
2526 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 27, NO. 6, NOVEMBER 2019

Deep Principal Component Analysis Based on
Layerwise Feature Extraction and

Its Application to Nonlinear
Process Monitoring

Xiaogang Deng, Xuemin Tian, Sheng Chen , Fellow, IEEE, and Chris J. Harris

Abstract— In order to deeply exploit intrinsic data feature
information hidden among the process data, an improved kernel
principal component analysis (KPCA) method is proposed, which
is referred to as deep principal component analysis (DePCA).
Specifically, motivated by the deep learning strategy, we design
a hierarchical statistical model structure to extract multilayer
data features, including both the linear and nonlinear principal
components. To reduce the computation complexity in nonlinear
feature extraction, the feature-samples’ selection technique is
applied to build the sparse kernel model for DePCA. To integrate
the monitoring statistics at each feature layer, Bayesian inference
is used to transform the monitoring statistics into fault probabili-
ties, and then, two probability-based DePCA monitoring statistics
are constructed by weighting the fault probabilities at all the
feature layers. Two case studies involving a simulated nonlinear
system and the benchmark Tennessee Eastman process demon-
strate the superior fault detection performance of the proposed
DePCA method over the traditional KPCA-based methods.

Index Terms— Bayesian inference, deep learning, kernel prin-
cipal component analysis (KPCA), nonlinear process monitoring.

I. INTRODUCTION

PROCESS monitoring technologies are playing an increas-
ing role in enhancing industrial plant safety, reduc-

ing the production cost and improving the product quality.
Since a large amount of process data have been collected

Manuscript received March 13, 2018; revised July 5, 2018; accepted
August 8, 2018. Date of publication September 6, 2018; date of current version
October 9, 2019. Manuscript received in final form August 9, 2018. This
work was supported in part by the Natural Science Foundation of Shandong
Province, China, under Grant ZR2014FL016 and Grant ZR2016FQ21, in part
by the National Natural Science Foundation of China under Grant 61403418,
Grant 21606256, and Grant 61273160, in part by the Fundamental Research
Funds for the Central Universities under Grant 17CX02054, and in part by
the Shandong Provincial Research and Development Programme under Grant
2018GGX101025. This paper was presented in part at the 2017 International
Joint Conference on Neural Networks. Recommended by Associate Editor
P. Mhaskar. (Corresponding author: Xiaogang Deng.)

X. Deng and X. Tian are with the College of Information and Control
Engineering, China University of Petroleum, Dongying 266580, China
(e-mail: dengxg2002@gmail.com; tianxm@upc.edu.cn).

S. Chen is with the School of Electronics and Computer Science, University
of Southampton, Southampton SO17 1BJ, U.K., and also with King Abdulaziz
University, Jeddah 21589, Saudi Arabia (e-mail: sqc@ecs.soton.ac.uk).

C. J. Harris is with the School of Electronics and Computer Sci-
ence, University of Southampton, Southampton SO17 1BJ, U.K. (e-mail:
cjh@ecs.soton.ac.uk).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCST.2018.2865413

and stored in industrial databases, data-based monitoring
techniques have attracted a lot of attention in the past
two decades [1]–[5]. Typical methods include principal
component analysis (PCA) [6], [7], independent compo-
nent analysis [8]–[10], canonical variate analysis [11], [12],
Fisher discriminant analysis [13], [14], and partial least
squares [15], [16]. Among these data-based methods, PCA is
popular and it has been applied to various industrial processes.
By considering the correlation property of time-series process
data, Ku et al. [17] proposed a dynamic PCA (DPCA) method
by augmenting the monitored data vector, while Li et al. [18]
presented a structured DPCA method to extract correlated
latent variables. To reduce the false alarm rate caused by
slow normal process changes, Portnoy et al. [19] built a
recursive PCA method that updates the model parameters
using online process data. For monitoring the processes with
multiple operation conditions, multimode PCA methods were
developed [20]–[22]. A multilevel PCA method was proposed
by Liu et al. [23] to utilize the prior knowledge on the
locations of the process variables. Aiming at multiphase batch
process monitoring problems, Zhao and Gao [24] studied
an improved PCA with two-step subspace decomposition to
explore the between-phase relationship.

All the above-mentioned PCA methods are designed for lin-
ear process monitoring. However, most industrial processes are
nonlinear, and therefore, researchers have developed nonlinear
PCA algorithms, known as kernel PCA (KPCA) [25], [26].
Because of its effectiveness, KPCA has become a state of
the art in nonlinear process monitoring. Lee et al. [26] first
constructed the KPCA-based fault detection method, and
Choi et al. [27] developed a fault identification index for
KPCA-based process monitoring. To analyze the multiscale
property of process data, Zhang and Ma [28] proposed a
multiscale KPCA method by utilizing wavelet transformation,
while Yi et al. [29] developed a transformation matrix-based
KPCA method to extract the representative and meaningful
features from data. Deng et al. [30] developed a modified
KPCA method that integrates local data structure analysis
with KPCA. Jiang and Yan [31] proposed a multiblock KPCA
method for nonlinear plant-wide processes by applying mutual
information-based clustering to divide the measured variables
into multiple subblocks. To enhance the detectability of small

1063-6536 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-6882-600X

DENG et al.: DePCA ANALYSIS BASED ON LAYERWISE FEATURE EXTRACTION 2527

process disturbance, Cheng et al. [32] utilized multivariate
exponentially moving average to estimate the process mean
shifts, and integrated the predicted shift with the KPCA
method. More works on KPCA-based process monitoring can
be found in [33]–[35]. A recent work [36] proposed a novel
serial PCA (SPCA) method by closely integrating PCA and
KPCA based on a serial model structure.

All the KPCA methods mentioned above use KPCA as
the core algorithm, and they have been applied to various
nonlinear process monitoring cases. However, there are some
open problems worthy of further investigating. One important
problem is: is the KPCA model sufficient to extract the intrin-
sic features of process data? KPCA applies the kernel function
to implement nonlinear transformation and obtains only one
layer of nonlinear features for statistical modeling. However,
it is often difficult to mine the total information by the single
feature extraction step for the complicated nonlinear process
data. In other words, the feature extraction of KPCA may be
“shallow” and unable to exploit the intrinsic data information
sufficiently. Even the novel SPCA [36], which consists of a
layer of linear PCA feature extraction followed by a layer of
nonlinear KPCA feature extraction, may still be insufficiently
“deep.” In recent years, deep learning has achieved great
success in many fields of science and engineering [37]–[44].
Deep learning theory indicates that the multilevel feature
extraction is beneficial to discover the intricate data structure.
Therefore, to build a multilayer feature extraction model is of
great value to improve the KPCA-based process monitoring
method.

Motivated by the above analysis, we proposes an improved
KPCA method with a deep architecture, referred to as deep
PCA (DePCA), which adopts the layerwise feature extraction
strategy to obtain the multilevel data features for nonlinear
process monitoring. Different from the traditional PCA and
KPCA with only one layer of features as well as unlike the
SPCA [36] that utilizes only one layer of linear features and
one layer of nonlinear features, DePCA constructs a deep
feature extraction model to capture multiple layers of linear
and nonlinear features hierarchically. As DePCA uses PCA
and KPCA as feature extraction tools, complex nonlinear
network optimization is avoided in the procedure of mul-
tilayer feature extraction. Because multiple kernel modeling
increases the computational complexity, the feature-samples’
selection (FSS) technique [45] is applied in the proposed
DePCA method to build the sparse kernel model. At each
layer, two monitoring statistics are constructed based on the
linear or nonlinear features. Furthermore, Bayesian inference
integrates all the monitoring statistics from different layers to
yield an overall indication on the process status. To the best
of our knowledge, there is no study to date combining the
deep learning technology and the KPCA method together in
the process monitoring and fault diagnosis field, and we are
the first to propose the deep learning-enhanced KPCA method
for nonlinear process monitoring.

The remainder of this paper is structured as follows.
In Section II, a brief overview of PCA, KPCA, and SPCA
is given, while our proposed DePCA strategy for nonlinear
process monitoring is detailed in Section III. In Section IV,

two case studies are used to validate the proposed method, and
our conclusions are drawn in Section V.

II. OVERVIEW OF PCA, KPCA, AND SPCA

A. PCA Method

Given a training data matrix X ∈ R
N×M with N samples

of M variables, which is assumed to be mean-centered and
variance-scaled, PCA seeks a projection vector p ∈ R

M

such that the linear transformation t = X p has the maximal
variance. This problem can be formulated as

max
p

1

N − 1
tT t = max

p

1

N − 1
pT XT X p

s.t. pT p = 1 (1)

where the principal component (PC) vector t ∈ R
N is also

called the score vector. Solving the optimization task (1) leads
to the eigenvalue decomposition as

λ p = 1

N − 1
XT X p. (2)

The solution to (2) brings the M eigenvalues λ1 ≥ λ2 ≥ · · · ≥
λM with the corresponding eigenvectors pi for 1 ≤ i ≤ M .
Each pi is also called a loading vector. All M projection direc-
tions P = [p1 p2 . . . pM] ∈ R

M×M can be divided into two
groups: the first K directions PP = [p1 p2 . . . pK] ∈ R

M×K

represent the principal component subspace (PCS), while the
other M − K directions PR = [pK+1 pK+2 . . . pM] ∈
R

M×(M−K) construct the residual subspace (RS). Fig. 1(a)
depicts the PCA model training, which captures the linear
features T = X P for X by optimizing P .

For the testing vector xt = [xt,1 xt,2 . . . xt,M]T ∈ R
M at the

time instant t , its i th score tt,i is computed as

tt,i = xT
t pi , 1 ≤ i ≤ M. (3)

Given tt K = [tt,1 tt,2 . . . tt,K]T ∈ R
K , the following T 2 and

Q monitoring statistics can be built for fault detection [46]:
T 2 = tT

t K�−1 tt K (4)

Q = ‖xt − x̂t‖2 = (xt − PP tt K)T (xt − PP tt K) (5)

where � is the K × K diagonal matrix with the eigenvalues
λi for 1 ≤ i ≤ K as its diagonal elements and x̂t = PP tt K is
the reconstruction of the testing vector xt . It can be seen that
for the PCA method, the T 2 and Q statistics are constructed
based on the linear features of the data. Specifically, the T 2

statistic is designed to monitor the data variations in the PCS,
while the Q statistic is used to monitor the data changes in
the RS. With these two statistics, therefore, the data changes,
more specifically, the changes in the linear features, can be
monitored comprehensively. The PCA-based online monitor-
ing is shown in Fig. 1(b), which involves the original data
layer L1 and the linear feature layer L2. The PC number K
is a key parameter in PCA, and many methods have been
discussed to determine its value [17], [26]. In this paper, the
average eigenvalue method is adopted, which retains the PCs
whose eigenvalues are larger than the average eigenvalue.

2528 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 27, NO. 6, NOVEMBER 2019

Fig. 1. Schematic for PCA-based process monitoring. (a) PCA model
training. (b) PCA online monitoring.

B. KPCA Method

A nonlinear mapping �(.) projects the training data X
onto a new high-dimensional space F . Then, linear PCA is
performed on the new data matrix �(X) ∈ R

N × F to find
the loading vector p ∈ F , so that the score vector t = �(X) p
has the maximal variance. This leads to the optimization

max
p

tT t
N − 1

= max
p

pT �T (X)�(X) p
N − 1

s.t. pT p = 1. (6)

Denoting X = [x1 x2 . . . xN]T and then according
to [25] and [26], there exists a coefficient vector α =
[α1 α2 . . . αN]T ∈ R

N satisfying

p =
N∑

j=1

�(x j)α j = �T (X)α. (7)

By combining (6) and (7), the KPCA optimization becomes

max
α

1

N − 1
αT �(X)�T (X)�(X)�T (X)α

s.t. αT �(X)�T (X)α = 1. (8)

To avoid defining nonlinear mapping �(.), a kernel matrix
is introduced as K = �(X)�T (X). With this kernel trick [25],
the (i, j)th element of K is computed according to

K (i, j) = �T (xi)�(x j) = ker(xi , x j). (9)

Typical kernel functions are the Gaussian kernel ker(xi , x j) =
exp(−‖xi − x j‖2/σ), where σ > 0 is the kernel width, and
the polynomial kernel ker(xi , x j) = (xT

i x j + d0)
d1 , where d0

and d1 are the polynomial kernel parameters [25], [26], [47].
Thus, solving (8) leads to the eigenvalue decomposition as

Kα = (N − 1)λα. (10)

The solutions of (10) bring the Ñ nonzero eigenvalues λ1 ≥
λ2 ≥ · · · λÑ with the corresponding eigenvectors αi for

Fig. 2. Schematic for KPCA-based process monitoring. (a) KPCA model
training. (b) KPCA online monitoring.

1 ≤ i ≤ Ñ , where Ñ ≤ N . Similar to PCA, all the
eigenvectors A = [α1 α2 . . .αÑ] ∈ R

N×Ñ are divided into
two parts, where the first K eigenvectors, whose corresponding
eigenvalues are no less than the average eigenvalue, define the
kernel PCS, while the other Ñ − K eigenvectors construct
the kernel RS. As shown in Fig. 2(a), KPCA model training
computes the kernel PCs (KPCs) T = K A ∈ R

N×Ñ as the
nonlinear features of X .

The i th kernel score for the testing vector xt ∈ R
M is

computed as

tt,i = �T (xt) pi = �T (xt)�
T (X)αi = kT

t αi (11)

where kt = [
kt,1 kt,2 . . . kt,N]T = �(X)�(xt) ∈ R

N and
kt, j = ker(x j , xt) for 1 ≤ j ≤ N . To monitor the change in
nonlinear features, two monitoring statistics are used [26]

T 2 = tT
t K �−1 tt K (12)

Q = ‖�(xt) − �̂(xt)‖2 =
Ñ∑

i=1

t2
t,i −

K∑
i=1

t2
t,i (13)

where tt K = [tt,1 tt,2 . . . tt,K]T ,� is the K × K diagonal
matrix with the eigenvalues λi for 1 ≤ i ≤ K as its
diagonal elements, and �̂(xt) is the reconstruction of the
vector �(xt). The online monitoring of xt is depicted in
Fig. 2(b), which has a three-layer structure involving the
original data layer L1, the kernel mapping layer L2, and
the nonlinear feature layer L3. Similar to PCA, KPCA only
monitors one layer of features. However, the difference is that
KPCA introduces a kernel mapping layer to obtain nonlinear
features.

C. SPCA Method

The SPCA [36] integrates PCA and KPCA by a serial
model structure to extract both linear and nonlinear features
for process monitoring. Specifically, the SPCA model training

DENG et al.: DePCA ANALYSIS BASED ON LAYERWISE FEATURE EXTRACTION 2529

Fig. 3. Schematic for SPCA-based process monitoring. (a) SPCA model
training. (b) SPCA online monitoring.

is shown in Fig. 3(a). Given the training data X , the linear
PCA decomposition is first performed as

X =
K∑

i=1

ti pT
i + X̃ (14)

where ti is the i th linear score vector, pi is the corresponding
loading vector, K is the number of PCs retained, and X̃ =
[x̃1 x̃2 . . . x̃N]T is the PCA residual data matrix. Then, the
KPCA is applied to X̃ to obtain a KPCA decomposition as

�
(
X̃

) =
K̃∑

i=1

t̃i p̃T
i + E (15)

where t̃i ∈ R
N is the i th nonlinear score vector or fea-

ture, p̃i ∈ F is the corresponding loading vector in KPCA
decomposition, and K̃ is the number of KPCs retained, while
E ∈ R

N × F is the KPCA residual matrix. Thus, SPCA first
utilizes the PCA transformation to calculate the PCs TL =
[t1 t2 . . . tK] as the linear features. Then, KPCA modeling
is implemented on the residual matrix X̃ to compute the
KPCs TN = [̃t1 t̃2 . . . t̃Ñ] as the nonlinear features. The
determination of TN is based on the same kernel trick with
the corresponding eigenvectors α̃i ∈ R

N for 1 ≤ i ≤ Ñ .
The SPCA online monitoring for the testing sample xt

is depicted in Fig. 3(b), which has a four-layer structure
involving the original data layer L1, the linear feature and
PCA residual layer L2, the kernel mapping layer L3, and the
nonlinear feature layer L4. More specifically, for the testing

vector xt , its i th linear score is given by

tt,i = xT
t pi . (16)

The first K scores [tt,1 tt,2 . . . tt,K]T are used as the linear
features of xt , and the residual vector of xt is given by

x̃t = xt −
K∑

i=1

tt,i pi . (17)

The i th nonlinear score of x̃t is extracted as

t̃t,i = �T (x̃t) p̃i = k̃T
t α̃i , 1 ≤ i ≤ Ñ (18)

where k̃t ∈ R
N is the test kernel vector whose j th element

is ker(x̃ j , x̃t). The first K̃ nonlinear scores together with the
first K linear scores form the combined linear and nonlinear
feature vector tSPCA = [tt,1 tt,2 . . . tt,K t̃t,1 t̃t,2 . . . t̃t,K̃]T to
construct the two monitoring statistics as

T 2 = tT
SPCA�−1 tSPCA (19)

Q =
Ñ∑

i=1

(̃tt,i)
2 −

K̃∑
i=1

(̃tt,i)
2 (20)

where � is the covariance matrix of the feature vector tSPCA
computed under the normal operating condition.

III. PROPOSED DEPCA METHOD

KPCA performs deeper data learning than PCA and it
outperforms PCA in many application cases [26], [27]. SPCA
constructs a deeper monitoring model than KPCA, and it
has been shown to offer better monitoring performance than
KPCA [36]. It can be seen that a deeper data learning structure
is beneficial to improve nonlinear process monitoring perfor-
mance. Deep learning theory [37]–[44] has been applied to
construct deep neural networks, including convolutional deep
neural networks [42], deep belief networks [43], and autoen-
coder deep networks [44]. These deep neural networks consist
of multiple nonlinear feature extraction layers and transforms
the lower level features into higher level features layerwise.
It turns out that deep learning can discover intricate structures
in high-dimensional data, while conventional shallow learning
may miss. With many simple but nonlinear feature layers, very
complex nonlinear feature extraction is achieved. Motivated by
the success of deep learning as well as inspired by the above
layered structure analysis of PCA, KPCA, and SPCA, we pro-
pose a deep PCA method with layerwise feature extraction to
improve fault detection performance.

A. Construction of DePCA Model

The proposed DePCA modeling extracts linear and nonlin-
ear features by integrating the PCA and KPCA in an L-layered
structure as shown in Fig. 4(a). In this deep layerwise feature
extraction structure, the linear PCs are first extracted from
the training data X ∈ R

N×M as the first-layer features
T (1) ∈ R

N×Ñ (1)
, where Ñ (1) = M . Then KPCA is applied

sequentially to T (l) to extract the nonlinear KPCs T (l+1) ∈
R

N×Ñ (l+1)
for 1 ≤ l ≤ L − 1, where Ñ (l+1) is the number of

nonlinear features extracted at the (l + 1)th layer.

2530 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 27, NO. 6, NOVEMBER 2019

Fig. 4. Schematic for DePCA-based process monitoring. (a) DePCA model
training. (b) DePCA online monitoring.

More specifically, at the first feature layer, a linear opti-
mization task is designed as

max
p(1)

1

N − 1
(p(1))T XT X p(1)

s.t. (p(1))T p(1) = 1 (21)

to produce the M projection vectors p(1)
i ∈ R

M and the
corresponding score vectors t(1)

i = X p(1)
i , 1 ≤ i ≤ M , which

constitute the first-layer features T (1) = [t(1)
1 t(1)

2 . . . t(1)
M].

At the lth feature layer for 2 ≤ l ≤ L, we execute the
nonlinear optimization task

max
p(l)

1

N − 1
(p(l))T �T (T (l−1))�(T (l−1)) p(l)

s.t. (p(l))T p(l) = 1 (22)

in which the (l−1)th-layer feature matrix T (l−1) is the training
data for the lth layer, and p(l) is the nonlinear projection vector
that can be expressed according to (7) as

p(l) =
N∑

j=1

�T (t(l−1)
j)α

(l)
j = �T (T (l−1))α(l) (23)

where t(l−1)
j ∈ R

Ñ (l−1)
denotes the j th column of (T (l−1))T

and α(l) = [α(l)
1 α

(l)
2 . . . α

(l)
N]T . Furthermore, denote K (l−1) =

�(T (l−1))�T (T (l−1)). The nonlinear optimization (22) can be
written in the kernel form

max
α(l)

1

N − 1
(α(l))T K (l−1) K (l−1)α(l)

s.t. (α(l))T K (l−1)α(l) = 1 (24)

which yields the projection vectors α
(l)
i ∈ R

N and the corre-
sponding nonlinear score vectors t(l)i = K (l−1)α

(l)
i ∈ R

N for
1 ≤ i ≤ Ñ (l), where Ñ (l) is the number of α

(l)
i corresponding

to nonzero eigenvalues. Therefore, the lth layer features are
obtained as T (l) = [t(l)1 t(l)2 . . . t(l)

Ñ (l)] ∈ R
N×Ñ (l)

.
The online monitoring procedure for the testing vector xt

using the trained DePCA model is given in Fig. 4(b), where

Fig. 5. Schematic of DePCA-N1- and DePCA-N2-based process monitoring.
(a) DePCA-N1 online monitoring. (b) DePCA-N2 online monitoring.

t(1)
t = [t(1)

t,1 t(1)
t,2 . . . t(1)

t,M]T is the first-layer feature vector
computed by

t(1)
t,i = xT

t p(1)
i , 1 ≤ i ≤ M. (25)

The lthlayer feature vector t(l)t = [t(l)t,1 t(l)t,2 . . . t(l)
t,Ñ (l)]T , where

2 ≤ l ≤ L, is expressed as

t(l)t,i = (
k(l−1)

t
)T

α
(l)
i (26)

in which the kernel vector k(l−1)
t = �(T (l−1))�(t(l−1)

t) =
[k(l−1)

t,1 k(l−1)
t,2 . . . k(l−1)

t,N]T ∈ R
N . It is worth emphasizing that

unlike the multilayer neural network, the DePCA method
realizes the layer-by-layer feature extraction without the need
for complicated network optimization.

How many layers are appropriate is influenced by many
complex factors and is certainly problem-dependent. In the
application to process monitoring, we implement two specific
DePCA models by setting L = 2 and L = 3, which are
denoted as DePCA-N1 and DePCA-N2, respectively, where
N1 indicates that the number of nonlinear feature layers is
one, while N2 indicates that the number of nonlinear feature
layers is two. For the testing vector xt , the monitoring pro-
cedure based on DePCA-N1 is illustrated in Fig. 5(a), which
has the four-layer structure with the original data layer L1,
the linear feature layer L2, the kernel mapping layer L3, and
the nonlinear feature layer L4. Note that DePCA-N1 is very
different from SPCA. In DePCA-N1, we adopt the Gaussian
kernel function for the kernel mapping layer L3. In some
applications, the two layers of linear and nonlinear features in
DePCA-N1 may be insufficient to mine the data features, and
the deeper DePCA-N2 with six layers may be preferred, which
is illustrated in Fig. 5(b). During online monitoring, DePCA-
N2 extracts three layers of features, including one layer of
linear features and two layers of nonlinear features. To ensure

DENG et al.: DePCA ANALYSIS BASED ON LAYERWISE FEATURE EXTRACTION 2531

the diversity of the nonlinear features, the kernel mapping
layer L3 adopts the two-order polynomial kernel, while the
kernel mapping layer L5 employs the Gaussian kernel.

Remark 1: It is clear that the proposed DePCA method is
very different from our previous SPCA method. For simplicity
and clarity, let us compare the DePCA-N1, which consists
of linear-feature extraction and nonlinear-feature extraction,
with the SPCA, which also has linear-feature extraction and
nonlinear-feature extraction. In the SPCA, the KPCA is only
applied to the reconstructed residual matrix, i.e., only applied
to the RS. Therefore, information contained in the PC matrix
of the PCA is not exploited. In contrast, in the DePCA-N1,
the KPCA is applied to both the PCS and the RS, i.e., the
whole original data space. Therefore, there is no information
loss in this KPCA. Consequently, the DePCA-N1 generally
can provide better feature extraction performance than our
early SPCA.

Before applying DePCA-N1 and DePCA-N2 to fault detec-
tion, two issues need to be discussed. The first one is compu-
tational complexity. DePCA-N1 and DePCA-N2 apply more
feature layers than KPCA. Especially, DePCA-N2 involves
two KPCA modeling procedures. The dimensions of the kernel
vector k(l)

t at the L3 and L5 layers are equal to the number of
training samples N . In most cases, N is very large and this
may lead to high computational loads at the feature layers.
Therefore, it is necessary to build a sparse kernel model for
DePCA. The other issue is how to construct online monitoring
statistics. Since each feature layer provides two monitoring
statistics, how to combine the monitoring results at different
layers into an overall monitoring index is also important for
ensuring good monitoring performance. These two problems
will be discussed in Sections III-B and III-C.

B. Sparse Kernel Model With Feature-Samples’ Selection

From various sparse kernel modeling approaches
[45], [47]–[53], we adopt the FSS method of [45]. In (24) of
DePCA modeling, all the samples �(t(l−1)

j) for 1 ≤ j ≤ N
are used to construct the projection vector p(l), which results
in the high-dimensional N × N kernel matrix, leading to
a high computational cost in kernel modeling and online
monitoring, particularly for large N . In fact, it is unnecessary
to use all the samples in the construction of eigenvector (23)
and a subset T (l−1)

S is often sufficient to approximate the data
space as

p(l) ≈ �T (
T (l−1)

S

)
α

(l)
S (27)

where T (l−1)
S = [tS,1 tS,2 . . . t

S,N (l−1)
S

]T for N (l−1)
S ≤ N is

the subset of T (l−1), called the feature-samples set, and α
(l)
S ∈

R
N (l−1)

S is the coefficient vector based on the feature samples.
For convenience of discussion, denote Y = �(T (l−1)) ∈ R

N ×
F , YS = �(T (l−1)

S) ∈ R
N (l−1)

S × F , y j = �(t(l−1)
j) ∈ F , and

yS, j = �(tS, j) ∈ F . Then, the estimate of y j can be obtained
by the feature samples as

ŷ j = Y T
S β j (28)

where β j is the related parameter vector.

Algorithm 1 FSS With Forward Selection Process

The feature samples YS are selected by minimizing the
normalized error function ε j as [45]

ε j = ‖y j − ŷ j ‖2

‖y j ‖2 =
∥∥y j − Y T

S β j
∥∥2

‖y j ‖2 . (29)

For the given YS , β j is obtained as [45]

β j = (
YSY T

S

)−1YS y j . (30)

By substituting (30) into (29), the optimization objective is
reformulated as

ε j = 1 − 1

‖y j ‖2 yT
j Y T

S

(
YSY T

S

)−1YS y j . (31)

Define kS j = YS y j , KSS = YSY T
S , and k j, j = yT

j y j = ‖y j ‖2.
Then, (31) can be rewritten as

ε j = 1 − kT
Sj K −1

SS kS j

k j, j
. (32)

Considering all the samples y j for 1 ≤ j ≤ N , the overall
error is formulated as

ε = 1

N

N∑
j=1

ε j = 1 − 1

N

N∑
j=1

kT
Sj K −1

SS kS j

k j, j
. (33)

The solution to the problem of minimizing ε can be
obtained by a forward selection process [45], which is listed in
Algorithm 1. The reconstruction error threshold εth trades off
the reconstruction accuracy with the computational complex-
ity, and its appropriate value is obviously problem-dependent.
In this paper, we set the value of εth empirically.

The above FSS procedure is applied to select the feature-
samples’ subsets T (l−1)

S for building the sparse kernel models
in DePCA modeling. Thus, the DePCA optimization prob-
lem (24) can be reformulated as

max
α

(l)
S

1

N − 1

(
α

(l)
S

)T K (l−1)
S N K (l−1)

N S α
(l)
S

s.t.
(
α

(l)
S

)T K (l−1)
SS α

(l)
S = 1 (34)

2532 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 27, NO. 6, NOVEMBER 2019

in which we have K (l−1)
S N = �(T (l−1)

S)�T (T (l−1)), K (l−1)
N S =

�(T (l−1))�T (T (l−1)
S), and K (l−1)

SS = �(T (l−1)
S)�T (T (l−1)

S).
By solving the optimization (34), we obtain a set of the sparse

eigenvectors α
(l)
Si ∈ R

N (l−1)
S for 1 ≤ i ≤ Ñ (l)

S , where Ñ (l)
S is

the number of the projection vectors α
(l)
Si corresponding to

the nonzero eigenvalues. Thus, the lth-layer testing features
t(l)t = [t(l)t,1 t(l)t,2 . . . t(l)

t,Ñ (l)
S

]T can be computed based on the sparse

kernel model as

t(l)t,i = (
k(l−1)

St

)T
α

(l)
Si (35)

where k(l−1)
St = [k(l−1)

St,1 k(l−1)
St,2 . . . k(l−1)

St,N (l−1)
S

]T = �(T (l−1)
S)

�(t(l−1)
t) ∈ R

N (l−1)
S . By ensuring N (l−1)

S << N , online sample
monitoring time is reduced significantly.

C. Monitoring Statistics Based on Bayesian Inference

For DePCA-based online sample monitoring, each feature
layer offers two monitoring statistics T 2(l) and Q(l), where 1 ≤
l ≤ L. Under the normal operation, all the monitoring statistics
should be smaller than their confidence limits, denoted by
T 2(l)

lim and Q(l)
lim. We determine the confidence limits using

kernel density estimation (KDE), which has the advantage of
needing no specific data distribution assumption and has been
used in many process monitoring methods [30], [47], [49].
Specifically, the normal operation data are projected onto the
statistical models and the monitoring statistics T 2(l)

lim and Q(l)
lim

are computed. Then, the density function is estimated for each
statistic by the KDE method. With the specified significance
level δ, the confidence limit is determined by finding the point
occupying the 1−δ area of the density function. In this paper,
the significance level δ is set to 5% and the 95% confidence
limit is applied for all statistics.

To integrate the monitoring statistics at all the feature layers,
a fusion strategy based on Bayesian inference is proposed
to generate an overall decision, indicating the process status.
With this strategy, Bayesian inference is first applied to
turn each monitoring statistic into a posterior fault proba-
bility. Then, all the probability values from different layers
are weighted to construct the probability-based monitoring
statistics.

For the monitoring statistics T 2(l) and Q(l), we denote the
occurrence probabilities of sample xt under fault condition C f

as P(l)
T 2 (xt |C f) and P(l)

Q (xt |C f), which are defined, respec-
tively, by [31], [54], [55]

P(l)
T 2 (xt |C f) = exp

(− γ T 2(l)
lim /T 2(l)) (36)

P(l)
Q (xt |C f) = exp

(− γ Q(l)
lim/Q(l)) (37)

while the occurrence probabilities of sample xt under
normal operation condition Cn are denoted as P(l)

T 2 (xt |Cn)

and P(l)
Q (xt |Cn), which are computed, respectively,

by [31], [54], [55]

P(l)
T 2 (xt |Cn) = exp

(− γ T 2(l)/T 2(l)
lim

)
(38)

P(l)
Q (xt |Cn) = exp

(− γ Q(l)/Q(l)
lim

)
(39)

where γ is a tuning parameter designed to decrease the
sensitivity to data outliers, and we set γ = 0.2 empirically.

According to Bayesian inference [31], [54], the monitoring
statistics T 2(l) and Q(l) can be transformed into the posterior
fault probabilities P(l)

T 2 (C f |xt) and P(l)
Q (C f |xt) by

P(l)
T 2 (C f |xt) = P(l)

T 2 (xt |C f)P(l)
T 2 (C f)

P(l)
T 2 (xt)

, 1 ≤ l ≤ L (40)

P(l)
Q (C f |xt) = P(l)

Q (xt |C f)P(l)
Q (C f)

P(l)
Q (xt)

, 1 ≤ l ≤ L (41)

where P(l)
T 2 (C f) and P(l)

Q (C f) are the prior fault probabilities

equivalent to the significance level δ, while P(l)
T 2 (xt) and

P(l)
Q (xt) are the occurrence probabilities of xt given by

P(l)
T 2 (xt) = P(l)

T 2 (xt |C f)P(l)
T 2 (C f)+ P(l)

T 2 (xt |Cn)P(l)
T 2 (Cn) (42)

P(l)
Q (xt) = P(l)

Q (xt |C f)P(l)
Q (C f)+ P(l)

Q (xt |Cn)P(l)
Q (Cn) (43)

in which P(l)
T 2 (Cn) and P(l)

Q (Cn) are the prior normal proba-
bilities equivalent to the confidence level 1 − δ.

Based on (40) and (41), two probability-based overall mon-
itoring statistics PT 2 and P Q are constructed by weighting
the posterior fault probabilities at each layer according to

PT 2 =
∑L

l=1 w
(l)
T 2 P(l)

T 2 (C f |xt)∑L
l=1 w

(l)
T 2

=
L∑

l=1

w̄
(l)
T 2 P(l)

T 2 (C f |xt) (44)

P Q =
∑L

l=1 w
(l)
Q P(l)

Q (C f |xt)∑L
l=1 w

(l)
Q

=
L∑

l=1

w̄
(l)
Q P(l)

Q (C f |xt) (45)

where w
(l)
T 2 and w

(l)
Q are the weighting factors, while w̄

(l)
T 2 =

w
(l)
T 2/

∑L
l=1 w

(l)
T 2 and w̄

(l)
Q = w

(l)
Q /

∑L
l=1 w

(l)
Q are the normal-

ized weighting factors.
In order to highlight the fault alarming information, if some

statistic indicates the occurrence of fault, it should be given
with a large weighting factor. Otherwise, the statistic should
have a small weighting factor. Therefore, we design the
weighting according to

w
(l)
T 2 =

⎧⎨
⎩

1

ε
, if P(l)

T 2 (C f |xt) > δ&P̄(l)
T 2 (C f |xt) > δ

ε, otherwise
(46)

w
(l)
Q =

⎧⎨
⎩

1

ε
, if P(l)

Q (C f |xt) > δ&P̄(l)
Q (C f |xt) > δ

ε, otherwise
(47)

where 0 < ε < 1 is a very small number, and P̄(l)
T 2 (C f |xt) and

P̄(l)
Q (C f |xt) are the mean posterior fault probabilities over the

past H testing samples, given by

P̄(l)
T 2 (C f |xt) = 1

H

t∑
i=t−H+1

P(l)
T 2 (C f |xi) (48)

P̄(l)
Q (C f |xt) = 1

H

t∑
i=t−H+1

P(l)
Q (C f |xi). (49)

DENG et al.: DePCA ANALYSIS BASED ON LAYERWISE FEATURE EXTRACTION 2533

In (46) and (47), P(l)
T 2 (C f |xt) > δ and P(l)

Q (C f |xt) > δ are
the judging condition related to the current sample, while
P̄(c)

T 2 (C f |xt) > δ and P̄(c)
Q (C f

∣∣xt) > δ are the judging
condition based on the past H samples. When both these two
conditions indicate a fault, the weighting factor is given a large
value of 1/ε. Otherwise, the process is considered under the
normal operation condition and a small weighting factor ε is
assigned for the corresponding statistic.

Remark 2: The choice of H is to balance the conflicting
requirements of achieving a high fault detection rate (FDR)
while maintaining a low false alarming rate (FAR). This is
because a large H value helps to decrease the influence of the
noise in data, which leads to a low FAR. But a too large H
is unable to reflect the current process status properly, which
decreases the FDR. Similarly, for a relatively large ε value,
fault information cannot be highlighted, which leads to a low
FDR, although the FAR will also be low. For a sufficiently
small ε, fault information can be properly highlighted, which
achieves a high FDR, although the FAR will also be high.
Therefore, appropriate values of H and ε must be determined
empirically. In our case studies, the value of H and ε are
empirically selected as H = 6 and ε = 0.01.

With the aid of the weightings (46) and (47), the two
probability-based overall monitoring statistics, (44) and (45),
are built, which integrate the results of all the feature layers to
indicate the process operating status. Specifically, if PT 2 ≤ δ
and P Q ≤ δ, the process is under the normal operation;
otherwise, a fault sample is detected.

D. Process Monitoring Procedure Based on DePCA

The DePCA-based process monitoring procedure involves
offline model training and online sample monitoring stages.

In the offline model training stage, normal operating data
are collected and divided into training and validating data sets.
The training data set is used to build the DePCA model and the
validating data set is used to compute the confidence limits.

Offline Model Training Stage:
1) Collect the normal operation data set, divide it into the

training data set Xtr and the validating data set Xva, and
normalize both the data sets with the mean and variance
of the normal training data set.

2) Build the DePCA model using the training data Xtr.
3) Project the validating data Xva onto the DePCA model

and compute the monitoring statistics T 2(l) and Q(l) for
each layer.

4) Obtain the confidence limits T 2(l)
lim and Q(l)

lim using the
KDE method.

During the online monitoring stage, newly measured data
sample is projected onto the DePCA model. The data features
of the new sample are extracted and the monitoring statistics
PT 2 and P Q are obtained to judge the process status.

Online Sample Monitoring Stage:
1) Acquire the new data xt at the sample time t and

normalize it with the mean and variance of the normal
training data set.

2) Project xt onto the DePCA model and compute the
features of different layers.

3) Compute the layerwise monitoring statistics correspond-
ing to xt and obtain the overall probability-based mon-
itoring statistics PT 2 and P Q using (44) and (45).

4) Judge if a fault occurs by comparing PT 2 and P Q with
their respective significance levels.

IV. CASE STUDIES

We conduct two case studies involving a simulated nonlinear
system and the benchmark Tennessee Eastman (TE) process to
verify the effectiveness of our proposed DePCA-based process
monitoring approach, specifically, DePCA-N1 and DePCA-
N2, in comparison with the KPCA- and SPCA-based methods.
For all these methods of building statistical models, the 95%
confidence limits are computed for each statistic by the KDE
method. In all monitoring charts, the 95% confidence limit
is plotted with the dashed line, while the monitoring statistic
is plotted with the solid curve. Two performance indices are
used to evaluate the monitoring results, which are the FDR
and the fault detection time (FDT). The FDR is defined as
the percentage of the samples exceeding the confidence limits
over all the faulty samples, while the FDT is defined as the
sample index of the alarming sample from which successive
six samples exceed the confidence limit first time.

A. Simulated Nonlinear System

A nonlinear system with three variables is simulated accord-
ing to the following model [26]:⎧⎪⎨

⎪⎩
x1 = u + e1

x2 = u2 − 3u + e2

x3 = −u3 + 3u2 + e3

(50)

where x1, x2 and x3 are the monitored variables and the
source variable u obeys the uniform distribution in [−2, 2],
while the noises e1, e2 and e3 follow the independent normal
distributions with zero mean and variance 0.01. The normal
operation data set of 1000 samples is generated based on (50).
Five hundred samples of the normal operation data set are
used as the training data to develop the statistical model
and the other 500 samples are used as the validating data
set to obtain the confidence limits. In order to test the fault
detection performance, one fault is simulated, which is a
step measurement bias of 1.0 in x2. This fault case includes
500 samples where the fault is introduced after the 200th
sample.

The kernel modeling of KPCA, SPCA, and DePCA-
N1 as well as the second kernel modeling layer of DePCA-
N2 involve the use of the Gaussian kernel function with
the kernel width set to σ = 500m empirically, where m
denotes the dimension of the input vector to the corresponding
kernel mapping layer. For DePCA-N2, additionally, the first
kernel modeling layer adopts the two-order polynomial kernel
function with the parameters empirically set to d0 = m and
d1 = 2. The values of m for various methods are listed in
Table I. The reconstruction threshold εth is empirically chosen
to be 0.0001 for both DePCA-N1 and DePCA-N2.

The fault detection results obtained by the KPCA, SPCA,
DePCA-N1, and DePCA-N2 are illustrated in Figs. 6–9,

2534 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 27, NO. 6, NOVEMBER 2019

TABLE I

INPUT DIMENSION TO KERNEL MAPPING LAYER. THE NUMBER OF

MONITORED VARIABLES IS M , AND Ñ (2)
S IS THE NUMBER

OF NONLINEAR FEATURES EXTRACTED BY THE

1st NONLINEAR FEATURE LAYER (L4)

Fig. 6. KPCA monitoring charts for the simulated nonlinear system fault.

Fig. 7. SPCA monitoring charts for the simulated nonlinear system fault.

Fig. 8. DePCA-N1 monitoring charts for the simulated nonlinear system
fault.

respectively. The results are also summarized in Table II,
where “–” indicates that no successive six samples exceed the
confidence limit, and thus the fault is not alarmed. According
to Fig. 6, the KPCA T 2 statistic cannot detect the fault
successfully, while its Q statistic detects the fault at the 240th
sample. The FDRs of the KPCA T 2 and Q statistics are 6.0%
and 58.3%, respectively. The SPCA method does better as
can be seen from Fig. 7. Specifically, the SPCA T 2 and Q
statistics obtain the FDRs of 41.0% and 61.0%, respectively,
while its T 2 and Q statistics achieve the FDTs at the 240th
and 219th samples, respectively. It can be seen from Fig. 8
that the DePCA-N1 PT 2 and P Q statistics obtain the FDRs

Fig. 9. DePCA-N2 monitoring charts for the simulated nonlinear system
fault.

TABLE II

FDRS (%) AND FDTS (SAMPLE NUMBER) FOR THE SIMULATED

NONLINEAR SYSTEM FAULT OBTAINED BY PCA, KPCA, AND DEPCA

Fig. 10. DePCA-N2 monitoring statistics at each feature layer.

of 23.3% and 74.0%, respectively. Although the DePCA-N1
PT 2 statistic performs worse than the SPCA T 2 statistic, its
P Q statistic detects the fault at the 204th sample, earlier
than the SPCA method, while its P Q statistic also achieves
a higher FDR than the SPCA. With a deeper three-feature-
layer structure, the DePCA-N2 obtains the best monitoring
performance whose FDRs are 91.7% and 96.3% for the PT 2

and P Q statistics, respectively, while whose FDTs are the
204th and 201th samples for the two statistics, respectively.

To provide insight on how the deep model structure
improves fault detection performance, we analyze the DePCA-
N2 monitoring statistics at each feature layer in Fig. 10. It can
be observed that the fault detection capability is enhanced
layer by layer. The normalized weighting factors are displayed
in Fig. 11. It is clear that all the statistics have the same
weights before the fault is introduced at the 200th sample.
When the fault occurs, the statistics that can indicate the
occurrence of the fault have the bigger weight values. Observe
that since the L2 linear feature-based statistics fail to sound
the alarm, the weighting values for most of the faulty samples
fall to zero. The L4 nonlinear feature-based statistics become

DENG et al.: DePCA ANALYSIS BASED ON LAYERWISE FEATURE EXTRACTION 2535

Fig. 11. Weighting factors for the layerwise monitoring statistics of
DePCA-N2.

Fig. 12. TE process flowchart.

capable of detecting the fault, and many of the faulty samples
are assigned with nonzero weight values. Since the fault detec-
tion capability of the L6 nonlinear feature-based statistics is
significantly enhanced, most of the faulty samples are assigned
with large nonzero weight values and many of these weights
take the largest value of 1. Evidently, deep feature extraction
is beneficial to detect process faults and our weighting strategy
is effective to highlight the fault information.

B. TE Process

The TE process, detailed by Downs and Vogel [56],
has been a benchmark process for evaluating the process
monitoring and fault diagnosis methods [21], [30], [31],
[54], [57]. The TE process is a simulated real chemical
process, whose flowchart is illustrated in Fig. 12, and it
involves five major units: reactor, condenser, compressor,
stripper, and separator. For process monitoring modeling,
we select 52 variables as monitored variables, including 22
continuous process variables, 19 composition measurement
variables, and 11 manipulated variables. Normal operation
and many fault cases have been designed for this process.
The 21 faults used in our study are listed in Table III.
The corresponding simulation data can be downloaded from

TABLE III

LIST OF THE TE PROCESS FAULTS USED

Fig. 13. KPCA monitoring charts for the TE process fault F5.

http://web.mit.edu/braatzgroup/links.html. The normal opera-
tion data include 1460 samples, and we use 500 samples to
construct the training data set and the other 960 samples as
validating data set. Each fault data set involves 960 samples
and the fault is introduced after the 160th sample.

For the KPCA, SPCA, and DePCA-N1 as well as the second
kernel mapping layer of DePCA-N2, the Gaussian kernel
function is used with a kernel width of σ = 500m found
empirically. For the first kernel mapping layer of DePCA-N2,
the two-order polynomial kernel function is adopted with the
parameters d0 = 100m and d1 = 2. The reconstruction error
threshold εth for the FSS-based sparse modeling in DePCA-
N1 and DePCA-N2 is empirically set to 0.002. The number
of the retained linear or nonlinear PCs is determined by
the average eigenvalue method. The confidence limits of the
monitoring statistics are computed by the KDE method.

We first use the fault F5 to compare the fault detection
performance of various methods. This fault is related to the
step change in the condenser cooling water inlet temperature.
When this fault occurs, the close-loop controller will compen-
sate its influence, and as a result, the fault seems to disappear
after a period of time. In fact, the fault is still existing but “is
hidden” by feedback control. The KPCA monitoring charts
for this fault are shown in Fig. 13, where it can be seen that
both the T 2 and Q statistics detect this fault at the 161th
sample. However, after the 350th sample, both the statistics
decrease sharply, with the T 2 statistic under the confidence

2536 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 27, NO. 6, NOVEMBER 2019

Fig. 14. SPCA monitoring charts for the TE process fault F5.

Fig. 15. DePCA-N1 monitoring charts for the TE process fault F5.

Fig. 16. DePCA-N2 monitoring charts for the TE process fault F5.

Fig. 17. KPCA monitoring charts for the TE process fault F10.

limit and the Q statistic just above the confidence limit. Hence,
the KPCA monitoring charts may mislead the operator to
believe that the fault has gone. From the SPCA monitoring
charts shown in Fig. 14, we observe that its T 2 statistic
performs very similarly to the KPCA’s T 2 statistic, but its
Q statistic does much better, which clearly and consistently
exceeds the confidence limit. Figs. 15 and 16 confirm that
both the DePCA-N1 and DePCA-N2 outperform the SPCA.
Specifically, the two DePCA monitoring statistics exceed the
confidence limit with 100% FDR during the faulty period.

Next, we investigate the monitoring performance of various
methods on the fault F10, which involves the random varia-
tions of stream 4 feed temperature. The monitoring charts from
the four methods are depicted in Figs. 17–20, respectively.

Fig. 18. SPCA monitoring charts for the TE process fault F10.

Fig. 19. DePCA-N1 monitoring charts for the TE process fault F10.

Fig. 20. DePCA-N2 monitoring charts for the TE process fault F10.

It can be seen from Fig. 17 that the KPCA T 2 and Q statistics
detect this fault at the 208th and 182th samples, respectively,
and the corresponding FDRs are 54.9% and 86.9%. According
to Fig. 18, the SPCA T 2 and Q statistics alarm this fault at
the 182th sample and the 185th sample, respectively, with the
FDRs of 89.5% and 82.1%. As shown in Fig. 19, the DePCA-
N1 PT 2 statistic detects the fault at the 181th sample and
achieves the FDR of 89.0%, which is similar to the SPCA
T 2 statistic. However, the DePCA-N1 P Q statistic detects the
fault at the 182th sample and has an 89.9% FDR, which is
better than the SPCA Q statistic. The monitoring results of the
DePCA-N2 plotted in Fig. 20 indicate that its PT 2 statistic
detects the fault at the 179th sample while its P Q statistic
gives the fault alarm at the 182th sample.

Table IV summarizes the FDRs obtained by the KPCA,
SPCA, DePCA-N1, and DePCA-N2 methods for all the 21 TE
process faults. Observe that the DePCA-N1 attains a higher
average FDR than the KPCA and SPCA. However, the mon-
itoring results of the DePCA-N1 and DePCA-N2 are very
close. This may be because for these particular fault data,
the DePCA-N1 has extracted enough feature information and
the DePCA-N2 could hardly enhance it with one more non-
linear feature layer. Further examining the results of Table IV,
we observe that the two DePCA methods achieve similar

DENG et al.: DePCA ANALYSIS BASED ON LAYERWISE FEATURE EXTRACTION 2537

TABLE IV

FDRS (%) OF THE 21 TESTED TE PROCESS FAULTS OBTAINED
BY THE KPCA, SPCA, AND DePCA METHODS

Fig. 21. Average FDRs obtained by the four methods over the faults F4, F5,
F10, F11, F15, F16, F17, F19, F20, and F21.

performance as the KPCA and SPCA methods on the faults
F1, F2, F3, F6, F7, F8, F9, F12, F13, F14, and F18, while
the DePCA-N1 and DePCA-N2 outperform the KPCA and
SPCA when detecting the faults F4, F5, F10, F11, F15, F16,
F17, F19, F20, and F21. Fig. 21 shows the average FDRs over
these 10 faults obtained by the four methods. It can be seen
from Table IV that all the four methods fail for the faults F3,
F9, and F15. In fact, it is well known that these three faults are
extremely difficult for data-driven monitoring methods owing
to the reason that there exist no observable changes in the
mean or variance of these three fault data sets [58].

To investigate the influence of the kernel width on the
achievable performance, in Table V, we list the average FDRs
achieved by the four methods, given different Gaussian kernel
widths of σ = 50m, 100m, 500m, and 1000m. For the
first kernel mapping layer of DePCA-N2, the parameter d0
is fixed to 100m. From Table V, we observe that for the
KPCA, SPCA, and DePCA-N1, the achievable performance
are influenced by the value of σ used, and σ = 500m seems
to be an appropriate choice. In contrast, for the DePCA-N2,

TABLE V

AVERAGE FDRS (%) OF THE 21 TESTED TE PROCESS FAULTS OBTAINED
BY THE KPCA, SPCA, AND DEPCA METHODS, GIVEN DIFFERENT

GAUSSIAN KERNEL WIDTHS. THE PARAMETER d0 IS FIXED TO

100 m FOR THE FIRST KERNEL MAPPING

LAYER OF DEPCA-N2

TABLE VI

AVERAGE FARS (%) OF THE TESTED TE PROCESS DATA SETS OBTAINED
BY THE KPCA, SPCA, AND DePCA METHODS

the achievable performance remains consistently good for all
the four choices of σ . We further fix σ = 500m for the second
kernel mapping layer of DePCA-N2 and vary its first kernel
mapping layer parameter to d0 = 50m, 100m, 500m, and
1000m. Again, the achievable performance of the DePCA-
N2 remains consistent with that of Table V. Intriguingly,
the DePCA-N2 is more robust to its kernel parameters. Thus,
even though the DePCA-N2 has more kernel mapping layers,
it is in fact easier to choose its kernel parameters appropriately.

The FAR, defined as the percentage of the samples exceed-
ing the confidence limit under the normal operation condition,
is also an important metric in process monitoring. As the
95% confidence limit is used as the fault detection threshold,
up to 5% of the normal samples may exceed the confidence
limit statistically. That is, the FAR should not exceed 5%.
The first 160 samples of each fault data set are the normal
operation samples, which are used to calculate the FAR,
and the average FAR is obtained by averaging over all the
3360 normal samples of the 21 fault data sets. Table VI lists
the average FARs of the four methods, where it can be seen
that all the average FARs are lower than 5%, and the DePCA-
N2 achieves lower average FARs than the KPCA, SPCA, and
DePCA-N1.

To compare the computation complexities of the KPCA,
SPCA, DePCA-N1, and DePCA-N2, we list their main compu-
tation tasks for monitoring single online sample in Table VII.
It is easy to understand that the KPCA requires less compu-
tation tasks than the SPCA and DePCA methods, because the
KPCA is the shallowest nonlinear modeling. Also the online
computational complexity of the SPCA should be very close
to that of the KPCA, because the linear feature extraction
requires very little extra computational cost. Furthermore,
the complexity of the DePCA-N1 may actually be lower than
the SPCA, as the FSS-based sparse kernel model projection
may extract a smaller number of nonlinear features. Finally,
it can be seen that the complexity of the DePCA-N2 should
be around twice of the DePCA-N1. To verify these analyses,
we evaluate the online computation time (C-Time) of each
method. Specifically, we run the online monitoring programs

2538 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 27, NO. 6, NOVEMBER 2019

TABLE VII

COMPUTATION TASKS AND C-TIMES FOR MONITORING SINGLE ONLINE
SAMPLE BY THE KPCA, SPCA, AND DePCA METHODS

TABLE VIII

AVERAGE C-TIMES (s) FOR MONITORING SINGLE ONLINE SAMPLE BY
THE DePCA METHODS WITH AND WITHOUT THE FSS

of different methods 10 times on the same computer, config-
ured with Intel Core i7-5500U processor (2.4 GHz) and 8G
RAM memory. The average C-Times per sample of the four
methods are also listed in Table VII. The results of Table VII
clearly confirm our computational complexity analysis.

To validate the effectiveness of the FSS method, we run the
online monitoring programs of the DePCA algorithms with
the FSS and without the FSS on the same computational
platform, given in the previous paragraph, and the online
computational times obtained are compared in Table VIII.
It can be seen that for the DePCA-N1 structure, using the
FSS method, yields approximately 19% saving in the online
computational time, while for the DePCA-N2 structure, saving
in the online computational time is about 21%. Furthermore,
it can be seen by comparing Table VII with Table VIII that the
online computational time required by the DePCA-N1 without
employing the FSS is similar to that of the SPCA, which is
as expected.

V. CONCLUSION

A novel layerwise feature extraction-based deep statistical
modeling approach, referred to as DePCA, has been proposed
for nonlinear process monitoring. Our contribution has been
threefold. First and most importantly, we have presented a
deep PCA model structure by introducing deep learning to
improve the existing nonlinear PCA methods. Our DePCA
applies PCA and KPCA to extract the multiple layers of
linear and nonlinear features efficiently, and it does not require
complicated nonlinear neural network optimization. Under this
framework, two practical DePCA-N1 and DePCA-N2 models

have been adopted for process monitoring. Second, an FSS
technique has been applied to build a sparse kernel model
of DePCA, which is capable of significantly reducing the
computation loads caused by multiple layers of feature extrac-
tion. Third, a Bayesian inference-based monitoring strategy
has been constructed to fuse all the monitoring statistics at
different feature layers. Simulation results including a simu-
lated nonlinear system and the benchmark TE process have
validated the effectiveness of the DePCA method over the
existing state-of-the-art KPCA methods.

This paper has opened up a new research direction for
KPCA-based nonlinear process monitoring by exploiting hier-
archical feature extraction. There are many theoretical and
practical issues deserving further investigation. An important
question is how “deep” should be, or how many feature layers
are enough to mine the latent data features sufficiently for
a given problem. Further research is warranted to study this
issue. This paper focuses on fault detection. After a fault is
detected, it is necessary to carry out fault identification in order
to find out the root cause of the fault. How to realize the fault
identification in DePCA-based process monitoring is worthy
further investigating.

REFERENCES

[1] S. Yin, X. Li, H. Gao, and O. Kaynak, “Data-based techniques focused
on modern industry: An overview,” IEEE Trans. Ind. Electron., vol. 62,
no. 1, pp. 657–667, Jan. 2015.

[2] Y. Zhang, T. Chai, Z. Li, and C. Yang, “Modeling and monitoring of
dynamic processes,” IEEE Trans. Neural Netw. Learn. Syst., vol. 23,
no. 2, pp. 277–284, Feb. 2012.

[3] S. J. Qin, “Survey on data-driven industrial process monitoring and
diagnosis,” Annu. Rev. Control, vol. 36, no. 2, pp. 220–234, Dec. 2012.

[4] Z. Ge, “Review on data-driven modeling and monitoring for plant-
wide industrial processes,” Chemometrics Intell. Lab. Syst., vol. 171,
pp. 16–25, Dec. 2017.

[5] Z. Ge, Z. Song, S. X. Ding, and B. Huang, “Data mining and analytics
in the process industry: The role of machine learning,” IEEE Access,
vol. 5, pp. 20590–20616, 2017.

[6] L. I. Kuncheva and W. J. Faithfull, “PCA feature extraction for change
detection in multidimensional unlabeled data,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 25, no. 1, pp. 69–80, Jan. 2014.

[7] J. Zhu, Z. Ge, and Z. Song, “HMM-driven robust probabilistic principal
component analyzer for dynamic process fault classification,” IEEE
Trans. Ind. Electron., vol. 62, no. 6, pp. 3814–3821, Jun. 2015.

[8] Y. Xu and X. Deng, “Fault detection of multimode non-Gaussian
dynamic process using dynamic Bayesian independent component analy-
sis,” Neurocomputing, vol. 200, pp. 70–79, Aug. 2016.

[9] X. Tian, L. Cai, and S. Chen, “Noise-resistant joint diagonalization
independent component analysis based process fault detection,” Neu-
rocomputing, vol. 149, pp. 652–666, Feb. 2015.

[10] S. Moon and H. Qi, “Hybrid dimensionality reduction method based
on support vector machine and independent component analysis,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 23, no. 5, pp. 749–761, May 2012.

[11] B. Jiang, X. Zhu, D. Huang, J. A. Paulson, and R. D. Braatz, “A com-
bined canonical variate analysis and Fisher discriminant analysis (CVA–
FDA) approach for fault diagnosis,” Comput. Chem. Eng., vol. 77,
pp. 1–9, Jun. 2015.

[12] C. Ruiz-cárcel, L. Lao, Y. Cao, and D. Mba, “Canonical variate analysis
for performance degradation under faulty conditions,” Control Eng.
Pract., vol. 54, pp. 70–80, Sep. 2016.

[13] S. Yin, S. X. Ding, A. Haghani, H. Hao, and P. Zhang, “A comparison
study of basic data-driven fault diagnosis and process monitoring meth-
ods on the benchmark Tennessee Eastman process,” J. Process Control,
vol. 22, no. 9, pp. 1567–1581, 2012.

[14] J. Feng, J. Wang, H. Zhang, and Z. Han, “Fault diagnosis method of
joint fisher discriminant analysis based on the local and global manifold
learning and its kernel version,” IEEE Trans. Autom. Sci. Eng., vol. 13,
no. 1, pp. 122–133, Jan. 2016.

DENG et al.: DePCA ANALYSIS BASED ON LAYERWISE FEATURE EXTRACTION 2539

[15] K. Peng, K. Zhang, B. You, J. Dong, and Z. Wang, “A quality-
based nonlinear fault diagnosis framework focusing on industrial mul-
timode batch processes,” IEEE Trans. Ind. Electron., vol. 63, no. 4,
pp. 2615–2624, Apr. 2016.

[16] Q. Liu, S. J. Qin, and T. Chai, “Multiblock concurrent PLS for decentral-
ized monitoring of continuous annealing processes,” IEEE Trans. Ind.
Electron., vol. 61, no. 11, pp. 6429–6437, Nov. 2014.

[17] W. Ku, R. H. Storer, and C. Georgakis, “Disturbance detection and
isolation by dynamic principal component analysis,” Chemometrics
Intell. Lab. Syst., vol. 30, no. 1, pp. 179–196, 1995.

[18] G. Li, S. J. Qin, and D. Zhou, “A new method of dynamic latent-variable
modeling for process monitoring,” IEEE Trans. Ind. Electron., vol. 61,
no. 11, pp. 6438–6445, Nov. 2014.

[19] I. Portnoy, K. Melendez, H. Pinzon, and M. Sanjuan, “An improved
weighted recursive PCA algorithm for adaptive fault detection,” Control
Eng. Pract., vol. 50, pp. 69–83, May 2016.

[20] Q. Jiang, B. Huang, and X. Yan, “GMM and optimal principal
components-based Bayesian method for multimode fault diagnosis,”
Comput. Chem. Eng., vol. 84, pp. 338–349, Jan. 2016.

[21] H. Ma, Y. Hu, and H. Shi, “A novel local neighborhood standardization
strategy and its application in fault detection of multimode processes,”
Chemometrics Intell. Lab. Syst., vol. 118, pp. 287–300, Aug. 2012.

[22] X. Deng and X. Tian, “Multimode process fault detection using
local neighborhood similarity analysis,” Chin. J. Chem. Eng., vol. 22,
nos. 11–12, pp. 1260–1267, Nov. 2014.

[23] Q. Liu, S. J. Qin, and T. Chai, “Decentralized fault diagnosis of
continuous annealing processes based on multilevel PCA,” IEEE Trans.
Autom. Sci. Eng., vol. 10, no. 3, pp. 687–698, Jul. 2013.

[24] C. Zhao and F. Gao, “Statistical modeling and online fault detection
for multiphase batch processes with analysis of between-phase rela-
tive changes,” Chemometrics Intell. Lab. Syst., vol. 130, pp. 58–67,
Jan. 2014.

[25] B. Schölkopf, A. Smola, and K.-R. Müller, “Nonlinear component
analysis as a kernel eigenvalue problem,” Neural Comput., vol. 10, no. 5,
pp. 1299–1319, 1998.

[26] J.-M. Lee, C. K. Yoo, S. W. Choi, P. A. Vanrolleghem, and
I.-B. Lee, “Nonlinear process monitoring using kernel principal compo-
nent analysis,” Chem. Eng. Sci., vol. 59, no. 1, pp. 223–234, Jan. 2004.

[27] S. W. Choi, C. K. Lee, J.-M. Lee, J. H. Park, and I.-B. Lee, “Fault
detection and identification of nonlinear processes based on kernel
PCA,” Chemometrics Intell. Lab. Syst., vol. 75, no. 1, pp. 55–67,
Jan. 2005.

[28] Y. Zhang and C. Ma, “Fault diagnosis of nonlinear processes using
multiscale KPCA and multiscale KPLS,” Chem. Eng. Sci., vol. 66, no. 1,
pp. 64–72, 2011.

[29] J. Yi, D. Huang, S. Fu, H. He, and T. Li, “Optimized relative trans-
formation matrix using bacterial foraging algorithm for process fault
detection,” IEEE Trans. Ind. Electron., vol. 63, no. 4, pp. 2595–2605,
Apr. 2016.

[30] X. Deng, X. Tian, and S. Chen, “Modified kernel principal component
analysis based on local structure analysis and its application to nonlinear
process fault diagnosis,” Chemometrics Intell. Lab. Syst., vol. 127,
pp. 195–209, Aug. 2013.

[31] Q. Jiang and X. Yan, “Nonlinear plant-wide process monitoring using
MI-spectral clustering and Bayesian inference-based multiblock KPCA,”
J. Process Control, vol. 32, pp. 38–50, Aug. 2015.

[32] C.-Y. Cheng, C.-C. Hsu, and M.-C. Chen, “Adaptive kernel principal
component analysis (KPCA) for monitoring small disturbances of non-
linear processes,” Ind. Eng. Chem. Res., vol. 49, no. 5, pp. 2254–2262,
2010.

[33] L. Cai, X. Tian, and S. Chen, “Monitoring nonlinear and non-Gaussian
processes using Gaussian mixture model-based weighted kernel inde-
pendent component analysis,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 28, no. 1, pp. 122–135, Jan. 2017.

[34] Z. Ge, C. Yang, and Z. Song, “Improved kernel PCA-based monitoring
approach for nonlinear processes,” Chem. Eng. Sci., vol. 64, no. 9,
pp. 2245–2255, May 2009.

[35] X. Deng and X. Tian, “Nonlinear process fault pattern recognition
using statistics kernel PCA similarity factor,” Neurocomputing, vol. 121,
pp. 298–308, Dec. 2013.

[36] X. Deng, X. Tian, S. Chen, and C. J. Harris, “Nonlinear process
fault diagnosis based on serial principal component analysis,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 29, no. 3, pp. 560–572,
Mar. 2018.

[37] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
pp. 436–444, May 2015.

[38] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, no. 5786, pp. 504–507,
2006.

[39] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

[40] I. Arel, D. C. Rose, and T. P. Karnowski, “Deep machine learning—A
new frontier in artificial intelligence research [research frontier],” IEEE
Comput. Intell. Mag., vol. 5, no. 4, pp. 13–18, Nov. 2010.

[41] Y. Bengio, A. Courville, and P. Vincent, “Representation learning:
A review and new perspectives,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 8, pp. 1798–1828, Aug. 2013.

[42] S. Kim, B. Park, B. S. Song, and S. Yang, “Deep belief network based
statistical feature learning for fingerprint liveness detection,” Pattern
Recognit. Lett., vol. 77, pp. 58–65, Jul. 2016.

[43] K. Audhkhasi, O. Osoba, and B. Kosko, “Noise-enhanced convolutional
neural networks,” Neural Netw., vol. 78, pp. 15–23, Jun. 2016.

[44] C. Xia, F. Qi, and G. Shi, “Bottom—Up visual saliency estimation
with deep autoencoder-based sparse reconstruction,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 27, no. 6, pp. 1227–1240, Jun. 2016.

[45] G. Baudat and F. Anouar, “Feature vector selection and projection using
kernels,” Neurocomputing, vol. 55, nos. 1–2, pp. 21–38, Sep. 2003.

[46] T. Kourti and J. F. MacGregor, “Process analysis, monitoring and
diagnosis, using multivariate projection methods,” Chemometrics Intell.
Lab. Syst., vol. 28, no. 1, pp. 3–21, 1995.

[47] X. Tian, X. Zhang, X. Deng, and S. Chen, “Multiway kernel independent
component analysis based on feature samples for batch process moni-
toring,” Neurocomputing, vol. 72, nos. 7–9, pp. 1584–1596, Mar. 2009.

[48] S. Chen, X. Hong, C. J. Harris, and P. M. Sharkey, “Sparse modeling
using orthogonal forward regression with PRESS statistic and regular-
ization,” IEEE Trans. Syst., Man, Cybern. B. Cybern., vol. 34, no. 2,
pp. 898–911, Apr. 2004.

[49] S. Chen, X. Hong, and C. J. Harris, “Sparse kernel density construction
using orthogonal forward regression with leave-one-out test score and
local regularization,” IEEE Trans. Syst., Man, Cybern. B. Cybern.,
vol. 34, no. 4, pp. 1708–1717, Aug. 2004.

[50] S. Chen, X. Hong, B. L. Luk, and C. J. Harris, “Construction of tunable
radial basis function networks using orthogonal forward selection,” IEEE
Trans. Syst., Man, Cybern. B. Cybern., vol. 39, no. 2, pp. 457–466,
Apr. 2009.

[51] S. Chen, X. Hong, and C. J. Harris, “Probability density estimation with
tunable kernels using orthogonal forward regression,” IEEE Trans. Syst.,
Man, Cybern. B. Cybern., vol. 40, no. 4, pp. 1101–1114, Aug. 2010.

[52] X. Hong, S. Chen, J. Gao, and C. J. Harris, “Nonlinear identification
using orthogonal forward regression with nested optimal regularization,”
IEEE Trans. Cybern., vol. 45, no. 12, pp. 2925–2936, Dec. 2015.

[53] X. Deng and X. Tian, “Sparse kernel locality preserving projection and
its application in nonlinear process fault detection,” Chin. J. Chem. Eng.,
vol. 21, no. 2, pp. 163–170, 2013.

[54] Z. Ge and Z. Song, “Performance-driven ensemble learning ICA model
for improved non-Gaussian process monitoring,” Chemometrics Intell.
Lab. Syst., vol. 123, pp. 1–8, Apr. 2013.

[55] Z. Ge, M. Zhang, and Z. Song, “Nonlinear process monitoring based
on linear subspace and Bayesian inference,” J. Process Control, vol. 20,
no. 5, pp. 676–688, 2010.

[56] J. J. Downs and E. F. Vogel, “A plant-wide industrial process control
problem,” Comput. Chem. Eng., vol. 17, no. 3, pp. 245–255, 1993.

[57] C. K. Lau, K. Ghosh, M. A. Hussain, and C. R. C. Hassan, “Fault
diagnosis of Tennessee Eastman process with multi-scale PCA and
ANFIS,” Chemometrics Intell. Lab. Syst., vol. 120, pp. 1–14, Jan. 2013.

[58] L. H. Chiang, E. L. Russell, and R. D. Braatz, Fault Detection and
Diagnosis in Industrial Systems. London, U.K.: Springer-Verlag, 2001.

Xiaogang Deng received the B.Eng. and Ph.D.
degrees from the China University of Petroleum,
Dongying, China, in 2002 and 2008, respectively.

From 2015 to 2016, he was a Visiting Scholar
with the Department of Electronics and Computer
Sciences, University of Southampton, Southampton,
U.K. He is currently an Associate Professor with
the College of Information and Control Engineering,
China University of Petroleum. His current research
interests include industrial process modeling and
simulation, data-driven fault detection and diagnosis,

and control performance monitoring.

2540 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 27, NO. 6, NOVEMBER 2019

Xuemin Tian received the B.E. degree from the
Huadong Petroleum Institute, Dongying, China,
in 1982, and the M.S. degree from the Beijing
University of Petroleum, Beijing, China, in 1994.

From 2001 to 2002, he was a Visiting Professor
with Central of Process Control, University of
California in Santa Barbara, Santa Barbara, CA,
USA. He is currently a Professor of process control
with the China University of Petroleum (Huadong),
Dongying. His current research interests include
modeling, advanced process control and optimiza-

tion for petrochemical processes as well as fault detection and diagnosis, and
process monitoring.

Sheng Chen (M’90–SM’97–F’08) received the
B.Eng. degree in control engineering from the
East China Petroleum Institute, Dongying, China,
in 1982, the Ph.D. degree in control engineering
from the City, University of London, London, U.K.,
in 1986, and the higher doctoral degree, Doctor
of Sciences (D.Sc.) degree, from the University of
Southampton, Southampton, U.K.

From 1986 to 1999, he held research and acad-
emic appointments with The University of Sheffield,
Sheffield, U.K., The University of Edinburgh,

Edinburgh, U.K., and The University of Portsmouth, Portsmouth, U.K. Since
1999, he has been with the School of Electronics and Computer Science, Uni-
versity of Southampton, Southampton, U.K., where he is currently a Professor
of intelligent systems and signal processing. He is currently a Distinguished
Adjunct Professor with King Abdulaziz University, Jeddah, Saudi Arabia.
He has authored over 600 research papers. His current research interests
include adaptive signal processing, wireless communications, modeling and
identification of nonlinear systems, neural network and machine learning,
intelligent control system design, evolutionary computation methods, and
optimization.

Dr. Chen was an ISI highly cited researcher in engineering in 2004. He is a
Fellow of the United Kingdom Royal Academy of Engineering and the IET.

Chris J. Harris received the B.Sc. degree from the
University of Leicester, Leicester, U.K., the M.A.
degree from the University of Oxford, Oxford, U.K.,
and the Ph.D. and D.Sc. degrees from the University
of Southampton, Southampton, U.K., in 1972 and
2001, respectively.

He was the Deputy Chief Scientist of the U.K.
Government. He is currently an Emeritus Research
Professor with the University of Southampton, hav-
ing previously held senior academic appointments at
Imperial College, Oxford, and Manchester Universi-

ties. He has co-authored over 450 scientific research papers during a 45-year
research career.

Dr. Harris was a recipient of the IEE senior Achievement Medal for data
fusion research and the IEE Faraday Medal for distinguished international
research in machine learning. He was elected to the U.K. Royal Academy of
Engineering in 1996.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

