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Abstract— In many core problems of signal processing and
wireless communications, Karush-Kuhn-Tucker (KKT) condi-
tions based optimization plays a fundamental role. Hence we
investigate the KKT conditions in the context of optimizing
positive semidefinite matrix variables under nonconvex rank
constraints. More explicitly, based on the properties of KKT
conditions, we optimize a reconfigurable intelligent surface (RIS)
aided multi-user multi-input multi-output (MU-MIMO) network.
Specifically, we consider the capacity maximization and sum
mean square error (MSE) minimization problems of both the
RIS-aided MU-MIMO uplink (UL) and downlink (DL) under
multiple weighted power constraints and rank constraints. As for
the RIS-aided MU-MIMO UL, the optimal structures of the
signal covariance matrices are derived based on the KKT condi-
tions. Furthermore, an efficient procedure is designed for solving
the capacity maximization and sum mean square error (MSE)
minimization problems. Then the UL-DL dualities are exploited
for solving the capacity maximization and MSE minimization
problems of the RIS-aided MU-MIMO DL based on the results of
the UL optimization. Hence in the proposed framework, the phase
shifting matrix of the RIS is jointly optimized with the signal
covariance matrices for both the UL and DL. Our simulation
results demonstrate the performance advantages of the proposed
framework.

Index Terms— Duality, KKT conditions, matrix variables,
covariance optimization, RIS, MU-MIMO.

I. INTRODUCTION

MULTI-INPUT multi-output (MIMO) techniques [1], [2],
[3], [4], [5], [6] have become an integral component in
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wireless communications. Indeed, in the 4G, 5G and 6G eras
they constitute one of the most important innovations [3], [4],
[5], [6], [7], [8], [9], [10], [11], [12]. To elaborate from an
information theoretic and signal processing perspective, the
covariance matrix is the most salient statistical characteristic
of the received signal [1], [4], [7], [9]. The corresponding
covariance matrix optimization problems of MIMO com-
munications are much more challenging than that of their
single-antenna counterparts because matrix variables have to
be optimized [2], [7]. Hence these optimization problems play
a critical role [2], [4], [7]. Moreover, a covariance matrix
must be a positive semi-definite matrix, which is also subject
to certain structural constraints. This further exacerbates the
grade of challenge [13], [14], [15].

For matrix variables, generally speaking, there are four
fundamental categories of optimization frameworks. Firstly,
the Karush-Kuhn-Tucker (KKT) conditions based methods
constitute the most popular optimization framework [1], [6],
[7], [10], [13], [16], [17]. The wide adoption of KKT condi-
tions accrues from the fact that for convex optimization the
KKT conditions constitute both the necessary and sufficient
conditions for finding the optimal solutions [18]. Based on the
KKT conditions, one can readily derive the most widely used
solutions, namely the water-filling solutions [7], [13], [19],
[20], [21], [22]. This is the reason for the remarkable success
of the KKT conditions based optimization framework [7].
Secondly, the majorization theory based methods also form an
important optimization framework, which exploits the intricate
matrix inequalities associated with the diagonal elements and
the eigenvalues [23] for deriving optimal structures of the
matrix variables [2]. Thirdly, the standard optimization pro-
gramming based methods also form a widely used framework
of computing matrix variables [3], [5], [24]. Finally, the recent
matrix-monotonic optimization framework has also been found
beneficial for solving diverse optimization problems in MIMO
communications [4], [25], [26].

Naturally, there is no general-purpose mathematical tool that
can solve all the problems encountered in signal processing
and wireless communications. Different methods or designs
have different pros and cons as well as limitations. Elegant but
specific methods might have limited applicability. When the
optimization problems of MIMO systems are complicated and
nonconvex, it becomes a challenge to glean crisp insights from
the KKT conditions often relying on complicated equations
and inequalities. Moreover, for these nonconvex optimiza-
tion problems, the KKT conditions are only the necessary
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conditions for optimality. Hence many researchers believe that
the KKT conditions based methods are not particularly useful
when dealing with positive semidefinite matrix variables.
On the other hand, the majorization theory based methods
are usually limited to single-user MIMO scenarios [2]. Addi-
tionally, the majorization theory based methods have strict
limitations on the mathematical formulas of the objective
functions. Furthermore, the majorization theory based methods
are only applicable to the transceiver designs under sum power
constraints [2]. From a practical implementation perspective,
each antenna has its own power amplifier, hence the per-
antenna power constraints are more practical than the sum
power constraints [20], [21], [27], [28]. Although it was
proved in [10] that for per-antenna power constraints at high
signal-to-noise ratios (SNR) the capacity-achieving covariance
matrices also admit closed-form solutions, the majorization
theory based methods do not seem to work in this case.
By contrast, the standard optimization programming based
methods are readily applicable to diverse MIMO systems. Both
semidefinite programming (SDP), as well as second order cone
programming (SOCP) and geometric programming (GP) have
enjoyed substantial success [18]. Unfortunately, however, the
physical interpretation of the optimal solutions found by these
methods remains unclear and they also suffer from high com-
putational complexity. Recently, the matrix-monotonic frame-
work has been shown to be eminently suitable for optimizing
the matrix variables of MIMO systems, including multi-
hop amplify-and-forward MIMO scenarios [4], [25], [26].
However, the matrix-monotonic optimization framework relies
on numerous strict mathematical limitations and complicated
mathematical expressions.

A lesser-known benefit of the KKT conditions based meth-
ods is that since they are implemented based on matrix
derivatives [14], they have fewer limitations than either the
family of majorization theory based methods, or the standard
optimization programming based methods, and the matrix-
monotonic optimization methods [4], [25], [26]. As a further
compelling benefit, the KKT conditions based methods usually
result in closed-form solutions rather than relying on numerical
results. For example, the KKT conditions based methods are
more amenable to deriving closed-form solutions than standard
convex programming methods, as shown in [7]. Therefore,
the family of KKT conditions based methods deserves careful
reconsideration. In our previous work [7], it is shown that the
KKT conditions based methods are extremely useful even in
challenging optimization problems, provided that they are used
appropriately. Explicitly, upon specifically reformulating the
KKT conditions with respect to matrix variables, very useful
structures and results can be derived based on a small number
of KKT conditions. Specifically, the framework of [7] offers a
wide range of applications, including both the cases of perfect
channel state information (CSI) and imperfect CSI. Several
existing solutions are subsumed as its special cases.

However, in [7], the KKT conditions based optimization
framework is only proposed for point-to-point MIMO commu-
nications without the assistance of RISs and in the absence of
rank constraints. Hence the result of [7] is not applicable to DL

MU-MIMO communications. In this paper, we take a further
step of investigating KKT conditions based optimization in
the context of multi-user MIMO (MU-MIMO) communica-
tions under rank constraints. Specifically, in contrast to [7],
we consider the family of optimization problems involving
multiple positive semidefinite matrix variables. Moreover, the
rank constraints imposed on the signal covariance matrices
are also taken into account. In other words, the number of
data streams at each transmitter is constrained by a predefined
threshold. To the best of our knowledge, the rank constraints
have not been taken into account for KKT based methods in
the open literature [11], [28]. Furthermore, we also extend
the traditional MIMO systems to the family of reconfigurable
intelligent surface (RIS) aided MIMO communications [29],
[30], [31], [32], [33], [34], [35]. By contrast, we consider
multiple performance metrics and exploit the uplink-downlink
duality under a more general multi-user RIS-aided MIMO
scenario. This demonstrates that the family of KKT conditions
based methods is indeed applicable to sophisticated scenarios,
including RIS-aided MU-MIMO systems. Our new contribu-
tions are boldly and explicitly contrasted to the state-of-the-art
in Table I, which are further detailed as follows:
• The KKT conditions of the optimization of positive

semidefinite matrix variables are investigated. It is proved
that when rank constraints are considered, the correspond-
ing Lagrange multiplier is a Hermitian matrix instead of
the widely used positive semidefinite matrix. Moreover,
further fundamental results concerning the KKT condi-
tions are derived and based on these a diverse variety of
nonconvex rank constraints can also be considered. Under
a mild condition, the optimal structures of the matrix
variables can also be derived.

• The covariance optimization problems of diverse
MU-MIMO networks are investigated under rank con-
straints, including: 1/ the capacity maximization of the
RIS-aided MU-MIMO UL (UL) under multiple weighted
power constraints and rank constraints; 2/ the MSE min-
imization of the RIS-aided MU-MIMO UL under multi-
ple weighted power constraints and rank constraints; 3/
the capacity maximization of the RIS-aided MU-MIMO
downlink (DL) under multiple weighted power con-
straints and rank constraints, and finally; 4/ the MSE min-
imization of the RIS-aided MU-MIMO downlink under
multiple weighted power constraints and rank constraints.

• The covariance matrices and the phase shifting matrix
of the RIS are jointly optimized alternatively based on
the KKT conditions. By appropriately reformulating the
KKT conditions, the optimal structures of the covariance
matrices can be derived. The optimization of the phase
shifting matrix at the RIS can be transferred into a
quadratic optimization problem under constant modulus
constraints, which can be solved effectively based on
popular iterative algorithms, such as the majorization-
minimization (MM) framework and the alternating
direction method of multipliers (ADMM) algorithm. The
global optimality of the solution obtained by the AO
method is proved under a simplified scenario.
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TABLE I
BOLDLY AND EXPLICITLY CONTRASTING OUR CONTRIBUTIONS TO THE STATE-OF-THE-ART IN MIMO SYSTEM OPTIMIZATION

• The corresponding covariance matrices are optimized for
the MU-MIMO DL by exploiting the uplink-downlink
duality. Based on the capacity or MSE dualities,
the DL optimization problems of RIS-aided MIMO
systems under multiple weighted power constraints
are transformed into the corresponding virtual UL
optimization problems. Then, the optimal solutions
can be derived based on KKT conditions. A modified
weighted mean square error minimization (WMMSE)
algorithm is also devised as an alternative to our
duality based design constructed for DL optimization
problems.

• The simulation results show that the proposed optimiza-
tion framework achieves the same or better performance
as the traditional numerical optimization algorithms
and the modified WMMSE algorithm, while offering
clearer physical insights at a reduced computational
complexity.

The rest of the paper is organized as follows. Section II
presents our fundamental results for the KKT condi-
tions associated with positive semidefinite matrix variables.
In Section III, the capacity maximization of the RIS-aided
MU-MIMO UL is investigated under multiple weighted power
constraints, while Section IV discusses the MSE minimization
of the RIS-aided MU-MIMO UL under multiple weighted
power constraints. In Section V, the capacity maximization
of the RIS-aided MU-MIMO DL is considered under multiple
weighted power constraints, and Section VI investigates the
MSE minimization of the RIS-aided MU-MIMO DL under
multiple weighted power constraints. Our numerical results
are discussed in Section VII, and our conclusions are offered
in Section VIII.

II. PRELIMINARY RESULTS ON KKT CONDITIONS

In this section, some fundamental results on the KKT
conditions are firstly derived, which then form the theoretical
basis of the ensuing transceiver optimization. Viewing the
covariance matrices as optimization variables has a pair of
advantages. Firstly, the order of the associated function is
reduced, for example second-order terms become first-order
terms. Secondly, the hidden convexity is revealed. However,
there is also an intrinsic disadvantage. Specifically, rank
constraints are nonconvex in nature, which limits the appli-
cations of covariance-based optimization. Later an efficient
algorithm is conceived for demonstrating, how to overcome
this impediment.

A. Lagrange Multipliers for Positive Semidefinite
Matrix Variables

Let us consider a general optimization problem associated
with a positive semidefinite matrix variable Q ∈ CM×M ,
formulated as follows

P. 1 : min
Q

f(Q) s.t. gl(Q) ≤ 0, 1 ≤ l ≤ L, Q ⪰ 0, (1)

where f(·) and gl(·)s are all real-valued functions. In order
to reformulate the positive semidefinite constraint, P. 1 is
equivalent to the following optimization problem

P. 2 : min
Q

f(Q),

s.t. gl(Q) ≤ 0, 1 ≤ l ≤ L, λm(Q)≥0, 1 ≤ m≤M,

(2)

where λm(Q) is the mth largest eigenvalue of Q. The corre-
sponding Lagrangian function [18] of P. 2 is :

L
(
Q, {µl}L

l=1, {ωm}M
m=1

)
= f(Q) +

∑L

l=1
µlgl(Q)−

∑M

m=1
ωmλm(Q), (3)

where the nonnegative real scalars µl and ωm are the Lagrange
multipliers corresponding to the constraints in P. 2. Note that
it is very difficult to derive KKT conditions based on (3).
This is because the derivative of the mth largest eigenvalue
λm(Q) with respect to Q is very difficult to be expressed in
a closed-form. To overcome this difficulty, we show that the
term

∑M
m=1ωmλm(Q) is equivalent to the following simple

matrix function∑M

m=1
ωmλm(Q) = Tr(ΨQ), (4)

where Ψ ∈ CM×M satisfies[
UH

QΨUQ

]
m,m

= ωm, 1 ≤ m ≤M, (5)

in which the unitary matrix UQ is defined based on the
eigenvalue decomposition (EVD):

Q = UQΛQUH
Q, with ΛQ ↘ . (6)

where ↘ means that the diagonal elements of a matrix are
in descending order. Since the Lagrange multipliers ωm are
always nonnegative and independent of the unitary matrix UQ,
it can then be concluded from (5) that Ψ must be positive
semidefinite. This property is widely exploited to derive the
optimal structures of the matrix variables.
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Moreover, in the corresponding KKT conditions of P. 2,
we always have

∑M
m=1ωmλm(Q) = 0, and therefore together

with (4) the following equality always holds as well

Tr(ΨQ) = 0. (7)

This equality has two-fold meanings as elaborated below.
Property 1: The positive semidefinite matrices Ψ and Q

have the same EVD unitary matrix. In other words, there exists
a unitary matrix U such that the following equalities hold

UHQU = ΛQ, UHΨU = ΛΨ, (8)

where ΛQ and ΛΨ are diagonal matrices, but there is no
ordering of their diagonal elements.

Property 2: Based on (8), if λm(Q) ̸= 0, the corresponding
diagonal element of ΛΨ also equals to zero, i.e., λm(Ψ) = 0.

When the rank constraint on a positive semidefinite Q is
considered, i.e., Rank{Q} ≤ NC, the constraint can be written
in the following form

λm(Q) ≥ 0, 1 ≤ m ≤ NNC and λm(Q) = 0,m > NNC ,

(9)

and the corresponding Lagrange multipliers {λm(Ψ),m >
NNC} can have any value.

Based on (9) and (5), the corresponding Lagrange multiplier
Ψ satisfies

QΨ = 0, (10)

where Ψ is a Hermitian matrix instead of a positive semidef-
inite matrix and the resultant KKT conditions are only neces-
sary conditions for optimality. Observe that without ordering
diagonal elements, we arrive at a Hermitian Ψ rather than a
positive semidefinite one.

B. Derivation of KKT Conditions Based Optimal Solution

Again, for convex optimization, the KKT conditions con-
stitute necessary and sufficient conditions for finding the
optimal solutions. Therefore, to solve a convex optimization
problem, such as the capacity maximization for point-to-point
MIMO communications, we only need to find the solutions
satisfying the KKT conditions, which are guaranteed to be
the optimal solutions. However, for a generic optimization
problem when Slater’s condition [18] is satisfied, the KKT
conditions are only necessary conditions for optimal solutions.
In this paper, we focus on optimization problems associated
with semidefinite matrix variables. It is worth noting that even
for nonconvex optimization, the KKT conditions are still very
useful. For nonconvex optimization problems, there are usually
two kinds of logic to derive the optimal solutions. The first one
is to prove that all the solutions satisfying the KKT conditions
have the same structure. The other logic is to reveal the hidden
convexity, and then try to find the solutions satisfying the
corresponding KKT conditions. The conclusion given below
forms the basis for the following mathematical derivations.

Conclusion 1: In the following two equalities{
HH

(
I + HQHH

)−1
Σ
(
I + HQHH

)−1
H = µΦ−Ψ,

QΨ = 0,
(11)

Φ is a positive definite matrix, Ψ is a Hermitian matrix, and
both Σ and Φ can be functions of Q, while the parameter
µ is an arbitrary nonnegative scalar. When Σ and HQHH

have the same EVD unitary matrix, i.e., there exists a unitary
matrix UΣ such that

UH
ΣΣUΣ = ΛΣ with ΛΣ ↘ and

UH
ΣHQHHUΣ = Λ with Λ ↘, (12)

it can be concluded that Q satisfies the following structure

Q = Φ− 1
2 V HΛQV H

HΦ− 1
2 , (13)

in which ΛQ is a diagonal matrix and the unitary matrix V H
is defined based on the following singular value decomposition
(SVD)

HΦ− 1
2 = UHΛHV H

H with ΛH ↘ . (14)

Proof: Note that Φ is positive definite. By defining

Q̃ = Φ
1
2 QΦ

1
2 , (15)

the two equalities in (11) are equivalent to
Φ− 1

2 HH
(
I + HΦ− 1

2 Q̃Φ− 1
2 HH

)−1
Σ(I

+HΦ− 1
2 Q̃Φ− 1

2 HH
)−1

HΦ− 1
2 = µI −Φ− 1

2 ΨΦ− 1
2 ,

Q̃Φ− 1
2 ΨΦ− 1

2 = 0.
(16)

Left multiplying Q̃
1
2 and right multiplying Q̃

1
2 on the first

equality in (16), we have

Q̃
1
2 Φ− 1

2 HH
(
I + HΦ− 1

2 Q̃Φ− 1
2 HH

)−1
Σ(I

+ HΦ− 1
2 Q̃Φ− 1

2 HH
)−1

HΦ− 1
2 Q̃

1
2 = µQ̃. (17)

Based on (17) it can be concluded that the following equality
holds

HΦ− 1
2 Q̃

1
2 = UΣΛAUH

Q̃
, (18)

where ΛA is a diagonal matrix and the unitary matrix U Q̃ is
defined as follows

Q̃ = Φ
1
2 QΦ

1
2 = U Q̃ΛQ̃UH

Q̃
. (19)

The equation (18) can be rewritten as

HΦ− 1
2 Q̃

1
2 = HΦ− 1

2 U Q̃Λ
1
2

Q̃
UH

Q̃
= UΣΛAUH

Q̃
(20)

based on which we have

UH
ΣHΦ− 1

2 U Q̃Λ
1
2

Q̃
= ΛA. (21)

(i) ΛQ̃ is a full-rank diagonal matrix: From (21), it is readily
concluded that UH

ΣHΦ− 1
2 U Q̃ is a diagonal matrix. This

together with the definition of Q̃ directly leads to (13).
(ii) ΛQ̃ is a general diagonal matrix with some diagonal
elements being zeros: Based on (21) it can still be concluded
that the columns of U Q̃ corresponding to the nonzero values
of ΛQ̃ are the eigenvectors of the right SVD unitary matrix of
HΦ− 1

2 . As there are no constraints on the other eigenvectors
corresponding to the zero diagonal elements of ΛQ̃, (13) is
still applicable in this case.
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Fig. 1. (a) The single-cell RIS-aided uplink MU-MIMO system; (b) Simu-
lation setup of the RIS-aided MU-MIMO system.

Remark 1: We would like to point out that for
Conclusion 1 when Σ = I + HQHH, the conclusion
reduces to the optimization of capacity maximization. On the
other hand, when Σ = I , the conclusion reduces to the
optimization of MSE minimization.

Conclusion 2: Assume that there is a rank constraint on the
positive semidefinite matrix Q, i.e., Rank{Q} ≤ NC, and the
objective function is monotonically decreasing with respect to
λ(HQHH), where λ(HQHH) denotes the vector consisting
of the eigenvalues of HQHH. The optimal Q satisfying (11)
processes the following diagonalizable structure

Q = Φ− 1
2 [V H]:,1:NCΛ̃Q

(
[V H]:,1:NC

)H
Φ− 1

2 , (22)

where Λ̃Q is an NC × NC diagonal matrix, while [V ]:,1:NC

denotes the sub-matrix consisting of the first NC columns
of V .

Based on Conclusion 1 and the fact that the rank constraint
does not change the KKT conditions, when Rank{Q} ≤ NC,
there are multiple Q satisfying (13). When the objective func-
tion is monotonically decreasing with respect to λ(HQHH),
it is obvious that the first NC largest eigenchannels should be
chosen.

III. CAPACITY MAXIMIZATION OF THE MU-MIMO UL

This section investigates the capacity maximization of our
RIS-aided MU-MIMO UL system seen in Fig. 1(a). For
RIS-aided MU-MIMO uplink, the signal model is given by

y =
∑K

k=1

(
HSD,k + HRDΘHSR,k

)
sk + n. (23)

In (23), y is the received signal vector at the BS, and HSD,k ∈
CNt×Ik is the direct channel matrix between the BS and the
kth mobile user, while HRD and HSR,k are the channel
matrices between the BS and the RIS and between the RIS
and the kth mobile terminal, respectively. Furthermore, the
diagonal matrix Θ represents the phase shifting matrix at
the RIS, the vector sk is the signal vector transmitted from
the kth user with covariance matrix E{sksH

k } = QU,k, and n
is the additive white Gaussian noise vector at the BS, whose
covariance matrix is E{nnH} = Rn.

Based on the signal model (23), the optimization problem
of capacity maximization is formulated as

P. 3 :


max

{QU,k},Θ
log det

(
I +

∑K
k=1HkQU,kHH

k R−1
n

)
,

s.t.Hk = HSD,k + HRDΘHSR,k,

Tr(Ωk,iQU,k)≤Pk,i,1 ≤ i ≤ Ik, 1 ≤ k ≤ K,

QU,k⪰0, Rank(QU,k) ≤ NC,k, 1 ≤ k ≤ K,

(24)

where the positive semidefinite matrices Ωk,i are the weighting
matrices in the multiple linear power constraints at the kth
mobile user or terminal [7], [11], [20], and Pk,i are the corre-
sponding power limits. In P. 3 there are two kinds of optimiza-
tion variables to solve, i.e., {QU,k} and Θ. The phase shifting
matrix Θ is a diagonal matrix and each diagonal element of
Θ has a constant modulus. The full KKT conditions [18]
of P. 3 with respect to QU,k are given by (25), as shown
at the bottom of the next page, where the Hermitian matrix
Ψk is the Lagrangian multiplier corresponding to the positive
semidefinite constraint QU,k ⪰ 0 with Rank(QU,k) ≤ NC,k.

A. Optimization of QU,k

First introduce the scalars µk and define

µ̃k,i = µk,i/µk, ∀k, i. (26)

Then based on Conclusion 2, the optimal transmission
covariance matrices for P. 3 have the water-filling structure
(27), as shown at the bottom of the next page, where (x)+ ≜
max(x, 0) and the positive definite matrix Ω̃k is defined as

Ω̃k =
∑Ik

i=1 µ̃k,iΩk,i, (28)

and the unitary matrix VHk
is defined by the following SVD

Π− 1
2

k HkΩ̃
− 1

2
k = UHk

ΛHk
V H

Hk
with ΛHk

↘, (29)

in which positive definite matrix Πk is defined as

Πk = Rn +
∑

j ̸=k HjQU,jH
H
j . (30)

Computation of µk and µ̃k,i, ∀k, i: The scalars µk can be
computed based on the following equality

Tr
(∑Ik

i=1
µ̃k,iΩk,iQU,k

)
=
∑Ik

i=1 Pk,i = Pk, 1 ≤ k ≤ K.

(31)

Hence the computation of µk is a standard water-level com-
putation for iterative water-filling solution. In addition, µ̃k,i

can be effectively computed using a modified subgradient
algorithm shown in Algorithm 1 [7].
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Algorithm 1 The Modified Subgradient Method [7]

Initialize: Initialize the dual variables µ
(0)
k,i , ∀k, i; iteration

index t = 0; maximum iteration number Tmax; positive
scalars a, b, c for step size; sufficiently small threshold
ϵ>0.

1: repeat
2: Calculate Pk =

∑Ik

l=1 Pk,l, and

µ̃
(t)
k,i = µ

(t)
k,iPk

/(∑Ik

l=1 µ
(t)
k,lPk,l

)
, 1 ≤ i ≤ Ik.

3: Given Ω̃
(t)

k =
∑Ik

i=1 µ̃
(t)
k,iΩk,i, solve optimization

problem P. 3 to obtain Q
(t)
U,k using (27).

4: Set the step size a
(t)
i = a

b·t+c , 1 ≤ i ≤ Ik, where
a, b, c>0.

5: Update µ(t+1)
k,i =

[
µ

(t)
k,i+a

(t)
i

(
Tr
(
Ωk,iQ

(t)
U,k

)
−Pk,i

)]+
,

1 ≤ i ≤ Ik.
6: Update t = t+ 1.
7: until

∣∣∣µ(t)
k,i

(
Tr
(
Ωk,iQ

(t)
U,k

)
− Pk,i

)∣∣∣≤ϵ, ∀i, or t=Tmax.

8: return The optimal Q⋆
U,k = Q

(t)
U,k to the optimization

problem for user k.

B. Optimization of RIS Diagonal Matrix Θ

Based on the definition of Hk in P. 3, it is obvious that
Hk is a function of the phase shifting matrix Θ, which can
be written in the following form

Hk=HSD,k+HRDΘHSR,k =HSD,k+
∑M

m=1
θmHk,m.

(32)

The objective function of the optimization problem P. 3 can
be rewritten as (33), shown at the bottom of the page, which
can be maximized via optimizing the phase shifting matrix
Θ element by element, and at each iteration a closed-form
optimal solution can be derived [30]. In order to reduce the
computational complexity, the objective function (33) can be
approximated leading to the following optimization P. 4:

P. 4 : min
W ,G,Θ

Tr
(
W
(
(GHV − I)(GHV − I)H + GGH

))
− log det(W ) + c, (34)

where c is a constant independent of the optimization vari-
ables, and HV can be understood as a virtual channel matrix,
which is defined as

HV =
[(

R
− 1

2
n H1Q

1
2
U,1

)∗
· · ·

(
R
− 1

2
n HKQ

1
2
U,K

)∗]T
.

(35)

Note that in each iteration the optimal G is derived in the
following closed-form

G = (HH
VHV + I)−1HH

V. (36)

It is worth noting that the matrix inversion operation is only
performed on a very low-dimensional matrix. Also in each
iteration, W equals

W−1 = (GHV − I)(GHV − I)H + GGH. (37)

Based on (36), the complexity of computing W is also low
as GGH is a low dimension matrix. In each iteration, the
optimization of Θ is formulated as the following optimization
problem

P. 5 : min
Θ

Tr
(
HH

VGHWGHV

)
− 2ℜ{Tr(WGHV)}.

(38)

Based on the definition of HV given in (35) and defining[
W

1
2 G
]
k

=
[
W

1
2 G
]
:,NR(k−1)+1:NRk

, (39)

we have (40), as shown at the bottom of the next page, based
on which the optimization problem (38) is further transferred
into the following compact form

P. 6 : min
θ

θHAθ − 2ℜ{θHb}, (41)

in which the matrix A and the vector b are defined respectively
as (42) and (43), shown at the bottom of the next page.
The optimization problem (41) can be solved using existing
iterative algorithms, such as the MM algorithm [36], [37], [38]
and the ADMM algorithm [39].


HH

k

(
Rn+

∑
j ̸=k HjQU,jH

H
j +HkQU,kHH

k

)−1

Hk =
∑Ik

i=1µk,iΩk,i−Ψk,1 ≤ k ≤ K,

µk,i ≥ 0, µk,i(Tr(Ωk,iQU,k)− Pk,i) = 0,Tr(Ωk,iQU,k) ≤ Pk,i, 1 ≤ i ≤ Ik,
QU,kΨk = 0, QU,k ⪰ 0, 1 ≤ k ≤ K,

(25)

QU,k = Ω̃
− 1

2
k

[
V Hk

]
:,1:NC,k

(
µ−1

k I −
[
ΛHk

]−2

1:NC,k,1:NC,k

)+ [
V Hk

]H
:,1:NC,k

Ω̃
− 1

2
k , 1 ≤ k ≤ K, (27)

log det

(
I+

K∑
k=1

HkQU,kHH
k R−1

n

)

= log det

(
I+

(
K∑

k=1

R
− 1

2
n

(
HSD,k+HRDΘHSR,k

)
QU,k

(
HSD,k+HRDΘHSR,k

)H
R
− 1

2
n

))
, (33)
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C. Discussions
In this part, we discuss both the efficiency and convergence

of this alternative optimization (AO) method. It is indeed
difficult to find a globally optimal solution for MU-MIMO
communications via the AO method. Instead, a simplified
but meaningful SU-MIMO scenario associated with rank-1
LoS channels is considered, where the global optimality of
the solutions obtained from our AO method can be proved.
We consider the UL capacity maximization problem as an
example, see Lemma 1. In each step, one of the two block
variables, e.g. {QU,k}, is optimized with the other one fixed
and they are not coupled in the constraints. The popular MM
algorithm is used for RIS phase shift matrix optimization by
successively minimizing a sequence of surrogate functions.
Because the function’s value is non-decreasing during itera-
tions and the capacity is upper-bounded by a finite number,
the convergence of the AO method is guaranteed. Furthermore,
since the optimal {QU,k} and a stationary solution to Θ are
derived in each iteration, the AO method converges to a set of
locally optimal points.

Lemma 1: For the UL SU-MIMO scenario associated
with the rank-1 LoS channels for the BS-RIS as well as
RIS-User links and no direct BS-User link - which implies
that K = 1 and HRD = αB(vb)αH

P(ψb, θb), HSR =
αP(ψu, θu)αH

U(vu) - the AO method used in this paper can
indeed find the globally optimal solution {{Q̃

′
},Θ′} of the

UL capacity maximization problem (24).
Proof: Please refer to Appendix B for proof and notations.

Note that this lemma can also be applied to the other
three problems under the same SU-MIMO scenario. The
convergence of the AO method is guaranteed for MU-MIMO
systems.

IV. MSE MINIMIZATION OF THE MU-MIMO UL
Based on the signal model (23), the sum-MSE minimization

in RIS-aided MU-MIMO UL can be formulated as follows

P. 7 :


min

{QU,k},Θ
Tr
((

I+
∑K

k=1R
− 1

2
n HkQU,kHH

k R
− 1

2
n

)−1
)
,

s.t.Hk = HSD,k + HRDΘHSR,k,

Tr(Ωk,iQU,k)≤Pk,i, 1≤ i≤Ik, 1≤k≤K,
QU,k⪰0, Rank(QU,k)≤NC,k, 1≤k ≤ K.

(44)

In the following, P. 7 is solved in an iterative manner.
Specifically, the iterative procedure consists of two phases.
In the first phase, Θ is fixed, and QU,k are optimized
iteratively. In the second phase, QU,k are fixed, and Θ is
optimized. It is obvious that without the rank constraints
Rank(QU,k) ≤ NC,k, P. 7 is a convex optimization problem
with respect to QU,k, which can be solved by using standard
optimization software toolboxes, such as CVX [40]. In this
work, in order to avoid high computational complexity, the
objective function is replaced by its lower bound and thus
we aim at solving the following approximated optimization
problem

P. 8 :

min
{QU,k},
{Uk},Θ

Tr
((

I+
∑K

k=1UkR
− 1

2
n HkQU,kHH

k R
− 1

2
n UH

k

)−1
)
,

s.t.Hk =HSD,k+HRDΘHSR,k,Uk =Σ̃
1
2
k ΠkΣ

− 1
2

k ,

Tr(Ωk,iQU,k)≤Pk,i, 1≤ i≤Ik, 1≤k≤K,
QU,k⪰0, Rank(QU,k)≤NC,k, 1≤k≤K,

(45)

where Πk is a unitary matrix, the matrices Σ̃k and Σk are
defined respectively by

Σ̃k = I +
∑

j ̸=k
U jR

− 1
2

n HjQU,jH
H
j R

− 1
2

n UH
j , (46)

Σk = I +
∑

j ̸=k
R
− 1

2
n HjQU,jH

H
j R

− 1
2

n . (47)

With fixed {Uk} and Θ, the corresponding KKT conditions
of P. 8 with respect to QU,k are given by (48), as shown at
the bottom of page 9. Based the first KKT condition in (48),
the optimization problem P. 8 is equivalent to the following
problem

P. 9 :

min
{QU,k},
{Uk},Θ

Tr
((

I+
∑K

k=1UkR
− 1

2
n HkQU,kHH

k R
− 1

2
n UH

k

)−1
)
,

s.t.Hk =HSD,k+HRDΘHSR,k, Uk =Σ̃
1
2
k ΠkΣ

− 1
2

k ,

Tr(Ω̃kQU,k) ≤ Pk, 1 ≤ k ≤ K,

QU,k ⪰ 0, Rank(QU,k) ≤ NC,k, 1 ≤ k ≤ K,

(49)

W
1
2 GHV =

K∑
k=1

[
W

1
2 G
]
k

(
R
− 1

2
n HkQ

1
2
U,k

)H

=
K∑

k=1

[
W

1
2 G
]
k

(
R
− 1

2
n HD,kQ

1
2
U,k

)H

+
M∑

m=1

θ∗m

K∑
k=1

[
W

1
2 G
]
k

(
R
− 1

2
n Hk,mQ

1
2
U,k

)H

, (40)

[A]m,n = Tr

K∑
k=1

[
W

1
2 G
]
k

(
R
− 1

2
n Hk,mQ

1
2
U,k

)H
(

K∑
k=1

[
W

1
2 G
]
k

(
R
− 1

2
n Hk,nQ

1
2
U,k

)H
)H
, (42)

[b]m = Tr

 K∑
k=1

[
W

1
2 G
]
k

(
R
− 1

2
n Hk,mQ

1
2
U,k

)H
(

W
1
2−

K∑
k=1

[
W

1
2 G
]
k

(
R
− 1

2
n HD,kQ

1
2
U,k

)H
)H
 . (43)

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on May 18,2023 at 17:30:14 UTC from IEEE Xplore.  Restrictions apply. 



XING et al.: KKT CONDITIONS BASED TRANSCEIVER OPTIMIZATION FRAMEWORK 2609

where the positive definite matrix Ω̃k is defined as

Ω̃k =
∑I

i=1µ̃iΩk,i, (50)

and µ̃i are given in (26) which can be computed by
Algorithm 1. In the following, P. 9 is optimized in an alter-
nating manner among {QU,k}, {Uk}, and Θ.

A. Optimization of QU,k

First define

Q̃U,k = Ω̃
1
2
k QU,kΩ̃

1
2
k . (51)

In the kth iteration with fixed {U j} and QU,j for j ̸= k,
the optimization problem P. 9 becomes P. 10 at the top of this
page. For P. 10, the optimal unitary matrix Πk is given by

Πk = UΣk
UH

Hk
, (53)

where the unitary matrices UΣk
and UHk

are defined respec-
tively based on the following EVD and SVD

Σ̃
−1

k = UΣk
Λ−1

Σk
UH

Σk
, with Λ−1

Σk
↘,

(54)

Σ− 1
2

k R
− 1

2
n HkΩ̃

− 1
2

k = UHk
ΛHk

V H
Hk
, with ΛHk

↘ .

(55)

Based on (53), the first KKT condition in (48) can be rewritten
into the formula (56), as shown at the bottom of the next page.
Then according to Conclusion 2, the optimal Q̃k satisfies the
following structure

Q̃k = Ω̃
1
2
k [V Hk

]:,1:NC,kΛ̃Qk
[V Hk

]H:,1:NC,k
Ω̃
− 1

2
k . (57)

Based on (57), P. 10 can be rewritten as

P. 11 :

min
Λ̃Qk

Tr
(
Λ−1

Σk

(
I + ΛHk

Λ̃Qk
ΛT

Hk

)−1
)
,

s.t. Tr(Λ̃Qk
) ≤ Pk.

(58)

The optimal solution of P. 11 is derived to be the following
water-filling solution

[Λ̃Qk
]n,n =

(√
1

µ[ΛHk
ΛT

Hk
]n,n[ΛΣk

]n,n
− 1

[ΛHk
ΛT

Hk
]n,n

)+

,

1 ≤ n ≤ NC,k. (59)

where µ is the Lagrange multiplier corresponding to the power
constraint in P. 9.

B. Optimization of Θ

With all the QU,k fixed, the phase shifting matrix Θ at
the RIS is optimized. The objective function of P. 7 can
be reformulated as (60), shown at the bottom of the next
page which can be minimized via optimizing Θ element-by-
element and at each iteration there are closed-form optimal
solutions. In order to reduce the computational complexity,
P 7 is equivalent to the following optimization problem

P. 12 : min
G,Θ

Tr
((

(GHV − I)(GHV − I)H + GGH
))
,

(61)

which can be solved in an iterating manner based on (36)
and (38).

V. CAPACITY MAXIMIZATION OF THE MU-MIMO DL

In RIS-aided MU-MIMO downlink, the BS transmits the
user-related information to all the K users. Under mul-
tiple weighted power constraints and with perfect CSI,
the optimization problem of the transmission covariance
matrices for the sum-capacity maximization is formulated
as

P. 13 :



max
{QD,k},Θ

∑K
k=1 log

∣∣∣I + Σ−1
D,kHkQD,kHH

k

∣∣∣ ,
s.t. Hk = HSD,k + HRD,kΘHSR,

ΣD,k = RD,nk
+Hk

∑
j<kQD,jH

H
k ,

Tr
(
ΩD,i

∑K
k=1QD,k

)
≤ Pi, 1 ≤ i ≤ I,

QD,k⪰0, Rank(QD,k)≤NC,k, 1≤k≤K,
(62)

where ΩD,i is the ith constraint’s weighting matrix and Pi

is the corresponding power limit. In addition, RD,nk
is the

noise covariance matrix at the kth user, and the matrix HSD,k

denotes the channel matrix between the BS and the kth user,
while HRD,k is the channel matrix from the RIS to the kth
user and HSR is the channel matrix from the BS to the RIS.
Dirty paper coding is used at the BS.

Based on the KKT conditions with respect to QD,k with Θ
fixed, the optimization problem P. 13 is equivalent to

P. 14 :



max
{QD,k},Θ

∑K
k=1 log

∣∣∣I + Σ−1
D,kHkQD,kH

H
k

∣∣∣ ,
s.t. Hk = HSD,k + HRD,kΘHSR,

ΣD,k = RD,nk
+Hk

∑
j<kQD,jH

H
k ,

Tr
(
Ω̃D

∑K
k=1QD,k

)
≤ P,

QD,k⪰0, Rank(QD,k)≤NC,k, 1≤k≤K,
(63)

where P is the sum-antenna power of the BS and the positive
definite matrix Ω̃D is defined as

Ω̃D =
∑I

i=1
µ̃iΩD,i. (64)

Defining the following auxiliary variables

Q̃D,k = Ω̃
1
2
DQD,kΩ̃

1
2
D, HD,k = R

− 1
2

D,nk
HkΩ̃

− 1
2

D , (65)

the optimization problem P. 14 is further equivalent to

P. 15 :



max
{Q̃D,k},Θ

∑K
k=1 log

∣∣∣∣I+Σ̃
− 1

2
D,kHD,kQ̃D,kHH

D,kΣ̃
− 1

2
D,k

∣∣∣∣ ,
s.t. HD,k =R

− 1
2

D,nk
(HSD,k+HRD,kΘHSR)Ω̃

− 1
2

D ,

Σ̃D,k = I+HD,k

∑
j<kQ̃D,jH

H
D,k,

Tr
(∑K

k=1Q̃D,k

)
≤ P,

Q̃D,k⪰0, Rank(Q̃D,k)≤NC,k, 1≤k≤K.
(66)

Given the complex mathematical formulation of Σ̃D,k in
P. 15, it remains an open challenge to solve P. 15 directly.
Instead, some mathematical transformations may be invoked
by exploiting the uplink-downlink duality. Specifically, for an
arbitrary positive definite matrix Σ̃U,k, the objective function
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of P. 15 can be rewritten in the form [41] as (67), shown at
the bottom of the next page, where the unitary matrices UD,k

and V D,k are defined based on the following SVD

Σ̃
− 1

2
D,kHD,kΣ̃

− 1
2

U,k = UD,kΛD,kV H
D,k, with ΛD,k ↘ . (68)

Based on (67) and defining the auxiliary matrix variables of
(69) and (70), as shown at the bottom of the next page, the
objective function of P. 15 is equivalent to∑K

k=1
log
∣∣∣∣I + Σ̃

− 1
2

D,kHD,kQ̃D,kHH
D,kΣ̃

− 1
2

D,k

∣∣∣∣
=
∑K

k=1
log
∣∣∣∣I + Σ̃

− 1
2

U,kHU,kQ̃U,kHH
U,kΣ̃

− 1
2

U,k

∣∣∣∣ . (71)

It is worth noting that the equality in (71) holds for arbitrary
positive matrix Σ̃U,k. When

Σ̃U,k = I +
∑

j>k HU,jQ̃U,jH
H
U,j , (72)

and together with (71), the objective function of P. 15 is finally
equivalent to∑K

k=1
log
∣∣∣∣I + Σ̃

− 1
2

D,kHD,kQ̃D,kHH
D,kΣ̃

− 1
2

D,k

∣∣∣∣
=
∑K

k=1
log
∣∣∣∣I + Σ̃

− 1
2

U,kHU,kQ̃U,kHH
U,kΣ̃

− 1
2

U,k

∣∣∣∣
= log

∣∣∣∣I +
∑K

k=1
HU,kQ̃U,kHH

U,k

∣∣∣∣ . (73)

On the other hand, based on the definition of Q̃U,k in (69),
we have

Q̃D,k = Σ̃
− 1

2
U,k[V D,k]:,1:NR

UH
D,kΣ̃

1
2
D,kQ̃U,kΣ̃

1
2
D,k

UD,k[V D,k]H:,1:NR
Σ̃
− 1

2
U,k. (74)

Substituting (74) into the power constraint in P. 15, we have

Tr
(∑K

k=1
Q̃D,k

)
= Tr

(∑K

k=1
Q̃U,k

)
≤ P. (75)

Based on (73) and (75), the optimization problem P. 15 is
equivalent to the following optimization

P. 16 :



max
{QU,k},Θ

log
∣∣∣I +

∑K
k=1 HU,kQ̃U,kHH

U,k

∣∣∣ ,
s.t.HH

U,k =R
− 1

2
D,nk

(HSD,k+HRD,kΘHSR)Ω̃
− 1

2
D ,

Tr
(∑K

k=1Q̃U,k

)
≤ P,

Q̃U,k⪰0, Rank(Q̃U,k)≤NC,k, 1≤k≤K.
(76)

It is obvious that the optimization problem P. 16 can be solved
effectively [9]. After solving P. 16, the key task is to how to
derive the optimal {QD,k} from the optimal {QU,k} obtained.
Based on the definitions of Σ̃D,k in P. 15 and Σ̃U,k in (72)
together with (68), QD,k can be computed from k = 1 to
k = K in a recursion manner [41].

VI. MSE MINIMIZATION OF THE MU-MIMO DL
In this section, the covariance matrix optimization of MSE

minimization for RIS-aided MU-MIMO DL communications
is investigated. This optimization problem is defined by

P. 17 :



min
{QD,k},Θ

∑K
k=1 Tr

((
I+HkQD,kHH

k Σ−1
D,k

)−1
)
,

s.t. Hk = HSD,k + HRD,kΘHSR,

ΣD,k = Rnk
+ Hk

∑
j ̸=k QD,jH

H
k ,

Tr
(
ΩD,i

∑K
k=1QD,k

)
≤ Pi, 1 ≤ i ≤ I,

QD,k⪰0, Rank(QD,k)≤NC,k, 1≤k≤K.
(77)


HH

k R
− 1

2
n UH

k

(
I+
∑

j ̸=kU jR
− 1

2
n HjQU,jH

H
j R

− 1
2

n UH
j +UkR

− 1
2

n HkQU,kHH
k R

− 1
2

n UH
k

)−2

×UkR
− 1

2
n Hk =

∑Ik

i=1 µk,iΩk,i −Ψk, 1 ≤ k ≤ K,
µk,i ≥ 0, µk,i(Tr(Ωk,iQU,k)− Pk,i) = 0,Tr(Ωk,iQU,k) ≤ Pk,i, 1 ≤ i ≤ Ik,
QU,kΨk = 0, QU,k ⪰ 0, 1 ≤ k ≤ K.

(48)

P. 10 :


min

QU,k,Πk

Tr

(
Σ̃
−1

k

(
I + ΠkΣ

− 1
2

k R
− 1

2
n HkΩ̃

− 1
2

k Q̃U,kΩ̃
− 1

2
k HH

k R
− 1

2
n Σ− 1

2
k ΠH

k

)−1
)
,

s.t. Hk = HSD,k + HRDΘHSR,k,

Tr(Q̃U,k) ≤ Pk,Rank(Q̃U,k) ≤ NC,k, 1 ≤ k ≤ K.

(52)

HH
k R

− 1
2

n Σ− 1
2

k ΠH
(
I + ΠkΣ

− 1
2

k R
− 1

2
n HkQU,kHH

k R
− 1

2
n Σ− 1

2
k ΠH

k

)−1

Σ̃
−1

k

×
(
I+ΠkΣ

− 1
2

k R
− 1

2
n HkQU,kHH

k R
− 1

2
n Σ− 1

2
k ΠH

k

)−1

ΠΣ− 1
2

k R
− 1

2
n Hk =

∑Ik

i=1
µk,iΩk,i−Ψk. (56)

Tr

((
I +

∑K

k=1
R
− 1

2
n HkQU,kHH

k R
− 1

2
n

)−1
)

= Tr

(I +
K∑

k=1

R
− 1

2
n

(
HSD,k+HRDΘHSR,k

)
QU,k

(
HD,k+HRDΘHSR,k

)H
R
− 1

2
n

)−1
, (60)
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Based on the KKT conditions with respect to QD,k, P. 17
is equivalent to

P. 18 :

min
{Q̃D,k},Θ

∑K
k=1Tr

((
IBk+Σ̃

− 1
2

D,kHD,kQ̃D,kHH
D,kΣ̃

− 1
2

D,k

)−1
)
,

s.t. HD,k =R
− 1

2
nk (HSD,k+HRD,kΘHSR)Ω̃

− 1
2

D ,

Σ̃D,k = I + HD,k

∑
j ̸=k Q̃D,jH

H
D,k,

Tr
(∑K

k=1Q̃D,k

)
≤ P,

Q̃D,k⪰0, Rank(Q̃D,k)≤NC,k, 1≤k≤K.

(78)

It is challenging to directly derive optimal solutions in
closed-form for the optimization problem (77) or (78). There-
fore, P. 18 is first transferred into a virtual UL optimization
problem. By defining

Q̃D,k = P D,kP H
D,k, (79)

where P D,k is an NT × NC,k matrix, the objective function
in P. 17 equals (80), as shown at the bottom of the page, with

GD,k = P H
D,kHH

D,k

(
I + HD,k

∑
j P D,jP

H
D,jH

H
D,k

)−1

.
Introducing the following new auxiliary variables

HU,k = HH
D,k, GU,k =

1
αk

P H
D,k,

P U,k = αkGH
D,k, 1 ≤ k ≤ K, (81)

where αk are the scaling factors, the objective function in
(80) is further equivalent to (82), as shown at the bottom of
the page. When the following equations are satisfied [42]

Q̃U,k

= P U,kP H
U,k, (83)

Z
[
α2

1 · · ·α2
K

]T
=
[
Tr
(
Q̃U,1

)
· · ·Tr

(
Q̃U,K

)]T
, (84)

∑K

k=1
log
∣∣∣∣I + Σ̃

− 1
2

D,kHD,kQ̃D,kHH
D,kΣ̃

− 1
2

D,k

∣∣∣∣ =∑K

k=1
log
∣∣∣∣I + Σ̃

− 1
2

D,kHD,kΣ̃
− 1

2
U,kΣ̃

1
2
U,kQ̃D,kΣ̃

1
2
U,kΣ̃

− 1
2

U,kH
H
D,kΣ̃

− 1
2

D,k

∣∣∣∣
=

K∑
k=1

log
∣∣∣∣I+Σ̃

− 1
2

U,kH
H
D,kΣ̃

− 1
2

D,kUD,k[V D,k]H:,1:NR
Σ̃

1
2
U,kQ̃D,kΣ̃

1
2
U,k[V D,k]:,1:NR

UH
D,kΣ̃

− 1
2

D,kHD,kΣ̃
− 1

2
U,k

∣∣∣∣, (67)

Q̃U,k = Σ̃
− 1

2
D,kUD,k[V D,k]H:,1:NR

Σ̃
1
2
U,kQ̃D,kΣ̃

1
2
U,k[V D,k]:,1:NR

UH
D,kΣ̃

− 1
2

D,k, (69)

HU,k = HH
D,k, (70)

∑K

k=1
Tr

((
IBk + Σ̃

− 1
2

D,kHD,kQ̃D,kHH
D,kΣ̃

− 1
2

D,k

)−1
)

=
K∑

k=1

Tr

(
INk

−GD,kHD,kP D,k−P H
D,kHH

D,kGH
D,k+GD,k

(
I+HD,k

∑
j

P D,jP
H
D,jH

H
D,k

)
GH

D,k

)
(80)

K∑
k=1

Tr

(
INk

−GD,kHD,kP D,k−P H
D,kHH

D,kGH
D,k+GD,k

(
I+HD,k

∑
j

P D,jP
H
D,jH

H
D,k

)
GH

D,k

)

=
K∑

k=1

Tr

(
INk

−P H
U,kHH

U,kGH
U,k−GU,kHU,kP U,k+P H

U,k

( 1
α2

k

I+HH
U,k

∑
j

α2
j

α2
k

GH
U,jGU,jHU,k

)
P U,k

)
. (82)

K∑
k=1

Tr

(
INk

−P H
U,kHH

U,kGH
U,k−GU,kHU,kP U,k+P H

U,k

( 1
α2

k

I+HH
U,k

∑
j

α2
j

α2
k

GH
U,jGU,jHU,k

)
P U,k

)

=
K∑

k=1

Tr

(
INk

−P H
U,kHH

U,kGH
U,k−GU,kHU,kP U,k+GU,k

(
I+
∑

j

HU,jP U,jP
H
U,jH

H
U,j

)
GH

U,k

)

= Tr

(
I−

K∑
k=1

P H
U,kHH

U,kGH
U,k−

K∑
k=1

GU,kHU,kP U,k+GU

(
I+

K∑
k=1

HU,kP U,kP H
U,kHH

U,k

)
GH

U

)

= Tr

(I +
K∑

k=1

HU,kP U,kP H
U,kHH

U,k

)−1
 , (86)
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[Z]k,j

=


∑K

i=1,i̸=k Tr
(
HU,iQ̃U,iH

H
U,iG

H
U,kGU,k

)
+Tr

(
GH

U,kGU,k

)
, k = j,

−Tr
(
HU,kQ̃U,kH

H
U,kGH

U,jGU,j

)
, k ̸= j,

(85)

the objective function in (82) equals (86), as shown at the
bottom of the previous page, where for the final two equalities
the following definition is used

GU =
[
GT

U,1 · · ·G
T
U,K

]T
with

GU,k = P H
U,kHH

U,k

(
I+

K∑
k=1

HU,kP U,kP H
U,kHH

U,k

)−1

,

1≤k≤K. (87)

Summing up all the rows of (84), the constraint in P. 18
satisfies∑K

K=1 α
2
kTr

(
GH

U,kGU,k

)
=
∑K

k=1 Tr
(
P D,kP H

D,k

)
= Tr

(∑K
K=1 Q̃D,K

)
= Tr

(∑K
K=1 Q̃U,K

)
. (88)

Based on (86) and (88), the optimization problem P. 18 is
equivalent to the following one

P. 19 :



min
{Q̃U,k,Θ}

Tr
((

I +
∑K

k=1 HU,kQ̃U,kHH
U,k

)−1
)
,

s.t. HH
U,k =R

− 1
2

nk (HSD,k+HRD,kΘHSR)Ω̃
− 1

2
D ,

Tr(Q̃U,k) ≤ Pk,

Q̃U,k⪰0, Rank(Q̃U,k)≤NC,k, 1≤k≤K,
(89)

which is a special case of P. 7. In other words, P. 18 can be
solved effectively based on the proposed algorithm for the UL
case. Note that the power allocation Pk for each user can be
optimally determined by the dual decomposition technique [9].
In the simulation, we simply assume that the whole power P
is equally allocated to all users, which can largely reduce the
complexity with marginal performance loss.

For the MU-MIMO DL without the assistance of RIS,
we also devise the modified WMMSE algorithm as an alterna-
tive to the above proposed duality-based approach, for solving
the capacity maximization and MSE minimization problems.
This modified WMMSE algorithm is detailed in Appendix A.

VII. SIMULATION RESULTS AND DISCUSSIONS

In this section, we evaluate the performance of the proposed
transceiver optimization algorithms presented in Sections III
to VI.

A. Simulation System Setup

We consider a single-cell MU-MIMO system, where the
BS is equipped with Nt antennas to support K users, and
all the users have the same number of antennas Nr, while
the RIS deploys a uniform planar array with 4 elements
per dimension, i.e., the number of antennas at the RIS is

NRIS = 4×4. The BS antenna array is placed at the height of
HBS = 15 m, the mobile user nodes are placed on the ground
of HMU = 0 m, and the RIS antenna array is placed at the
height of HRIS = 10 m. All the users are uniformly distributed
within a circle of radius 10 m. We set the horizontal distances
between the BS-RIS, BS-Users, and RIS-Users to Dbr = 85 m,
Dbu = 120 m, and Dru = 50 m, respectively, with Dbu and
Dru measuring distances from the BS and the RIS to the center
of the users’ circle, respectively. The corresponding 3D view
is shown in Fig. 1(b). We assume the Rician fading channel
model with distance-dependent pathloss, i.e.,

H =
√
γ
(√
βHLoS +

√
1− βHNLoS

)
. (90)

The pathloss coefficient is γ = γ0D−α, where D denotes
the distance between transmitter and receiver, and γ0 is the
pathloss for unit distance given by γ0 = −30 dB. The
pathloss exponent α is set to be αbu = 3.6, αbr = 1.9 and
αru = 1.6 for the BS-Users, BS-RIS and RIS-Users links,
respectively. Except for the BS-Users channel whose Rician
factor is set to 0, we set β = 0.95 for both the BS-RIS
and RIS-Users channels. Assuming the isotropic antennas area
is λ2

4π with operation frequency f = 2.4GHz, we denote
the total transmit power as PTx for the users of UL and
for the BS of DL, and define the average receiving signal-
to-noise ratio as SNR = PTx(PLD+PLR)

σ2 , where PLD,PLR

representing the pathloss for the BS-Users, BS-RIS-Users links
respectively with PLD = 10 log10(

λ2

4π2 )−10 log10(D
αbu
bu ) dB,

and σ2 representing the noise power at the receiver. All the
results are obtained by averaging over 100 MIMO channel
realizations.

B. Uplink Transceiver Optimization Performance

In the UL capacity and MSE optimization based commu-
nication scenarios, two cases of the covariance matrices are
considered, namely, the full-rank covariance matrix case with
Nr = Bk = 4 and the rank-deficient case with Nr = 4 and
Bk = 2. All the users are assumed to have the same transmit
power, with the ratio of the maximum per-antenna power of
each user as P1 : P2 : · · · : PNr

= 4 : 3 : 2 : 1. We set
the noise power σ2 at the BS to -110 dBm and vary PTx
of the users. We compare the proposed algorithm with the
numerical CVX optimization [40]. The CVX algorithm for
the full-rank case directly uses the matlab toolbox for the opti-
mal covariance matrix solver [40]. However, the optimization
objective function over the rank-deficient covariance matrices
is non-convex. We use the traditional WMMSE algorithm for
the numerical CVX based approach in the rank-deficient case,
with the precoding matrix solved via the CVX toolbox. In the
RIS-aided scenario, we alternatively optimize the covariance
matrices and the RIS phase elements until convergence with
the two-hop transmission channel. In the scenario without RIS,
only the direct channel exists between the BS and the users,
and we only need to optimize the covariance matrices.

Fig. 2 compares the sum-rates as the functions of SNR at the
BS, achieved by the proposed Algorithm 1 and the numerical
CVX optimization. For RIS-aided uplink, ‘R-A:Alg-1’ uses
Algorithm 1 to optimize the covariance matrices followed by
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Fig. 2. Sum-rates of the proposed and CVX algorithms versus SNR at the
BS in the UL system with K = 2, Nt = 16, Nr = 4, and two values of
Bk , where ‘R-A’ abbreviates for RIS-aided, and ‘N-R’ for no RIS.

optimizing the RIS phase elements, and ‘R-A:CVX’ adopts
the CVX numerical optimization of the covariance matrices
followed by optimizing the RIS phase elements, while for UL
without RIS, ‘N-R:Alg-1’ applies Algorithm 1 to optimize the
covariance matrices, and ‘N-R:CVX’ performs the numerical
CVX optimization for the covariance matrices. Besides, the
‘accuAO’ uses the greedy block coordinate maximization
(GBCM) method proposed in [29] for optimizing the covari-
ance matrices followed by optimizing the RIS elements via
an optimal solution proposed in [31]. They are activated in
an alternative fashion. The ‘APGM’ method of [29] uses
the alternating projected gradient method for the covariance
matrices and the RIS phase shift optimization respectively.
Furthermore, the ‘approAO’ applies the projected gradient
method of [29] for approximately optimizing the covariance
matrices which is combined with the optimal solution pro-
posed in [31] for RIS optimization activated alternatively. The
covariance matrix optimizations of ‘APGM’ and ‘approAO’
involve approximation, and ‘accuAO’ gives accurate solutions
for both types of the variables, but at a high computational
complexity especially on RIS. ‘[Bk = 4]’ and ‘[Bk = 2]’
represent the full-rank case and the rank-deficient case, respec-
tively. As expected, employing RIS enhances the achievable
capacity, as RIS increases the rank of the overall channel.
Observe in Fig. 2 that for the full-rank scenario, Algorithm 1
attains the same optimal performance as other benchmarks
and the numerical CVX optimization. For the rank-deficient
scenario, particularly in the RIS-aided uplink, Algorithm 1
attains the same performance as ‘accuAO’, and all of which
outperform the CVX since the former ones are combined with
dirty paper coding while the latter one is not. Fig. 3 plots the
convergence speed of both the proposed AO algorithm and of
the three benchmarks. It can be observed that for each number
of users, our proposed algorithm converges faster to a similar
objective function value as the three benchmarks.

Fig. 4 compares the sum-MSEs as the functions of SNR,
attained by the proposed MMSE solution (57) and the
numerical CVX algorithm. Specifically, for the UL without
RIS, ‘N-R:CVX’ uses the numerical CVX algorithm for the

Fig. 3. Sum-rates versus the number of AO iterations with
Nt = 16, Bk = Nr = 4.

Fig. 4. Sum-MSEs of the proposed and CVX algorithms versus SNR at the
BS in the UL system with K = 2, Nt = 16, Nr = 4, and two values of
Bk , where ‘R-A’ abbreviates for RIS-aided, and ‘N-R’ for no RIS.

covariance matrix optimization, and ‘N-R:Prop’ applies the
proposed MMSE solution (57) for the covariance matrix
optimization, while for the RIS-aided uplink, ‘R-A:CVX’
carries out the numerical CVX optimization for the covariance
matrices followed by optimizing the RIS phase elements, and
‘R-A:Prop’ uses the proposed MMSE solution for the covari-
ance matrix optimization followed by optimizing the RIS
phase elements. The results of Fig. 4 show that the proposed
MMSE solution (57) and the numerical CVX optimization
attain the same optimal sum-MSE performance.

C. Downlink Transceiver Optimization Performance

For the DL capacity and MSE optimization based commu-
nication scenarios, we consider Bk = Nr with two values
of Nr for the users. The ratio of the maximum per-antenna
powers at the BS is set to P1 : P2 : · · · : PNt

= 4 : 3 :
2 : 1 : · · · : 4 : 3 : 2 : 1. The noise power σ2 at each
user is set to be -110 dBm and we vary the PTx of the BS.
For our proposed duality-based approach, the DL capacity
and MSE optimization solutions are obtained based on the
equivalent uplink-dual result, which is clearly applicable to the
RIS-aided downlink, denoted as ‘Duality-RISop’, as well as
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Fig. 5. Sum-rates of the proposed duality approach and the modified
WMMSE versus SNR at the users in the DL system with K = 2, Nt = 16,
Bk = Nr , and two values of Nr .

Fig. 6. Sum-MSEs of the proposed duality approach and the modified
WMMSE versus SNR at the users in the DL system with K = 2, Nt = 16,
Bk = Nr , and two values of Nr .

to the DL without the assistance of RIS, denoted as ‘Duality-
noRISop’. We also use a traditional optimization method, the
modified weighted MMSE algorithm of Appendix A, as a
benchmark. This modified WMMSE algorithm only optimizes
the covariance matrices, and therefore it is only applicable to
the DL without RIS, which is denoted as ‘WMMSE-noRISop’.

Fig. 5 compares the DL sum-rate performance of the pro-
posed duality method and the traditional modified WMMSE
algorithm. Observe that for the MU-MIMO DL without the
assistance of RIS, our duality-based approach outperforms
the modified WMMSE algorithm considerably, particularly in
the case where the total number of antennas of all the users
(Nr × K = 8 × 2) approach the number of BS antennas
(Nt = 16). The performance gain of ‘Duality-noRISop’ over
‘WMMSE-noRISop’ results from utilizing the dirty paper
coding at the BS, which is not used in the modified WMMSE
algorithm. Fig. 6 depicts the DL MSE performance of the pro-
posed duality method and the modified WMMSE algorithm.
It can be seen from Fig. 6 that for the MU-MIMO DL without
RIS, both the duality method and the modified WMMSE
algorithm attain the same optimal performance. By comparing

the curves of ‘Duality-RISop’ and ‘Duality-noRISop’ in both
figures, it can also be seen that the achievable performance is
enhanced with the help of RIS.

VIII. CONCLUSION

We have investigated the fundamental properties of KKT
conditions in the context of optimization problems associated
with positive semidefinite matrix variables under rank con-
straints. Based on the properties derived, the signal covariance
optimization problems formulated for capacity maximization
and sum-MSE minimization have been solved and the cor-
responding RIS phase shifting matrix optimization has been
transferred into a quadratic optimization problem associated
with unit-modulus constraints in the context of RIS-aided
MU-MIMO UL systems under rank constraints and mul-
tiple weighted power constraints. Moreover, by exploiting
the uplink-downlink dualities for both capacity maximization
and MSE minimization, the transceiver optimization prob-
lem of the RIS-aided MU-MIMO DL has also been solved.
Our numerical results have demonstrated that the proposed
MU-MIMO transceiver optimizations attain the same or better
sum-rate and sum-MSE performance than the numerical CVX
optimization algorithm and the traditional modified WMMSE
algorithm.

APPENDIX A
MODIFIED WMMSE ALGORITHM

To solve the optimization problems for the DL without
RIS using the WMMSE, we modify this traditional algorithm
to adapt to the multiple weighted power constraints [35].
In general, we still use the WMMSE steps to update the
covariance matrix variables alternatively until the objective
function converges. The key of our modified WMMSE algo-
rithm is to involve Algorithm 1 at the step of precoding matrix
updation for conversion from per-antenna power constraints
to a total-antenna power constraint, that is, we process every
iteration while satisfying the per-antenna power constraint.
This modified WMMSE is detailed in Algorithm 2.

APPENDIX B
PROOF OF LEMMA 1

We take the UL SU-MIMO case for the proof and omit the
subscript k. For the rank-1 LoS channels, we define the steer-
ing vectors at the BS, RIS and User as αB(·),αP(·, ·),αU(·)
respectively, AODs vu, ψ

b, θb and AOAs vb, ψ
u, θu, which

satisfy the properties as: |[αB]i| = 1√
Nt
|, |[αU]i| =

1√
Ik
, |[αP]i| =

1√
NRIS

, αH
BαB = 1,αH

UαU = 1,αH
PαP = 1.

Defining the noise covariance matrix as Rn and total
transmit power as P , the objective function of P. 3 can be
reformulated as

log det
(
I + HQHHR−1

n

)
= log det

(
1 + e2 ∗ α̃B(vb)αH

P(ψb, θb)ΘαP(ψu, θu)α̃H
U(vu)

Q̃α̃U(vu)αH
P(ψu, θu)ΘHαP(ψb, θb)α̃H

B(vb)
)
,
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Algorithm 2 The Modified WMMSE Method
Initialize: Random variables PD,k , ∀k, such that

Tr
(∑K

k=1 PD,kP
H
D,k

)
= Tr

(∑K
k=1 Q̃D,k

)
= P ; Set Ω̃D = I and

define HD,k = HkΩ̃
− 1

2
D , where Hk is the original channel.

1: repeat
2: Set HD,k = HkΩ̃

− 1
2

D .
3: GD,k :=(∑K

i=1 HD,kPD,iP
H
D,iH

H
D,k + Rnk

)−1
HD,kPD,k ,∀k.

4: W k := I or W k :=
(
I −GH

D,kHD,kPD,k

)−1
, ∀k, respectively

for DL MSE and capacity optimization.
5: ∀k, PD,k :=(∑K

i=1H
H
D,iGD,iW iG

H
D,iHD,i+λ∗I

)−1
HH

D,kGD,kW k .

6: Use Algorithm 1: Random dual variables µ
(0)
i , ∀i; iteration index

t = 0; maximum iteration number Tmax; sufficiently small threshold
ϵ>0.

7: repeat
8: Calculate µ̃

(t)
i = µ

(t)
i P/

(∑I
l=1 µ

(t)
l Pl

)
, ∀i, and Ω̃

(t)
D =∑I

i=1 µ̃
(t)
i ΩD,i; set HD,k = Hk

(
Ω̃

(t)
D

)− 1
2 , 1 ≤ k ≤ K.

9: GD,k :=(∑K
i=1HD,kPD,iP

H
D,iH

H
D,k+Rnk

)−1
HD,kPD,k ,∀k.

10: W k := I or W k :=
(
I −GH

D,kHD,kPD,k

)−1
, ∀k, respec-

tively for DL MSE and capacity optimization.
11: ∀k, PD,k :=(∑K

i=1H
H
D,iGD,iW iG

H
D,iHD,i+λ∗I

)−1
HH

D,kGD,kW k .

12: Calculate P
(t)
k =

(
Ω̃

(t)
D

)− 1
2 PD,k and Q

(t)
D,k = P

(t)
k

(
P

(t)
k

)H,
∀k.

13: Set the step size a
(t)
i = a

b·t+c
, 1 ≤ i ≤ I , where {a, b, c}>0.

14: Update

µ
(t+1)
i =

[
µ

(t)
i +a

(t)
i

(
Tr

(
ΩD,i

∑K
l=1 Q

(t)
D,l

)
−Pi

)]+
, 1 ≤ i ≤

I .
15: Update t = t + 1.
16: until

∣∣∣µ(t)
i

(
Tr

(
ΩD,i

∑K
i=1 Q

(t)
D,i

)
− Pi

)∣∣∣ ≤ ϵ, ∀i, or t = Tmax.

17: until MSE or capacity converge.
18: return The optimal Q⋆

D,k = P kP
H
k to the optimization problem.

where Ω̃, Rn are diagonal matrices and

α̃H
U(vu) =

αH
U(vu)Ω̃

− 1
2

∥αH
U(vu)Ω̃

− 1
2 ∥

= ej∠α̃H
U(vu), Q̃ = Ω̃

1
2 Q,

α̃B(vb) =
R
− 1

2
n αB(vb)

∥R− 1
2

n αB(vb)∥
= ej∠α̃B(vb),

e = ∥R− 1
2

n αB(vb)∥ ∗ ∥αH
U(vu)Ω̃

− 1
2 ∥.

In contrast to (29), the matrices for rank-1 LoS channels can
be rewritten as

ΠHΩ̃
− 1

2 = e ∗ α̃B(vb)αH
P(ψb, θb)ΘαP(ψu, θu)α̃H

U(vu),
UHk

= α̃B(vb), ΛHk
= e ∗αH

P(ψb, θb)ΘαP(ψu, θu),
V Hk

= α̃H
U(vu).

Using the property det(I + AB) = det(I + BA),
the optimal solutions to {{Q̃

′
},Θ′} can be easily

obtained as Q̃
′

= ej∠α̃U(vu) ∗ P ∗ ej∠α̃H
U(vu),

Θ′ = diag(αP(ψb, θb))diag(αH
P(ψu, θu)), θ′ = diag(Θ) =

diag(αH
P(ψu, θu))αP(ψb, θb). Treating the ej∠α̃U(vu) and

P respectively as the eigenvector and eigenvalue of Q̃,

the solutions above coincide with (27) whose optimality is
confirmed. Next, we will show the solution θ′ also coincides
with the one to P. 6.

Based on the optimal Q̃
′
, the equations (35-37,42-43) can

be rewritten as

HV = a, G =
aH

aaH + 1
, W = aaH + 1,

A =
|c|2

d2
∗ ggH, b = c ∗ g,

and these terms are all based on the obtained solution θk from
the kth iteration, where

g = diag(αH
P(ψu, θu))αP(ψb, θb), gHg = 1,

a =
[
e ∗αH

P(ψb, θb)ΘαP(ψu, θu)α̃H
U(vu)Q̃

− 1
2

]H
= e ∗ P ∗ α̃U(vu)θH

k g,

c = aHα̃U(vu), d = (aaH + 1).

It can be observed that A is a rank-1 positive semidefinite
matrix. By discarding constant terms and using the MM
algorithm [37], the majorization problem at the (k + 1)th

iteration for P. 6 is

min
θ

ℜ{θHu}, (91)

where u = (A− λmax(A)I)θk − b = g ∗ |c|
2

d ∗ gHθk − θk ∗
|c|2
d −g∗c is constant since θk is known from the kth iteration.

Let u =
[
|u1|ejϕ1 , . . . , |uNRIS |ejϕNRIS

]H
, the solution to

problem (91) is given by θk+1 =
[
ej(ϕ1+π), . . . , ej(ϕNRIS+π)

]
.

Let θ0 = g and we can get u = −(eP ) ∗ g = |eP |eπ+∠g

and θ1 = e2π+∠g = g = θ′. It can be observed that g
is a stationary point to a series of majorization problems.
This completes the proof that the AO method is guaranteed
to find a globally optimal solution to the UL SU-MIMO
capacity maximization problem. The effectiveness of the AO
method for the other three problems under the same rank-1
LoS SU-MIMO scenario setting can be proved similarly.
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