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Digital Predistorter Design Using B-Spline Neural
Network and Inverse of De Boor Algorithm
Sheng Chen, Fellow, IEEE, Xia Hong, Senior Member, IEEE, Yu Gong, and Chris J. Harris

Abstract—This contribution introduces a new digital pre-
distorter to compensate serious distortions caused by memory
high power amplifiers (HPAs) which exhibit output saturation
characteristics. The proposed design is based on direct learning
using a data-driven B-spline Wiener system modeling approach.
The nonlinear HPA with memory is first identified based on the
B-spline neural network model using the Gauss-Newton algo-
rithm, which incorporates the efficient De Boor algorithm with
both B-spline curve and first derivative recursions. The estimated
Wiener HPA model is then used to design the Hammerstein
predistorter. In particular, the inverse of the amplitude distortion
of the HPA’s static nonlinearity can be calculated effectively using
the Newton-Raphson formula based on the inverse of De Boor
algorithm. A major advantage of this approach is that both the
Wiener HPA identification and the Hammerstein predistorter
inverse can be achieved very efficiently and accurately. Simulation
results obtained are presented to demonstrate the effectiveness of
this novel digital predistorter design.

Index Terms—B-spline neural network, De Boor algorithm,
Hammerstein model, memory high power amplifier, output satu-
ration, predistorter, Wiener model.

I. INTRODUCTION

H IGH POWER amplifier (HPA) as an indispensable
component can be found in any wireless communication

system. The operation of HPAs in modern wireless systems
may introduce serious nonlinear distortions, causing adjacent
channel interference and degrading the system’s achievable bit
error rate (BER) performance. The problem becomes partic-
ularly acute, as the recent green-radio initiative [1] places the
emphasis on the energy-efficiency aspect of communication.
To achieve high energy efficiency, HPAs should operate at
their output saturation regions but this operational mode could
not accommodate high bandwidth-efficiency single-carrier
high-order quadrature amplitude modulation (QAM) signals
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[2] as well as multi-carrier orthogonal frequency division
multiplexing (OFDM) signals [3], which are essential modern
transmission technologies. It is therefore critical to compensate
the nonlinearity of the HPA in the design of a wireless system.
Early researches often considered HPAs to be memoryless.
However, for high-rate broadband signals, the influence of the
HPAs’ memory effects can no longer be ignored. The memory
effects are caused by the electrical and electrothermal factors
explained in [4]. An accurate linearized compensation tech-
nique therefore needs to consider not only the nonlinearities
caused by the current input signals but also the distortion
induced by the memory effects. Digital predistorter (PD) is
considered to be a most effective linearization technique,
because it offers a modest implementation cost, while achieves
a relatively good performance.
Existing predistortion techniques for compensating memory

HPAs [5]–[17] can roughly be divided into three categories.
The look-up table (LUT) based techniques [5]–[7] realize a
PD by representing the inverse characteristic function of the
memory HPA in a LUT. The so-called indirect-learning based
PD designs [11]–[13] first identify a post-inverse polynomial
filter for the memory HPA to be compensated and then copy
the post-inverse polynomial filter to form the PD. By contrast,
the direct-learning based PD designs [14]–[16] first identify the
input-output relation of the memory HPA using a polynomial
model and then adapt a polynomial PD directly to invert the
resulting polynomial HPA model. A recent work [17] uses a
neural-fuzzy based PD, instead of a polynomial based PD, in
the indirect-learning structure. It is well understood that the
memory HPA can be modeled by the Wiener model consisting
of a linear filter followed by a memoryless nonlinearity [18].
Physically, the memoryless nonlinearity of the HPA is repre-
sented by the output amplitude and phase response functions
that are the nonlinear functions of the input signal amplitude.
The two types of static nonlinearity widely adopted to model
the HPA are the traveling-wave tube (TWT) nonlinearity [18],
[19] and the solid state power amplifier’s nonlinearity [20].
Most of the existing researches dealing with the TWT non-
linearity, including [11]–[17], adopt a two-parameters output
amplitude response model [19], which peaks at an input satura-
tion amplitude. However, when the input amplitude increases
beyond this saturation point, the output amplitude of this model
actually starts to fall. This is in contrast to the physical intuition
that the output amplitude should not fall off beyond saturation
as is supported by the real measurements of HPAs [18].
Against this background, a novel PD design is proposed

based on a direct learning structure in this paper. Our contribu-
tion is threefold. Firstly, we adopt a more realistic memory HPA
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model for the TWT nonlinearity in our design which exhibits
true output saturation characteristics. Secondly, we present a
data-driven approach to identify the nonlinear memory HPA
based on the B-spline Wiener model using the Gauss-Newton
algorithm, which naturally exploits the efficiency of both
B-spline curve and first derivative recursions in the De Boor
algorithm [21]. The Wiener model comprising a linear dynamic
model followed by a nonlinear static functional transformation
is widely adopted in practice [22]–[31]. The model charac-
terization and representation of the unknown nonlinear static
function in the Wiener model is fundamental to its applica-
tions, and the B-spline basis function for nonlinear modeling
[32]–[34] offers an efficient and accurate means of modeling
the nonlinearity of the complex-valued Wiener system [35], in
comparison with other methods. Furthermore, the inverse of
the B-spline Wiener model can be obtained very efficiently and
accurately, and this naturally comes to our third contribution.
We design the Hammerstein predistorter based on the estimated
B-spline Wiener HPA model. In particular, the inverse of the
amplitude distortion of the HPA’s static nonlinearity is calcu-
lated effectively using the Newton-Raphson formula based on
the inverse of De Boor algorithm. Simulation results are used to
demonstrate the effectiveness of this novel digital predistorter
design.
The rest of this contribution is organized as follows.

The Wiener model for memory HPAs is first introduced in
Section II, and the identification algorithm is then presented
for using the B-spline neural network to model the Wiener
HPA. In Section III, the proposed Hammerstein PD solution is
derived based on the estimated B-spline Wiener HPA model.
Simulation results are presented in Section IV to demonstrate
the effectiveness of the proposed PD design approach, while
our conclusions are offered in Section V.

II. IDENTIFICATION OF MEMORY HPA MODEL

A widely used model for memory HPAs is the Wiener model
[18], which comprises a linear system followed by a static non-
linearity. Throughout the rest of this contribution, a complex-
valued number is represented by the rectangular form

, where , while and
denote the real and imaginary parts of , or alternatively by the
polar form with denoting the amplitude
of and its phase.

A. The Wiener Model for Memory HPAs

The linear filter of order representing the HPA’s memory
effect on the input signal is defined by its transfer function

(1)

with the complex-valued coefficient vector given by
. Without loss of generality,

we assume . If this is not the case, can always be
absorbed into the complex-valued static nonlinearity of the
HPA, and the filter’s coefficients are re-scaled as for

. The input signal to the memory HPA, , where
the discrete time index is related to the symbol rate sampling,

takes the values from the complex-valued -QAM symbol set
[2]

(2)
where is the minimum distance between symbol points. Al-
though we consider single-carrier QAM systems, the approach
is equally applicable to multi-carrier OFDM systems [3]. The
unobservable linear filter output

(3)

which is the input to the static nonlinearity part of the HPA
model, can be expressed as

(4)

with the amplitude and phase .
The HPA’s static nonlinearity is assumed to be the TWT non-

linearity [18], [19], but the approach is equally applicable to the
solid state power amplifier [20]. The input signal is affected by
the nonlinear amplitude and phase functions of the HPA, and the
output signal is distorted mainly depending on the input
signal amplitude , yielding

(5)

The output amplitude and the phase
of the HPA are specified respectively by

,
,

(6)

(7)

with the positive real-valued parameter vector that specifies the
TWT nonlinearity given by , where the
saturating input amplitude is defined as

(8)

while the saturation output amplitude is given by

(9)

The underlying physics require that and the input
amplitude meets the condition , where

and is some large positive number.
Note that the work [19] assumes an output amplitude

, which peaks at but falls off from the
peak value when . This is against the physical
intuition that the output amplitude should not fall off beyond
saturation. Our output amplitude model (6) is more realistic and
is supported by the real measurements of HPAs [18]. The input
back-off (IBO) of tthe HPA is defined as

(10)

where is the saturation input power and is the
average power of the signal at the input of the TWT nonlinearity.
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Fig. 1. Visualization of the De Boor recursion for and .

Note that is defined as the average power of , which
is equal to the average power of scaled by the linear filter
power gain . A small IBO value indicates that the HPA
operates in the highly nonlinear saturation region.

B. B-Spline Modeling of the HPA’s Nonlinearity

Univariate real-valued B-spline basis functions are parame-
trized by the order of a piecewise polynomial and a knot
vector which is a set of values defined on the real line that break
it up into a number of intervals. Suppose that there are basis
functions. Then the knot vector is specified by the
knot values, , with

(11)

At each end, there are external knots that are outside the
input region and one boundary knot. As a result, the number of
internal knots is . Given the set of predetermined
knots (11), the set of B-spline basis functions can be formed
by using the De Boor recursion [21], yielding

if ,
otherwise,

(12)

(13)

The derivative of the B-spline basis function can also
be computed recursively according to

(14)

The De Boor recursion is visualized in Fig. 1.

Given the input amplitude to the static nonlinearity of the
HPA, , we model the amplitude and phase of the HPA’s
static nonlinearity by the following two real-valued univariate
B-spline neural networks

(15)

(16)

where and
are the parameters to be

determined. The derivatives of the two B-spline models are
given by

(17)

(18)

Note that, due to the piecewise nature of B-spline functions,
there are only basis functions with nonzero functional/
derivative values at any point . Hence, the complexity of the De
Boor algorithm is determined by the polynomial order , rather
than the number of knots, and this is in the order of .

C. Identification Algorithm

Given a block of training data , where
and is the

input to the HPA, the task is to estimate the parameter vector
of the Wiener model, defined as

(19)

where denotes an estimate of with
and . Note

that the output of the complex-valued B-spline neural network
is given by

(20)

with . The
measured memory HPA’s output may be corrupted by a small
noise and, therefore, it takes the form

(21)

where the complex-valued unknown nonlinear mapping
is specified by (3) to (7), while is the

complex-valued Gaussian white noise with .
Define the error between the desired output and the model
output as , yielding the sum of squared
errors (SSE) cost function

(22)
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We apply the Gauss-Newton algorithm to estimate . First
denote as

(23)

By denoting the iteration step with the superscript and with
an initial estimate , the iteration formula is given by

(24)
where is the step size, and denotes the Jacobian of

which is define by

...
...

. . .
...

(25)

The partial derivatives in the Jacobian (25) are calculated at the
bottom of this page: for , they are given in (26)
at the bottom of the page, while for and

, they are given in (27) at the bottom of the page. It
can be seen that the De Boor algorithm (12) to (14) are utilized
for evaluating (15) to (18), which are required for evaluating the

entries in (26) and (27). In addition, the following derivatives
are also needed in (26) and (27)

(28)
The iterative procedure (24) can be terminated when

converges or when a predetermined number of iterations has
been reached. This Gauss-Newton algorithm has been shown
to converge fast with very accurate results in our previous
work [35]. Alternatively, the Levenberg-Marquardt algorithm
[36]–[38] can be applied with the benefits of faster convergence
at the cost of increased computational complexity.
As the cost function (22) is highly nonlinear, the solution of

any gradient-based algorithm depends on the initial condition.
It is important to properly initialize so that it is as close as
possible to an optimal solution. Furthermore, it is desirable that
the parameter initialization is simple to implement. A simple
and effective parameter initialization is presented in Appendix
using the least squares algorithm. More detailed discussions on
the issue of parameter initialization in nonlinear model identifi-
cation can be found for example in [39]–[41].

(26)

(27)
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Fig. 2. The predistorter design using the Hammerstein model.

III. PREDISTORTER DESIGN WITH THE AID OF INVERSE
DE BOOR ALGORITHM

An advantage of adopting the Wiener model for the memory
HPA is that the exact inverse of the Wiener model can be rep-
resented by a static nonlinearity followed by a linear system,
which is known as the Hammerstein model. In particular, our
approach of modeling the static nonlinearity of the HPA by
B-spline basis functions offers further significant advantages for
the Hammerstein PD design. The proposed PD design is illus-
trated in Fig. 2.

A. Inverse of the HPA’s Static Nonlinearity

First, from the estimated amplitude response function (15) for
the HPA’s static nonlinearity, the estimates for and ,
denoted by and , can easily be obtained using numer-
ical search. Note that, for , of (15) and
of (16) are one-to-one mappings, that is, they are continuous
and invertible functions. Referring to Fig. 2, let the input to the
static nonlinearity of the PD be ,
where and are the amplitude and phase of ,
respectively. Similarly, denote the output of the PD’s static non-
linearity by , with and
being the amplitude and phase of , respectively. The PD’s
static nonlinearity is the inverse of the HPA’s static nonlinearity.
The procedure for calculating the inverse of the HPA’s nonlin-
earity is summarized in the following.
1) Calculate the inverse of the estimated amplitude distortion
function for the given : if , do
1.a); otherwise, if , do 1.b)

1.a) Using the inverse of De Boor algorithm detailed
below to compute
1.b)

2) Calculate the estimated phase distortion as using
(16). The inverse of the estimated phase distortion is then

, yielding .
We now discuss how to find the inverse in

Step 1.a). Given that lies in the range between the two points,
and , the problem is to find the root of the

polynomial equation of . We propose
to solve the problem using the inverse of De Boor algorithm,
which effectively utilizes the B-spline curve and first-order
derivative recursions in the Newton-Raphson formula that is
modified to take into account that is positive. Note that,
in the range considered, is monotonic, and this means
that the inverse of De Boor algorithm converges to the unique
solution.

The Inverse of De Boor Algorithm:
1) Initialize as a random number with

.
2) The -th step is given by

(29)

(30)

where is the learning rate, which is preset em-
pirically, while and are calculated using
(15) and (17), in which the De Boor recursions (12) to (14)
are utilized.

3) The algorithm is terminated when , where is
a preset required precision, e.g. , or reaches a
predetermined maximum value. Otherwise, set
and repeat Step 2).

Computational cost of the inverse of De Boor algorithm is
very low at the order of , scaled by the number of it-
erations. Furthermore, for the -QAM signal (2), the number
of data symbols with distinct amplitudes is much smaller than
. For example, the 64-QAM symbol set only contains 9 dis-

tinct amplitude values, as illustrated in Fig. 3. The amplitude
distortion values and the phase distortion values

for these distinct amplitude values can be pre-calcu-
lated off-line and stored for on-line transmission. Therefore, the
on-line computational complexity of our proposed PD solution
is extremely low.1

B. Inverse of the HPA’s Linear Filter

The identification algorithm presented in the previous section
provides the estimate of the HPA’s linear filter

. Let the transfer function of the Hammerstein PD’s
linear filter be

(31)

1In this study, we assume the symbol-rate sampling. If the sampling rate is
higher, the amplitude of the signal sample no longer takes the few distinct am-
plitude values of the -QAM signaling. Similarly, for the OFDM signal, its
legitimate set of amplitude values may also be very large. We may opt for the
on-line calculation of the predistorter operation for each transmitted signal at an
increased on-line computational cost. However, the identification and inverting
algorithms presented at this study remain applicable, and our design remains
very competitive, in terms of accuracy and efficiency, compared with many ex-
isting predistorter designs.
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Fig. 3. 64-QAM constellation, which contains only 9 distinct amplitude values
as illustrated by the filled symbol points.

where the delay if is minimum phase. The solution
of the PD’s linear filter can readily be
obtained by solving the set of linear equations specified by

(32)

To guarantee an accurate inverse, the length of should be
chosen to be three to four times of the length of . Note that

as .

IV. SIMULATION STUDY

We considered the single-carrier 64-QAM system with the
static nonlinearity of the memory HPA described by (6) and (7).
The parameters of the memory HPA were given as

(33)

The serious nonlinear and memory distortions caused by this
memory HPA are illustrated in Fig. 4. Note that, for

, the HPA is operating well into the saturation region.

A. HPA Model Identification Results

The 64-QAM training sets each containing data
samples were generated using (21) with the HPA operating at
the IBO values of 5 dB and 0.5 dB, respectively, where the
power of the complex-valued output measurement noise
was . Note that since the identification is carried out at the
transmitter, both the HPA’s input and the corresponding
HPA’s output measurement are available. Furthermore, the
measurement can usually be considered as noise free, i.e.

. However, to demonstrate the effectiveness of the pro-
posed B-spline neural network identification approach, we con-
sidered both the noise-free and noisy measurement cases with

and , respectively.

Fig. 4. The HPA’s output , marked by , for the 64-QAM input signal
, marked by : (a) the IBO of 5 dB, and (b) the IBO of 0.5 dB.

The piecewise cubic polynomial was
chosen as the B-spline basis function, and the
number of B-spline basis functions was set to

. The predetermined knot sequence

was used. Note that the boundary knot values
and were chosen such that and the
input signal amplitude was less than . The number
of B-spline basis functions and the polynomial order

should be chosen to be sufficiently large to provide
accurate approximation capability but not too large as to cause
overfitting and to impose unnecessary complexity. From the
literature, it is well known that or 4 is often sufficient.
It seems that the interval
can be partitioned well by the boundary and internal knot
values . However, a uniform-spaced
partition is also valid and equally effective. The extrapolation
capability of the B-spline model is influenced by the choice
of the external knots. For this particular example, we know
that there exists no data for in identification but we
need the B-spline model having capability of extrapolating
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TABLE I
IDENTIFICATION RESULTS FOR , AND

Fig. 5. Comparison of (a) the amplitude response and (b) the phase response
between the HPA and the estimated B-spline model, where the HPA operates at
the IBO of 5 dB with the measurement noise variance .

well into the saturation region of . Our experience
suggests that by choosing the external knot values well spread
into the region of , we can achieve excellent
extrapolation capability. The identification algorithm as
described in Section II-C with the parameter initialization as
described in Appendix was carried out. The results obtained
are summarized in Table I as well as illustrated in Figs. 5 to 8,
which confirm that an accurate B-spline neural network model
can be obtained for the memory HPA even in the cases that the
measurements are corrupted by noise.
Note that, under the identification condition of ,

there were relative few data points which yielded with
the values near the saturation value . Consequently, the es-
timated B-spline amplitude response exhibits noticeable
deviation from the HPA’s true amplitude response in the
region , as can be seen from Figs. 5 and 6. This of

Fig. 6. Comparison of (a) the amplitude response and (b) the phase response
between the HPA and the estimated B-spline model, where the HPA operates at
the IBO of 5 dB with the measurement noise variance .

course does not matter, as this region is well beyond the oper-
ating region of the HPA. Interestingly, under the operating con-
dition of , the deviation between the estimated
amplitude response and the true amplitude response
at the region of is no longer noticeable, but small
deviations are observed between the estimated phase response

and the true phase response for the region of close
to 0, as can be seen from Figs. 7 and 8. This is because, under
the operating condition of , there was sufficient
number of input points with close to the value of , but
there were very few input points with very small .

B. Proposed Predistorter Performance

We employed the estimated B-spline Wiener HPA model ob-
tained under the condition of noise-free measurement

to design the proposed Hammerstein PD as detailed in
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Fig. 7. Comparison of (a) the amplitude response and (b) the phase response
between the HPA and the estimated B-spline model, where the HPA operates at
the IBO of 0.5 dB with the measurement noise variance .

Section III. Note that we only needed to calculate the 9 am-
plitude and phase predistortion values for the 9 distinct ampli-
tude values of the 64-QAM constellation using the inverse of
De Boor algorithm as described in Section III-A. The length of
the PD’s inverse filter was set to . The outputs of the
combined PD and HPA are depicted in Fig. 9. Compared with
the outputs of the HPA as plotted in Fig. 4, it can be seen that
the designed PD successfully removes the serious distortions
caused by the memory HPA. The achievable performance of the
designed PD was further assessed using the mean square error
(MSE) metric defined by

(34)

as well as the system’s BER, where was the number of test
data, was the 64-QAM input and was the output of
the combined PD and memory HPA system. The channel signal
to noise ratio (SNR) in the simulation was given by

(35)

where was defined as the energy per bit and the power
of the channel’s additive white Gaussian noise (AWGN).
With , 64-QAM data were passed through the

combined Hammerstein PD and Wiener HPA system to com-
pute the MSE (34), and the resulting MSE as the function of
IBO is plotted in Fig. 10. The output signal after the memory
HPA was then transmitted over the AWGN channel, and the

Fig. 8. Comparison of (a) the amplitude response and (b) the phase response
between the HPA and the estimated B-spline model, where the HPA operates at
the IBO of 0.5 dB with the measurement noise variance .

BER was then determined at the receiver. The results so ob-
tained are plotted in Fig. 11, in comparison with the benchmark
BER curve of the ideal AWGN channel. It can be seen from
Fig. 11 that the BER performance of the combined PD and HPA
system is practically indistinguishable from those of the ideal
AWGN channel under the operating condition of ,
which again demonstrates the effectiveness of the proposed PD
design. The achievable BER performance of the combined PD
and Wiener HPA system are further illustrated in Fig. 12 for the
three values of the channel SNR.

V. CONCLUSIONS

An novel digital predistorter design has been proposed
to compensate distortions caused by memory high power
amplifiers based on the direct learning framework using a
data-driven B-spline Wiener system modeling approach. The
B-spline neural network model, which naturally incorporates
the efficient De Boor algorithm with both B-spline curve and
first derivative recursions, has been utilized to identify an
accurate memory HPA model, based on which the proposed
Hammerstein predistorter can be directly obtained. It has been
shown that the inverse of the amplitude distortion function
can be calculated efficiently and accurately with the aid of the
inverse of De Boor algorithm and, moreover, for the QAM
signal, the computation of the nonlinear predistortion is only
required for a very small number of the data symbols with
distinct amplitude values. The effectiveness of the proposed PD
design has been illustrated by simulation results. In particular, it
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Fig. 9. The output of the combined PD and HPA , marked by , for the
64-QAM input signal , marked by : (a) the IBO of 5 dB, and (b) the IBO
of 0.5 dB.

has been demonstrated that both the Wiener HPA identification
and the Hammerstein predistorter inverse can be achieved very
efficiently and accurately, and the proposed novel digital PD
is capable of successfully compensating serious nonlinear dis-
tortions caused by the memory HPA operating into the output
saturation region.

APPENDIX
A SIMPLE LEAST SQUARES PARAMETER INITIALIZATION

The initial estimate can be generated based on the
training data as follows.

1) Set and for .
2) Generate the sequence for

.
3) Generate the sequence
for , and denote

.
4) Generate the sequence

, whose value should be taken in the

Fig. 10. The mean square error versus IBO performance.

Fig. 11. The bit error rate versus channel SNR performance.

Fig. 12. The bit error rate versus IBO performance of the combined PD and
HPA for three values of the channel SNR.

range , for . Then denote

.
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5) Form the regression matrix

...
. . .

...

6) Compute the least squares estimates
and .

7) Set
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