed, which significantly improves the demodulation
performance by fitting an accurate mapping between the
single-bit sampling sequence and the likelihood informa-
tion without relying on the distribution of each sample.

Notation: Matrices and vectors are denoted by uppercase
and lowercase boldface letters. The real part is denoted by
�(·), and j =

√−1. The expectation operator is represented by
E(·), (·)T denotes the transpose operation, and ∼ denotes the
equality in a distribution, while ∗ is the convolution operation.
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Fig. 1. System model.

The m × m identity matrix is denoted by Im, 1m denotes a
1 × m vector with all components one, and [a]i denotes the
i-th element of a.

II. SYSTEM MODEL

As shown in Fig. 1, we consider an end-to-end THz com-
munication system, where both the transmitter and receiver
are equipped with a single Cassegrain antenna to provide high
antenna gain [27], [28].

Gray-coding is utilized to map the information bits to the
QPSK symbols. Let sk = ejg(dk1,dk0) be the k-th transmitted
symbol corresponding to the information bits dk1 and dk0,
which are equally likely to be 1 and 0. The QPSK mapping
function g (dk1, dk0) is defined by g(0, 0) = π/4, g(0, 1) =
3π/4, g(1, 0) = −π/4, and g(1, 1) = −3π/4. The complex
baseband transmit signal can be expressed as

sB(t) =
∞∑

k=0

skptr (t − kTs) , (3)

where ptr(t) is the signalling pulse, and Ts is the symbol
duration. Given a perfectly I/Q-balanced carrier modulator and
the perfect PA, the transmitted RF signal can be expressed as

sRF(t) =
√

2� (ej2πfctsB(t)
)
, (4)

where fc is the carrier frequency.
Under perfectly I/Q-balanced carrier demodulation,

the received RF signal is first down-converted and then
filtered by a low-pass filter (LPF) to yield the baseband
received signal:

rB(t) =
∞∑

k=0

skejΔθpref (t − kTs) + nB (t) , (5)

where pref (t) = pr(t) ∗ h(t) ∗ ptr(t) denotes the reference
signal, with h(t) and pr(t) representing the channel impulse
response (CIR) and the impulse response of the LPF, respec-
tively. Furthermore, Δθ is the carrier phase offset between the
transmitter and the receiver, which is unknown to the receiver,
and nB(t) is the baseband-equivalent complex Gaussian noise.

A. Hybrid Distortion of THz Devices

Due to the serious imperfections of THz devices, the signals
will be distorted both at the transmitter and receiver. Let us
now discuss the components of the hybrid distortion one by
one.

1) : Firstly, practical carrier modulation is imperfect. Specif-
ically, the mismatch between the two RF branches imposes I/Q
imbalance, which can be modeled by the following expression

T =
[

1 εT sin (φT )
0 εT cos (φT )

]
, (6)

where εT and φT are the amplitude and phase imbalances
between the I and Q branches, respectively. If we denote
the inphase and quadrature signals of the perfect RF signal
sRF(t) as sI(t) and sQ(t), respectively, the actual inphase and
quadrature signals xI(t) and xQ(t) of the carrier modulated
signal are given respectively by

xI(t) = sI(t) + εT sin (φT ) sQ(t), (7)

xQ(t) = εT cos (φT ) sQ(t). (8)

2) : Secondly, due to the PA nonlinearity, the signal suffers
from nonlinear distortion, which includes both amplitude com-
pression and phase rotation. We adopt the dual-input nonlinear
amplifier model to relate the input and output signals of the
PA, which can be expressed as [29]

∇L

[
xI(t)
xQ(t)

]
=
[ ∇Ix(t)
∇Qx(t)

]
, (9)

where x(t) = [xI(t), xQ(t)]T , ∇L represents the overall
nonlinear operator of the PA, while ∇I and ∇Q denote the
nonlinear operators for the inphase and quadrature signals,
respectively. In particular, the odd-order memoryless poly-
nomial (MLP) model is utilized to describe the nonlinear
distortion of the inphase and quadrature-phase branches, given
by [10]

∇ixi(t) =
Ki∑

k=1, k is odd

αi,k1k

(
x(t) ⊗ · · · ⊗ x(t)︸ ︷︷ ︸

The number of x(t) is k.

)
, (10)

where Ki is the order of nonlinearity and αi,k are the
real-valued model parameters, for i = I or Q. ⊗ denotes the
Kronecker product, given by

[
x1

x2

]
⊗
[

y1

y2

]
=

⎡⎢⎢⎣
x1y1

x1y2

x2y1

x2y2

⎤⎥⎥⎦ . (11)

Taking into account the carrier modulation I/Q imbalance
and PA nonlinearity, therefore, the actual transmitted RF
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inphase and quadrature signals can be modeled as ∇LTsRF(t)
with sRF(t) =

[
sI(t) sQ(t)

]T
.

3) : Similarly, due to the imbalance of the two RF branches
and the phase noise of the receiver’s voltage-controlled oscil-
lator (VCO), the received RF signal is further distorted during
demodulation, and the distortion can be expressed as

R =
[

1 εR sin (φR)
0 εR cos (φR)

]T [ cos (θ) − sin (θ)
sin (θ) cos (θ)

]
, (12)

where εR and φR are the amplitude imbalance and phase
imbalance between the I and Q branches at the receiver,
respectively, while θ is the phase shift caused by the phase
noise at the transmitter and the VCO of the receiver.1 Specifi-
cally, we assume that the phase noise θ follows a block-based
random walk model, which will change once per transmission
block.2 Hence, the phase noise can be expressed as θk+1 =
θk + δθk, where θk is the phase noise of the k-th block and
δθk is the change of the phase noise between adjacent blocks,
which is a Gaussian random variable with zero mean and
variance ϑ2, i.e., δθk ∼ N

(
0, ϑ2

)
.

As a result, after demodulation and low-pass filtering,
the baseband signal received over the THz channel under
hybrid distortions can be expressed as

rB(t) = R (H∇LTsB(t) + nB(t)) , (13)

where rB(t) =
[
rBI (t) rBQ(t)

]T
with the complex baseband

received signal rB(t) = rBI (t) + jrBQ(t), and sB(t) =[
sBI (t) sBQ(t)

]T
with the complex baseband transmit signal

sB(t) = sBI (t) + jsBQ(t), while nB(t) =
[
nBI (t) nBQ(t)

]T
with the low-pass filtered complex channel AWGN nB(t) =
nBI (t) + jnBQ(t). Both nBI (t) and nBQ(t) have power σ2

0 .
Furthermore, the overall channel response H can be expressed
as

H = αPLejκI2, (14)

where αPL denotes the path loss, which includes the impact
of antenna misalignment, frequency dependent loss, and fre-
quency dispersion index, while κ denotes the phase shift of
the channel.

For notational simplification, by omitting the baseband
subscript B from rB(t), sB(t) and nB(t) as well as defining
Σ = RH∇LT and nr(t) = Rn(t), (13) can be rewritten as

r(t) = Σs(t) + nr(t), (15)

with r(t)=
[
rI(t) rQ(t)

]T
. Before sampling, the received sig-

nal is rotated by Δ2θ̂ for improving the demodulation perfor-
mance, where the residual phase offset can be calculated as
Δθ = θ + κ + Δ2θ̂. As a result, the received baseband signal
is given by

r̃(t) =

⎡⎣ cos
(
Δ2θ̂

)
− sin

(
Δ2θ̂

)
sin
(
Δ2θ̂

)
cos
(
Δ2θ̂

)
⎤⎦ r(t), (16)

1For a typical VCO, the phase noise increases with the square of the center
frequency, hence it cannot be ignored for a high-frequency THz receiver.

2Random-walk model is commonly utilized to describe strong phase noise,
whereby the phase noise varies per transmission due to the ultra-high rate
of THz communication [30].

with r̃(t)=
[
r̃I(t) r̃Q(t)

]T
. Next, the received baseband signal

is sampled by the single-bit ADCs, where every pulse is
represented by Ns samples, that is, the sampling period T
satisfies T = Ts/Ns. Then the n-th sample of the I and Q
branches of the k-th symbol can be expressed as

rI,k,n =
{

+1, r̃I (kTs + nT ) > 0,
−1, r̃I (kTs + nT ) ≤ 0,

(17)

rQ,k,n =
{

+1, r̃Q (kTs + nT ) > 0,
−1, r̃Q (kTs + nT ) ≤ 0,

(18)

for 1 ≤ n ≤ Ns. The single-bit sampling sequence of the k-th
symbol can be expressed as

rk =
[
rT

Ik
rT

Qk

]T
, (19)

with rT
Ik

= [rI,k,1 · · · rI,k,Ns ] and rT
Qk

= [rQ,k,1 · · · rQ,k,Ns ].

B. Optimal Single-Bit Receiver

Since dk1 and dk0 are equally likely to be 1 and 0,
the maximum-likelihood (ML) detector is the optimal detector
for the single-bit sampling sequence rk [17]. The likelihood
function of the k-th single-bit sampling sequence, denoted as
Λ (rk|dk1, dk0), can be expressed as

Λ (rk|dk1, dk0) =
Ns∑

n=1

(
log
(
1+
(
1−2Q

(
γ̃dk1,dk0

I,n

))
rI,k,n

)
+ log

(
1 +
(
1 − 2Q

(
γ̃dk1,dk0

Q,n

))
rQ,k,n

))
−2Ns log (2) , (20)

where the Q function Q(·) is given by Q(x) =
1√
2π

∫∞
x

e−t2/2dt and we have

γ̃dk1,dk0
I,n =

1
σ0

(
∇I

(
xdk1,dk0

n

)
cosΔθ

−∇Q

(
xdk1,dk0

n

)
sin Δθ

)
, (21)

γ̃dk1,dk0
Q,n =

1
σ0

(
∇I

(
xdk1,dk0

n

)
εR sin (φR + Δθ)

+ εR cos (φR + Δθ)∇Q

(
xdk1,dk0

n

))
,

(22)

with

xdk1,dk0
n

=
[

((1 − 2dk0) + εT sin φT (1 − 2dk1)) pref (nTs/Ns)
εT cosφT (1 − 2dk1) pref (nTs/Ns)

]
.

(23)

When the distorted received symbol rk is obtained,
it is demodulated according to the likelihood function
Λ (rk|dk1, dk0) of the conventional ML demapper as(

d̃opt
k1 , d̃opt

k0

)
= arg max

dk1,dk0∈{0,1}
Λ (rk|dk1, dk0) . (24)
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To evaluate the performance of the ML receiver, the deflec-
tion ratio under QPSK modulation relying on single-bit sam-
pling is defined by [31]

D=

(
E
(
λ̃k|dk1 =1, dk0 =1

)
−E

(
λ̃k|dk1 =1, dk0 =0

))2

Var
(
λ̃k

) ,

(25)

where λ̃k = Λ (rk|dk1 = 1, dk0 = 1) is the decision statistic
of the ML detector and Var (λk) denotes the variance of λ̃k.
The higher D is the better demodulation performance.

After some manipulations, the deflection ratio of the optimal
single-bit THz receiver, which depends on the residual phase
offset Δθ and Ns, can be derived as shown in (26), as shown
at the bottom of the page,with

ωdk1,dk0
I,n = Q

(
γ̃dk1,dk0

I,n

)
, �dk1,dk0

I,n = 1 − Q
(
γ̃dk1,dk0

I,n

)
,

ωdk1,dk0
Q,n = Q

(
γ̃dk1,dk0

Q,n

)
, and �dk1,dk0

Q,n = 1 − Q
(
γ̃dk1,dk0

Q,n

)
.

Proof: See Appendix A.

III. ANALYSIS OF PHASE OFFSET

Observe from (26) that the performance of the opti-
mal ML receiver depends on both the weight tuple w =(
ωdk1,dk0

I,n , �dk1,dk0
I,n , ωdk1,dk0

Q,n , �dk1,dk0
Q,n

)
and Ns, where the

weight tuple w is determined by the phase offset Δθ. As a
result, the phase offset is the dominant factor determining
the performance of the single-bit THz receiver. Therefore,
in this section, we first investigate the impact of the phase
offset on the demodulation performance and then propose
a phase compensation method to adjust the phase offset of
the received baseband signal r(t) in order to enhance the
achievable demodulation performance.

A. Effects of Phase Offset

To investigate the effects of the phase offset Δθ on
the demodulation performance, the deflection ratio of (26)
encountered in the THz channel at Eb/N0 = 5dB with the
oversampling ratio Ns ∈ {1, 5, 10, 20} is plotted in Fig. 2 (a)
as a function of Δθ, where Eb denotes the transmit energy
per bit and N0 is the power spectral density of the channel
noise. Specifically, the distortion parameters of THz channel
are εT = εR = 1.2, φT = φR = 2◦, and the parameters of the
dual-input nonlinear PA model are KI = 5 in conjunction with
αI,1 = 1.521, αI,3 = −0.5626, αI,5 = 0.0402, and KQ = 7
along with αQ,1 = 2.138, αQ,3 = −2.749, αQ,5 = 2.787,
αQ,7 = −1.179. For comparison, we also plot the deflection
ratio curve for the AWGN channel at Eb/N0 = 5dB with

Fig. 2. Deflection ratio versus phase offset parameterized by oversampling
ratio Ns.

Ns ∈ {1, 5, 10, 20} in Fig. 2 (b), where εT = εR = 1,
φT = φR = 0◦, and the parameters of the dual-input nonlinear
PA model are KI = 1 in conjunction with αI,1 = 1 and
KQ = 1 along with αQ,1 = 1. Three observations can be
drawn from Fig. 2.

Firstly, it can be seen from Fig. 2 (b) that the deflection ratio
of the AWGN channel is maximized when the phase offset is
Δθ = 0, and the deflection ratio decreases significantly, when
Δθ deviates from 0. This is because for transmission over
the AWGN channel the deflection ratio decreases significantly,
when the amplitude difference between the I and Q branches is
large. However, in contrast to the AWGN channel, the mag-
nitude of the received constellation points of the signals is

D (Δθ, Ns) =

(
Ns∑

n=1

(
log
(

�1,1
I,n

�1,0
I,n

)
�1,1

I,n+log
(

ω1,1
I,n

ω1,0
I,n

)
ω1,1

I,n+log
(

�1,1
Q,n

ω1,0
Q,n

)
�1,1

Q,n+log
(

ω1,1
Q,n

�1,0
Q,n

)
ω1,1

Q,n

))2

Ns∑
n=1

(
ω1,1

I,n�1,1
I,n log2

(
�1,1

I,n

ω1,1
I,n

)
+ ω1,1

Q,n�1,1
Q,n log2

(
�1,1

Q,n

ω1,1
Q,n

)) . (26)
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time-variant in the THz channel. As a result, the optimal phase
offset to attain the maximum deflection ratio for the THz
channel is not 0. As can be seen from Fig. 2 (a), the deflection
ratio for the THz channel simulated reaches the maximal value
when Δθ is close to 0.04π, and the deflection ratio decrease
significantly, when Δθ is different from 0.04π.

Secondly, at the same Eb/N0 and Ns, the deflection ratio
of the THz channel is lower than that of the AWGN chan-
nel, explicitly reflecting the adverse effect of hybrid THz
distortions.

Thirdly, the deflection ratio increases with the increase of
Ns, which demonstrates that the demodulation performance
can be improved by increasing the oversampling ratio Ns.
Nevertheless, a higher oversampling ratio increases the device
cost and power consumption. Hence, it is always important
to realize an appropriate performance versus cost trade-off in
practice.

B. Phase Compensation

The above analysis demonstrates that there exists an optimal
phase offset Δθ� that optimizes the demodulation perfor-
mance, that is, the deflection ratio is maximized. However,
due to the random nature of both the phase noise and the THz
channel, the actual phase offset Δθ of the THz channel is
unknown and different from the optimal phase offset Δθ�.
Therefore, it is necessary to compensate for the actual phase
offset, i.e., adjusting Δθ into Δθ�, in order to attain the
optimal demodulation performance.

Note that Δθ� can always be estimated. This is because
although the weight tuple w is unknown, it can be esti-
mated by utilizing a phase offset training sequence according
to

ω̂dk1,dk0
I,n =

1
2
− 1

2Ndk1,dk0
t

N
dk1,dk0
t∑
k=1

rI,k,n, (27a)

ω̂dk1,dk0
Q,n =

1
2
− 1

2Ndk1,dk0
t

N
dk1,dk0
t∑
k=1

rQ,k,n, (27b)

�̂dk1,dk0
I,n =

1
2

+
1

2Ndk1,dk0
t

N
dk1,dk0
t∑
k=1

rI,k,n, (27c)

�̂dk1,dk0
Q,n =

1
2

+
1

2Ndk1,dk0
t

N
dk1,dk0
t∑
k=1

rQ,k,n, (27d)

where Ndk1,dk0
t is the length of the sequence in terms of the

received symbols (dk1, dk0). Substituting the estimated weight

tuple ŵ =
(
ω̂dk1,dk0

I,n , ω̂dk1,dk0
Q,n , �̂dk1,dk0

I,n , �̂dk1,dk0
Q,n

)
into (26),

the estimated deflection ratio D̂
(
Δθ̃, Ns

)
of the optimal ML

receiver with the phase offset Δθ̃ can be obtained without
relying on the knowledge of the channel information. An esti-
mate of the optimal phase offset can then be obtained as the
solution of the following optimization

Δθ̂� = argmax
Δ�θ

D̂
(
Δθ̃, Ns

)
. (28)

Algorithm 1 Estimate the Difference Between Optimal Phase
Offset and Actual Phase Offset Δ2θ

1: Set initial estimated Δ2θ̃0 =0, step size to αθ , and initial
estimated deflection ratio D̂0 =0.

2: for t = 1 to Np do
3: Set Δ2θ̃t = Δ2θ̃t−1 + αθ .
4: Rotate the t-th phase offset training subsequence by

Δ2θ̃t.
5: Sample the t-th phase offset training subsequence.
6: Calculate ŵ =

(
ω̂dk1,dk0

I,n , ω̂dk1,dk0
Q,n , �̂dk1,dk0

I,n , �̂dk1,dk0
Q,n

)
according to (27).

7: Substituting ŵ into (26) to obtain the estimated deflection
ratio D̂t.

8: if D̂t > D̂t−1 then
9: Set αθ = αθ .

10: else
11: Set αθ = −αθ.
12: end if
13: end for
14: Calculate Δ2θ̂ = 1

Np−Np,i

∑Np

t=Np,i+1 Δ2θ̃t

However, what the phase compensation needs is the differ-
ence between the optimal phase offset Δθ� and the unknown
phase offset Δθ of the received signal, which is denoted as

Δ2θ = Δθ� − Δθ. (29)

We propose an algorithm to approximately estimate Δ2θ.
Specifically, the phase offset training sequence is divided into
Np subsequences, where the length of each subsequence is Nt.
An initial Δ2θ̃0 = 0 is set, an initial estimated deflection ratio
D̂0 = 0 is assumed, and a step size αθ for adjusting the phase
offset is provided. The t-th subsequence is rotated by Δ2θ̃t

before sampled by the receiver, where Δ2θ̃t = Δ2θ̃t−1 + αθ.
Substituting the sampled t-th subsequence into (27), the esti-
mated weight tuple ŵ is obtained, and the deflection ratio
D̂t can be calculated. If D̂t > D̂t−1, it indicates that Δ2θ̃t

is adjusted in a correct direction (deflection ratio increas-
ing) from Δ2θ̃t−1 by step size αθ. Therefore, to continue
this direction, Δ2θ̃t+1 should also be adjusted by αθ from
Δ2θ̃t. Otherwise, Δ2θ̃t+1 needs to be adjusted to the opposite
direction by −αθ from Δ2θ̃t. Clearly, the first a few Δ2θ̃t

are far from the true Δ2θ, and it takes some iterations, say
t = Np,i, for Δ2θ̃t to converge. Also owing to the difference
between ŵ and w, the estimated deflection ratio is inaccurate.
As a result, Δ2θ̃t will naturally fluctuate. To achieve an
accurate estimate, the average value of the estimated Δ2θ̃t over
Np,i ≤ t ≤ Np is used as the estimate of Δ2θ. Algorithm 1
summarizes this proposed estimator.

As Δ2θ̂ obtained by Algorithm 1 is an estimate of the
difference between the optimal phase offset and actual phase
offset, the received baseband signal r(t) can be compensated
for with Δ2θ̂, and how this is achieved will be elaborated
further in the next section. Appropriate values for Np, Nt,
Np,i and αθ will be investigated in Subsection V-C.
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Fig. 3. The overall architecture of our proposed deep learning-assisted single-bit THz receiver.

IV. LEARNING-ASSISTED SINGLE-BIT RECEIVER

In this section, we detail the proposed deep learning-assisted
single-bit THz receiver.

A. Single-Bit Receiver Architecture
Fig. 3 depicts the overall architecture of our proposed deep

learning-assisted single-bit THz QPSK receiver. In contrast
to the conventional receiver shown of Fig. 1, which collects
the received signal by a pair of ADCs and demodulates the
sampling sequence directly, the phase offset is first com-
pensated by our proposed receiver before sampling and the
single-bit sampled sequence is demodulated by a deep learning
based demodulation network. Hence, our proposed single-bit
receiver consists of a phase estimator, a phase compensator,
two single-bit ADCs for the I and Q components, and a deep
learning based demodulation network. The function of each
module is now summarized.

1) Phase Estimator: The phase estimator estimates the dif-
ference between the optimal phase offset and the actual phase
offset of the received signal, Δ2θ, as detailed in Subsection III-
B. This task is very challenging as it is implicitly relying on
the cost function value only.

2) Phase Compensator: The phase compensator is utilized
to rotate the THz signal according to the feedback Δ2θ̂ from
the phase estimator. Typically, the rotation operation can be
realized by the local oscillator (LO), where the phase offset
can be directly controlled [32].

3) Single-Bit ADCs: The two single-bit ADCs are utilized
for converting the I and Q components of the analog THz
signals r(t) into two single-bit sampled sequences rIk

and
rQk

with the oversampling ratio of Ns.
4) Demodulation Network: The demodulation network is

utilized for demodulating the received single-bit sampled
sequences of the THz signals. Note that given the hybrid
distortions caused by the THz transceiver, Λ (rk|dk1, dk0)
cannot be characterized analytically. As a result, reliably
detecting the THz symbols digitized by single-bit ADCs is
quite a challenge. To tackle this problem, we propose a deep
learning-assisted single-bit THz receiver that is capable of
efficiently solving the ML demapper (24).

B. Deep Learning Based Demodulation
To demodulate the phase-compensated single-bit sampled

sequence {rk}, a DFNN having L hidden layers is adopted as

the demodulation network, which is capable of approximat-
ing any measurable function at any desired degree of accu-
racy [26]. The input layer feeds the (m0 =2Ns)-dimensional
input rk into the DFNN, and the signal propagates through the
network layer by layer until it reaches the output layer. The
number of the neurons in the l-th hidden layer is denoted as
ml for 1 ≤ l ≤ L. The dimension of the output layer of the
DFNN is equal to the size of modulation alphabet, i.e., the
output layer has mo = 4 neurons, and the likelihoods of rk

belonging to the four constellation points are the demodulation
output.

For demodulating the k-th symbol, denote the input to
the 1st hidden layer as x0

k = rk ∈ R
m0×1. Specifically,

the sigmoid function [26] is used in the hidden layers as our
activation function, which is given by

f(z) =
1

1 + e−z
. (30)

As the demodulation results of our deep network are the
probabilities of the k-th symbol belonging to the QPSK
constellation points, the softmax function [26] is selected as
the activation function of the output layer. Specifically, based
on the activation zo

k ∈ R
4×1 of the output layer, where

zo
k = WL+1xL

k +bL+1 with the output layer’s weight matrix
WL+1 ∈ R

4×mL and bias vector bL+1 ∈ R
4×1, the output

vector pk ∈ R
4×1 of the output layer is specified by

pi,j(k) =
[
pk

]
2i+j+1

= softmax
([

zo
k

]
2i+j+1

)
=

exp
([

zo
k

]
2i+j+1

)
∑1

i′=0

∑1
j′=0 exp

([
zo

k

]
2i′+j′+1

) , (31)

for i, j ∈ {0, 1}, where pi,j(k) defines the probability that the
single-bit sampling sequence rk belongs to (dk1, dk0) = (i, j).
As a result, the index

(̂
i�, ĵ�

)
of the element of pk having the

highest probability, i.e.,(̂
i�, ĵ�

)
= arg max

i,j∈{0,1}
pi,j(k), (32)

is the ML estimate of the information bits of the single-bit
sampled sequence rk.

Collect all the parameters of the DFNN as W =
{W1,b1, · · · ,WL,bL,WL+1,bL+1}, and denote the over-
all nonlinear mapping of the DFNN as g(·;W), which links
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Fig. 4. The proposed transmission frame structure of THz communication system.

the single-bit sampling received sequence r to the demodula-
tion likelihood information p=

[
p0,0 p0,1 p1,0 p1,1

]T
:

p = g (r;W) . (33)

To optimize the performance of learning-assisted demodu-
lation, the task is to determine W by training the DFNN for
ensuring p approaches p�, where p� =

[
p�
0,0 p�

0,1 p�
1,0 p�

1,1

]T
represents the actual probability of the transmit symbol for
the single-bit sampling received sequence. Here, we adopt the
cross-entropy as the learning performance metric, given by

J(W) = −Er

⎛⎝ 1∑
i=0

1∑
j=0

p�
i,j log pi,j

⎞⎠ . (34)

However, explicit p� is hard to obtain. To address this
issue, we construct an empirical probability vector pe =[
pe
0,0 pe

0,1 pe
1,0 pe

1,1

]T
. Specifically, pe

i,j = 1 and all the
other three elements of pe are zero, when the (2i+j+1)-th
constellation symbol point is transmitted, where i, j ∈{0, 1}.
Since E (pe) is close to p�, we use pe to replace the true target
p�. In practice, a block of training data

{
rk,pe

k

}Nd

k=1
is used to

train the network by minimizing the empirical cross entropy,
given by

Je(W) = − 1
Nd

Nd∑
k=1

⎛⎝ 1∑
i=0

1∑
j=0

pe
i,j(k) log pi,j(k)

⎞⎠ . (35)

Empirical cross entropy is commonly utilized in the study
of the DFNN for multi-classification problems, also called
one-hot code label, which has desired convergence properties
and accuracy for classification tasks [26].

C. Twin-Phase Training Strategy

To realize the expected function of each module,
a twin-phase training strategy is utilized to train the single-bit
receiver. In the first step, the phase estimator is trained
for facilitating the optimal phase offset. In the second step,
the DFNN learns the mapping between the phase-offset
compensated single-bit sampled sequence and the demodu-
lation result. An advantage of this training policy is that
the adverse effect of phase noise can be eliminated, which
brings significant performance improvements of the single-bit
receiver. To implement this twin-phase training, the transmis-
sion frame structure of Fig. 4 is designed, which is com-
posed of the phase estimation field (PEF), the DFNN training
field (DTF) and the data segment. In particular, the data
segment consists of several data fields (DF) and multiple phase
tracking fields (PTF).

Estimating Phase Offset Difference: The PEF is first trans-
mitted to search for the optimal phase offset difference, and the
process of estimating this phase offset difference is detailed
in Subsection III-B. The length of PEF is NpNt, where
Nt = N

(1,1)
t + N

(1,0)
t in which N

(1,1)
t and N

(1,0)
t are the

numbers of symbols corresponding to the bits (1, 1) and
(1, 0), respectively, in the transmitted training subsequnece.
We choose N

(1,1)
t =N

(1,0)
t to ensure that equal numbers of the

bit patters (1, 1) and (1, 0) are transmitted. This in turn ensures

a balanced and more accurate estimation of the statistics
�1,1

I,n

�1,0
I,n

,

ω1,1
I,n

ω1,0
I,n

,
�1,1

Q,n

ω1,0
Q,n

and
ω1,1

Q,n

�1,0
Q,n

in (26). The estimated optimal phase off-

set difference is then fed to the phase compensator, where all
the received symbols, including the DTF and data segment, are
rotated accordingly before sampling by the single-bit ADCs.

Training Demodulation Network: Next, the DTF is trans-
mitted to train the demodulation network, which consists
of the DFNN training samples. In particular, each training
sample includes a phase-offset-compensated single-bit sam-
pled sequence rk labeled by its corresponding information
bits

(
dk1, dk0

)
. From

(
dk1, dk0

)
, the corresponding empirical

probability target pe
k is constructed. Let Nd be the length

of the DTF. The receiver collects the training dataset S =
{rk,pe

k}Nd

k=1 to train the DFNN by minimizing the cost func-
tion (35) using the scaled conjugate gradient optimizer, which
is a well-known fast and efficient optimization algorithm for
large-scale optimization problems [33].

After training, the DFNN can be used for demodulating the
received single-bit sampled sequence during data transmission.
Specifically, during data transmission, each received sequence
rk is imported into the network. Then the output of the
DFNN provides the specific category or bit pattern estimate(
d̂�

k1 = î�, d̂�
k0 = ĵ�

)
of the current received sequence accord-

ing to (32).
The overall computational complexity of the proposed

receiver is dominated by the training process of the DFNN.
Specifically, the scaled conjugate gradient algorithm for train-
ing the DFNN has a complexity per iteration on the order
of O

(
N2

tot

)
[34], where Ntot is the total number of adaptive

parameters in the DFNN, given by

Ntot =
(
2Ns + 1

)
m1 +

L∑
l=2

(
ml−1 + 1

)
ml +

(
mL + 1

)
4.

(36)

Tracking Phase Offset Difference: Naturally, the phase shift
is time-variant, and hence the PTF is inserted into the data
segment for tracking the time-variant phase offset difference
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Fig. 5. BER versus phase offset Δθ and Eb/N0 given the oversampling
ratio Ns = 20 for communicating over a single-path THz channel having a
carrier frequency fc = 220GHz.

to mitigate the effect of the phase noise. This is achieved by
the same phase offset difference estimator. The adjusted phase
offset difference is used by the phase compensator to rotate
the subsequent received data segment before sampling by the
single-bit ADCs for demodulation.

V. NUMERICAL ANALYSIS

This section presents numerical results for characterizing the
proposed single-bit THz receiver, including the performance
of phase compensation and deep learning based demodulation.
All the symbols are generated by the system model described
in Section II.

A. Simulation System Parameters

The classic raised cosine signalling pulse is utilized [35],
where the transmit pulse is specified by

ptr(t) =
sin (πt/τ)

(πt/τ)
cos (βπt/τ)
1 − β2t2/τ2

, (37)

where β is the roll-off factor and τ is the width of the pulse,
given by β= 0.5 and τ =0.01ns.

Furthermore, directional Cassegrain antennas are used and
a single-path THz channel is considered, and the same hybrid
distortion parameters shown in Section III have been adopted
in this section.

B. Effect of Δθ and Ns

Firstly, to verify the correctness of the analysis in
Subsection III-A, the simulation based bit error rate (BER)
performance is presented in this subsection, where the symbols
satisfying Ts = 2τ are generated.

In Fig. 5, we plot the BER versus the phase offset Δθ and
Eb/N0 for the oversampling ratio Ns = 20. It can be seen that
there exists a unique Δθ that minimizes the BER performance
which also depends on Eb/N0. This demonstrates that it is
important to compensate the phase offset for improving the
BER performance.

Fig. 6. BER versus phase offset Δθ for different Eb/N0, given Ns = 20.

Fig. 7. BER versus Eb/N0 for different Ns, given Δθ = 0.

Furthermore, in Fig. 6 we characterize the impact of the
phase offset on the achievable BER, given various Eb/N0

values and Ns = 20. Again, it can be seen that the BER is
minimized when the phase offset is around 0.04π. Moreover,
the simulation-based BER matches the analytical result of
Subsection III-A, where the BER is reduced when the deflec-
tion ratio is increased.

In Fig. 7, we further plot the BER versus Eb/N0 para-
meterized by Ns at Δθ = 0. It is observed that as expected,
the BER performance over AWGN channels is better that over
the THz channel due to the hybrid distortions. We can see that
even the optimal receiver fails to demodulate the single-bit
sequence when Ns = 1. It is also observed that the BER
trend is consistent with the deflection ratio trend of Fig. 2.

C. Phase Offset Difference Estimation Performance
We now present our simulation results for validating the effi-

ciency of our proposed algorithm detailed in Subsection III-B
for estimating the phase offset difference. Throughout this
subsection, the initial phase offset is set to 0, and Eb/N0 =
5dB. The optimal phase offset is approximately 0.04π as
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Fig. 8. Evolution of the population of the estimated differences between
optimal phase offset and actual phase offset over 1000 realizations given
Nt = 200.

shown in Fig. 2 (a). Thus the optimal phase offset difference
is Δ2θ� ≈ 0.04π.

To investigate the convergence properties of Algorithm 1,
we generate Nrun = 1000 independent phase offset training
sequences, and the length of each training sequence is NpNt,
given by Np = 1000 and Nt = 200. The step size is set to
αθ = 0.01π. The evolution of the population of the estimated
phase offset differences is shown in Fig. 8. Specifically,
in Fig. 8, we plot Δ2θ̃t,n versus t for all the Nrun realizations,
where Δ2θ̃t,n is the t-th estimated phase offset difference at
the t-th iteration of the n-th realization. Since the number of
training symbols is limited in each iteration and the estimated
weight tuple ŵ is realization dependent, the estimated phase
offset difference Δ2θ̃t,n naturally fluctuates from realization
to realization, that is, it is stochastic. However, the expectation
of Δ2θ̃t,n, approximated by

Δ2θt =
1

Nrun

Nrun∑
n=1

Δ2θ̃t,n, (38)

does converge to the optimal phase offset difference 0.04π.
Also observe from Fig. 8 that Δ2θ̃t,n converges after t = 150.
Recall that in Algorithm 1, the final estimated phase offset
difference, denoted as Δ2θ̂n here, is obtained by averaging
Δ2θ̃t,n over t = Np,i to Np to reduce the fluctuation of
Δ2θ̃t,n. In this case, we can see that Np,i = 150 is appropriate.

Next we demonstrate that Δ2θ̂n converges to the optimal
phase offset difference, namely, the expectation of Δ2θ̂n is
the optimal phase offset difference. With Nt = 200 and
Np = Np,i +100, in Fig. 9, we plot the average of Δ2θ̃n over
the 1000 realizations, denoted as Δ2θ̂ here, as the function of
Np,i parameterized by αθ . It is observed that as the step size
αθ increases, the number of the subsequences Np,i for Δ2θ̂
to approach the optimal value decreases, thus decreasing the
training overhead. However, the estimated Δ2θ̂ will fluctuate
more seriously as the step size αθ increases, which will limit
the accuracy of the estimated Δ2θ̂. Hence, it is important
to select an appropriate step size to realize an overhead

Fig. 9. The estimated Δ2
�θ versus Np,i parameterized by αθ given Nt =

200 and Np = Np,i + 100.

Fig. 10. The CDF of the estimated Δ2�θ parameterized by Nt given Np =
250 and Np,i = 150.

versus performance trade-off. In this case, we can see that
it is appropriate to utilize the average value over the last
Np−Np,i = 100 subsequences as the estimate of phase offset
difference with the step size set to αθ = 0.01π.

In Fig. 10, we plot the cumulative distribution func-
tion (CDF) of the estimated phase offset difference obtained
by Algorithm 1, parameterized by Nt and given Np =
250 and Np,i = 150. Observe that the estimated Δ2θ̂ is
concentrated around 0.04π, again indicating the effectiveness
of Algorithm 1. Also as expected, as the length Nt of
subsequence increases, leading to more accurate estimate,
the CDF curve becomes steeper, that is, the probability that
the estimated phase offset difference is around 0.04π becomes
higher.

Based on the above investigations as well as considering
training overhead and performance trade-off, Nt = 200,
Np = 250, Np,i = 150 and αθ = 0.01π are selected as
the algorithmic parameters of Algorithm 1 to compensate
the phase offset for the following demodulation operation.
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Fig. 11. Performance comparison of the proposed learning-based DFNN
demodulation scheme, the optimal demodulation scheme of [17], the subopti-
mal demodulation scheme of [17] and the eight-sector phase scheme of [18]
for Ts = τ and Ts = 2τ .

With this set of algorithmic parameters, the training overhead
or the length of PEF field is NpNt = 50, 000 symbols, which
is acceptable considering huge throughput of THz systems,
while ensuring a sufficiently accurate phase compensation
performance.

D. Demodulation Performance

Let us now examine the detection performance of our
proposed learning based DFNN scheme against that of the
optimal and suboptimal demodulation schemes of [17], and the
eight-sector phase based scheme in [18]. In the simulations,
we note that 50,000 training symbols are sufficient for training
the weights of the optimal and suboptimal receiver [17] and
the eight-sector phase based receiver of [18] for it to reach
its full performance potential. Hence, increasing the number
of training symbols further does not improve the achievable
performance. For a fair comparison, we also train our DFNN
with Nd = 50, 000 training symbols3. Note that a large number
of samples is required for the empirical cross entropy (35)
to approach the ensemble cross entropy (34), because the
underlying distribution of the demodulation process is highly
nonlinear and non-Gaussian. Hence it is advisable to use a
sufficiently long DTF field, and Nd = 50, 000 is suitable.
A DFNN having L = 4 hidden layers is utilized for demod-
ulating the received single-bit sequence, and the numbers of
neurons in the four hidden layers are (4, 4, 4, 4), respectively.
The total number of adaptive parameters for this DFNN is
Ntot = 244, given the oversampling ratio of Ns = 20.

In Fig. 11, we plot the BER as a function of Eb/N0 associ-
ated with Ns =20 and Δθ=0 for the four schemes compared.
It can be seen from Fig. 11 that all the schemes perform
equally well when Ts =2τ , and the BER curves of the optimal

3Based on [36] and [37], the correlation of phase noise can be guaranteed
when the frame length is smaller than ln(2)/(2π2 T 2

s f2
0 ), where f0 is

the corner frequency of the oscillator. Considering the oscillator of [38],
the maximum frame length satisfying the correlation of phase noise may be as
high as 3.5×106 , which is higher than NpNt+Nd . Therefore, the efficiency
of our training solution can be guaranteed.

schemes, suboptimal scheme and our proposed learning-based
scheme are indistinguishable. Upon relying on two extra
analog branches, namely the I+Q and I-Q branches, the BER
performance of the eight-sector phase based receiver [18]
improves slightly, explicitly a 0.5 dB performance gain can
be obtained at the BER level of 10−2. However, the receiver
architecture of the eight-sector phase based scheme becomes
more complex compared to the other three schemes, which
requires two extra analog adders and single-bit ADCs.

When Ts =τ , however, the performance of the four schemes
degrade significantly. This is because the adjacent symbols are
no longer independent for Ts =τ and the correlation between
the symbols cannot be ignored. As a result, the distribution
of each sampling point will be different from the estimated
distribution obtained from the training samples. Note that the
performance of the optimal scheme [17], of the suboptimal
scheme [17] and of the eight-sector phase based scheme [18]
become particularly limited for Ts =τ . By contrast, upon con-
sidering the change in distribution caused by the correlation
between symbols our learning based DFNN detection scheme
demodulates the single-bit sequence more accurately without
relying on the distribution of each sample. Specifically, at the
BER level of 10−2, our DFNN demodulation scheme offers
more than 2.5 dB Eb/N0 gain over both the optimal and the
suboptimal schemes of [17].

VI. CONCLUSION

In this paper, a deep learning-assisted demodulation scheme
has been proposed for single-bit THz QPSK receivers, which
consists of an estimator for the difference between the opti-
mal phase offset and the actual phase offset, a phase offset
compensator, two single-bit ADCs, and a deep learning based
demodulation network. Based on the deflection ratio of the
maximum-likelihood detector, which is the optimal detector
for the single-bit receiver, we have investigated the impact
of phase offset on the demodulation performance. This has
led us to develop an estimator for the phase offset difference
in order to compensate the phase offset accordingly before
sampling. A deep feedforward neural network has been pro-
posed to demodulate the phase offset compensated single-bit
sampled sequence. Moreover, a twin-phase training strategy
has been proposed for training the phase offset difference
estimator and the demodulation DFNN. The simulation results
have demonstrated that the proposed demodulation scheme
is capable of improving the BER of the THz receiver under
single-bit quantization and severe hybrid distortions.

APPENDIX A
PROOF OF (26)

Relying on the distribution of the sampling points, which
follows the Gaussian distribution due to the additive Gaussian
noise, the probability of each sampling point belonging to ±1
when the decision results of the information bits (dk1, dk0)
are (1, 1) can be expressed as

Pr(rI,n = 1|dk1 = 1, dk0 = 1) = 1 − Q
(
γ̃1,1

I,n

)
,

Pr(rI,n = −1|dk1 = 1, dk0 = 1) = Q
(
γ̃1,1

I,n

)
,

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on December 18,2021 at 10:18:24 UTC from IEEE Xplore.  Restrictions apply. 



8186 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 69, NO. 12, DECEMBER 2021

Pr(rQ,n = 1|dk1 = 1, dk0 = 1) = 1 − Q
(
γ̃1,1

Q,n

)
,

Pr(rQ,n = −1|dk1 = 1, dk0 = 1) = Q
(
γ̃1,1

Q,n

)
.

Furthermore, based on (20), the expectation of the decision
result can be calculated as

E

(
λ̃k |dk1 = 1, dk0 = 1

)
=

Ns∑
n=1

(
log
(
2 − 2Q

(
γ̃1,1

I,n

))(
1 − Q

(
γ̃1,1

I,n

))
+ log

(
2Q
(
γ̃1,1

I,n

))
Q
(
γ̃1,1

I,n

)
+ log

(
2 − 2Q

(
γ̃1,1

Q,n

))(
1 − Q

(
γ̃1,1

Q,n

))
+ log

(
2Q
(
γ̃1,1

Q,n

))
Q
(
γ̃1,1

Q,n

))
− 2Ns log (2) .

(39)

Similar, E

(
λ̃k|dk1 = 1, dk0 = 0

)
can be calculated as

E

(
λ̃k |dk1 = 1, dk0 = 0

)
=

Ns∑
n=1

(
log
(
2 − 2Q

(
γ̃1,0

I,n

))(
1 − Q

(
γ̃1,1

I,n

))
+ log

(
2Q
(
γ̃1,0

I,n

))
Q
(
γ̃1,1

I,n

)
+ log

(
2Q
(
γ̃1,1

Q,n

))(
1 − Q

(
γ̃1,1

Q,n

))
+ log

(
2Q
(
γ̃1,0

Q,n

))
Q
(
γ̃1,1

Q,n

))
− 2Ns log (2) .

(40)

Substituting (39) and (40) into (25), (26) can be obtained.
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