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Abstract— As an emerging machine learning technique, lifelong
learning is capable of solving multiple consecutive tasks based
on previously accumulated knowledge. Although this is highly
desired for streaming process prediction in industry, lifelong
learning methods have so far failed to gain applications to main-
stream adaptive predictive modeling of time-varying industrial
processes. This is because when faced with a new data batch,
existing lifelong learning approaches need both input and output
data to construct local predictors before knowledge transfer can
succeed. But in many process industries, the process output data
are hard to measure online and it often takes time to acquire
them from off-site laboratory analysis. This delayed acquisition of
target output data makes it challenging to apply lifelong learning
and other existing adaptive mechanisms to dynamic industrial
processes with delayed process output measurement. To overcome
this difficulty, this article proposes a novel lifelong learning
framework that can rapidly predict new data batches with input
data only before the arrival of the process output measurement.
Specifically, we propose to incorporate process input information
into lifelong learning via coupled dictionary learning, to enable
the prediction of new batches without target output data. The
input feature is linked with a local predictor through two
dictionaries that are coupled by a joint sparse representation.
Because of the learned coupling between the two spaces, the local
predictor for the new batch can be reconstructed by knowledge
transfer given only process inputs. Two industrial case studies are
used to evaluate the effectiveness of our proposed framework and
reveal the intrinsic learning mechanism of our lifelong process
modeling to perform knowledge base (KB) adaptation.
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I. INTRODUCTION

MACHINE learning has taken a center stage in the
recent years for scientific and engineering develop-

ments. Inspired by human intelligence, the recent advances
in deep learning bring it to new heights [1], and it has
been successfully applied to all walks of life, such as image
recognition, natural language processing, competitive games
(AlphaGo) [2], protein structure prediction (AlphaFold) [3],
and short-term weather forecasting [4]. Following the success
of machine learning in these areas, process industry has also
begun to harvest the benefits of these breakthroughs [5].
Exploiting the availability of explosive process data, the
current industrial revolution, also known as Industry 4.0,
is focusing on advanced data modeling and analytics to
improve control and high-level decision-making [6], [7].
Hence, adaptive and accurate modeling of industrial plants
from massive and long-term process data will aid intelligent
and autonomous industrial systems.

The current mainstream paradigm for industrial predictive
models, which can predict the evolution of process output
given process inputs, is to run machine learning algorithms on
a given dataset that was historically collected from industrial
plants, and to hope that the trained model will generalize well
for the new data unseen in training [5], [8], [9]. In machine
learning terminology, this is called isolated learning because
it does not retain and accumulate knowledge learned in the
past training and use it to facilitate future learning. Without
the ability to accumulate knowledge from the past learning,
a machine learning model typically needs a large number of
training samples to learn effectively. In particular, the collected
dataset needs to be informative and sufficiently rich to cover
the whole dynamics of the underlying process. However, this is
often not the case in practice, because many industrial systems
operate in a continuous manner and generate data from their
operation in the form of streams, whose state changes over
time [10], [11]. This time-varying process characteristics can
be caused by many factors, such as changes of raw materials
and operating conditions, mechanical abrasions, and catalyst
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deactivation. Due to these process drifts, predictive models
trained over historical dataset become obsolete, as they do not
represent the newly emerged process state.

To tackle the above problem, various adaptive mechanisms
are used for industrial predictive models, to realize online
adaptation with newly measured labeled samples, i.e., both
process input and output samples, so as to maintain satisfactory
performance over a long operating period [12]. One notable
issue for this online learning is that the model adaptation needs
to be performed at each sampling time with both process
input and output information. This imposes two challenges.
First, the online computation cost by reestimating model
structure and parameters should be sufficiently small to be
accommodated within each sampling period that is determined
by control systems [13]. More importantly, the process output
data should be obtained timely at each time step so that the
current modeling residual can be calculated to perform model
adaptation. The first issue has been addressed to some extent
by numerous techniques, and some methods are reviewed in
Section II-A. However, the need for label or process output
data immediately at every sampling time is often infeasible
in many process industries, because these output variables
or labels are typically hard to measure online and they can
be obtained only through off-line laboratory analysis [5],
which may take hours. For example, it is essential to monitor
the lignite moisture online for the microwave lignite drying
process [14], which serves as the feedback information for
real-time control of the microwave power to prevent over-
heating. However, measurement of lignite moisture takes time
and it cannot be acquired timely at every sampling time in a
closed control loop. This causes delayed label data acquisition
for process control. As a result, the unavailability of timely
process output data or desired labels makes such online
learning strategy impractical for streaming process prediction
application.

Different from the aforementioned isolated learning, life-
long learning was proposed to mimic the human learning
ability of accumulating and maintaining knowledge learned
from the past and using it seamlessly for future learning [15].
A simple comparison between the two learning paradigms
is shown in Fig. 1. Isolated learning learns each dataset
independently without knowledge accumulation or transfer.
In contrast, lifelong learning learns consecutive new data
batches based on the previously built knowledge base (KB)
and automatically updates the KB learned from past encoun-
tered data batches upon learning of the new batch [16],
[17]. Three key characteristics of lifelong learning system—
1) continuous learning ability; 2) knowledge accumulation
and maintenance by KB adaptation; and 3) knowledge trans-
fer to facilitate future learning [18], [19], [20], [21]—make
this emerging technique suitable to deal with long-term data
with changing dynamic characteristics, which is the case
for streaming process prediction. Hence, by online learning
of the predictive models on a batch-by-batch base, lifelong
learning has some advantage for streaming process prediction
application.

In the lifelong learning community, the efficient lifelong
learning algorithm (ELLA) is one of the most popular meth-

Fig. 1. Comparison between isolated learning and lifelong learning.

ods [22]. With the assumption that local models of multiple
related tasks share a common knowledge library, ELLA learns
new tasks by selectively transferring knowledge from the KB
and refining the KB over time to incorporate new knowl-
edge learned from current tasks. This framework has been
demonstrated to be effective for handling lifelong regression,
classification, and decision-making problems, such as image
recognition [22], [23] and engineering system control [24],
[25], [26], [27]. However, when faced with a new task or
batch, ELLA needs both input and targeted output data to con-
struct task model before knowledge transfer can succeed [22].
As mentioned before, for many process industries, true process
output data are hard to measure online and it often takes time
to obtain them from off-line laboratory analysis. Because of
this need for output data in constructing task models for new
batches, ELLA cannot be applied directly to streaming process
prediction with delayed process output data acquisition. This
motivates us to investigate a new lifelong learning framework,
which is capable of adaptively and accurately predicting new
data batches with input data only by knowledge transfer before
observing the true process output.

Motivated by the above background, this article proposes
a novel lifelong learning framework that makes full use of
process input information to enable predicting consecutive
batches of process data with delayed output measurement.
Specifically, we encode input data into a feature vector that
contains essential process operating information and treat these
input features as side information to augment local predictors
on each batch data. To enable knowledge transfer between
two spaces, we use coupled dictionary learning to connect
the input’s feature space with the predictor’s parameter space,
where the two spaces are linked through two dictionaries
that are coupled by the same sparse coding. Because of the
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learned coupling between the two spaces, the lifelong learner
is capable of rapidly reconstructing local predictors for the
new coming batches given only process inputs. This capacity
of “learning without targeted output” is very important for
lifelong process modeling, because the output data are often
hard to obtain immediately and the learner requires to quickly
make prediction by knowledge transfer before observing true
process output. Two industrial case studies, involving a peni-
cillin fermentation process and a wastewater treatment plant
(WWTP), are used to demonstrate the effectiveness of our
proposed framework. Most importantly, we reveal the intrinsic
learning mechanism of this new lifelong process modeling
and demonstrate how our method deals with process drifts
by KB adaptation. In summary, our novel contributions are
listed below.

1) We define the lifelong learning or modeling problem
for dynamic industrial processes for the first time and
propose a novel lifelong learning framework that fully
considers the key characteristics of process drifts and
delayed process output measurement.

2) Based on coupled dictionary learning, we incorporate
process input information into lifelong learning that uses
a factorized representation of the learned knowledge to
facilitate transfer and improve predictive performance.

3) We show that our method is able to accurately predict
new data batches using only process inputs through
unsupervised knowledge transfer.

4) Two industrial case studies are carried out to demon-
strate its effectiveness, and we reveal the intrinsic
learning mechanism based on prior process knowledge.

The rest of this article is organized as follows. Section II
summarizes the related works. Section III reviews lifelong
learning and presents its challenge in application to indus-
trial processes. Section IV details the proposed lifelong
learning-based streaming process prediction framework, and
Section V evaluates its effectiveness with two industrial case
studies. Section VI concludes the article with remarks for
future works.

II. RELATED WORKS

A. Streaming Modeling of Dynamic Processes

For streaming or online modeling of time-varying dynamic
processes, the key is to update the predictive model’s struc-
ture and parameters to track the changing system dynamics.
A popular method widely used in practice is multiple local
model learning strategy [28], [29]. By partitioning the overall
modeling space into multiple local subspaces, a set of local
models can be constructed to capture the overall process
characteristics. Based on this principle, the selective-ensemble-
based multiple local model learning enables automatically
identifying newly emerged process patterns by growing the
local model set online [30]. To reduce computation burden,
the growing and pruning selective ensemble regression can
not only learn new process patterns but also discard outdated
patterns by pruning unwanted local models [31], [32]. How-
ever, the local model adaptation for this strategy requires both

process input and output data. When acquisition of output data
is delayed, the local model adaptation cannot take place, and
online prediction has to rely on the existing local model set
given input data, i.e., it reduces to a nonadaptive model.

Inspired by gain scheduling [33], [34], another locally linear
regression partitions the training input space into multiple
subspaces and constructs a local linear model for each region.
During inference or online prediction, appropriate local models
from the trained model set are selected or combined based on
input data using switching or ensemble mechanisms [35], [36].
However, this locally linear regression is a nonadaptive model.
During online operation, it cannot adapt the local linear model
set even when both process input and output are available.
The success of this locally linear regression therefore heavily
depends on sufficiently rich training data to determine all the
number and boundaries of subspaces of the underlying process
in the training phase. If the process operates in real-time with
time-varying data streams, the online prediction performance
of this nonadaptive model may degrade considerably.

Another online modeling strategy is based on global model
learning. A typical approach is to adopt the radial basis
function (RBF) network [37], [38]. During online model
adaptation, the output weights of the RBF network are updated
by recursive least square (RLS) to track the time-varying
characteristics [39]. To further enhance the adaptability to
nonstationary data, the fast tunable gradient RBF model
adjusts both the hidden node structure and output weights
to capture newly emerged process patterns [40], [41]. This
efficient online tracker is further combined with deep learning
technique for high-dimensional nonstationary process mod-
eling in [42]. Although this method is very effective and
efficient for online process tracking, it needs both input and
output information for model adaptation at each sampling
time. This becomes impractical again when the acquisition of
process output is seriously delayed. It can be seen that most
existing streaming modeling approaches cannot cope with
delayed output measurement in process industry, and novel
real-time learning framework is urgently needed to tackle this
problem.

B. Lifelong Learning

The core idea of lifelong learning is to solve multiple
consecutive tasks over long-time scales upon previously accu-
mulated knowledge, and ELLA is one of the most popular
approaches [22]. It factorizes the learned task models into
a shared latent dictionary as the KB to facilitate knowledge
transfer as tasks arrive consecutively. When new task arrives,
ELLA transfers knowledge through the shared dictionary to
learn new model and refines the dictionary with the knowledge
learned from the current task. By updating the dictionary
over time, newly acquired knowledge is incorporated into
the KB, thereby improving the performance of previously
learned models. Although ELLA-based methods [22], [23],
[24], [25], [26], [27] achieve very good performance in many
applications, one important requirement is the need of first
gathering sufficient labeled data for the new coming tasks. This

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on February 28,2024 at 09:10:34 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: LIFELONG LEARNING MEETS DYNAMIC PROCESSES 387

need for labeled data imposes a serious challenge for practical
problems, because data annotation for every new coming task
is time-consuming. Often a learner is expected to learn new
task rapidly without the delay to wait for labeling task.

To mitigate this difficulty, the work [43] incorporated
high-level task descriptors into lifelong reinforcement learning
and used both task descriptors and training data to model
intertask relationships. This method was extended to regres-
sion in [44], where the model can be predicted given only
input data and task descriptors for new task. However, this
method requires domain-specific task descriptors that must
accurately characterize the underlying process dynamics. For
simple engineering systems, such as a robotic arm, it is
possible to define a set task descriptors that accurately reflect
the system’s true underlying dynamics. However, practical
industrial processes are highly complex, and it is difficult if not
impossible to define accurate task descriptors for them. Con-
sequently, similar to other existing lifelong learning methods,
the lifelong learning with zero-shot knowledge transfer [43],
[44] cannot be applied to practical industrial processes with
delayed process output measurement.

Hence, it is necessary and vital to develop new lifelong pro-
cess modeling framework for industrial process applications,
where labeled data for new tasks are difficult to obtain quickly.
The novel contribution of this article is to propose a new
lifelong learning framework for streaming industrial processes
with delayed process output measurement. Note that unlike
the lifelong learning with zero-shot knowledge transfer [43],
[44], our proposed lifelong learning method is capable of
performing unsupervised knowledge transfer with input data
only and there is no need to first define task descriptors.

III. LIFELONG LEARNING FOR INDUSTRIAL PROCESSES

A. Problem Formulation

For a streaming process, let multiple data batches be
received consecutively as {D(1),D(2), . . . ,D(Tmax)}. The predic-
tive model must rapidly predict each new batch by building
upon its previously learned knowledge, and a local pre-
dictor f (t) can be constructed on each batch data D(t)

=

{x(t)i , y(t)i }
nt
i=1, where nt is the number of samples (batch size),

and x(t)i ∈ Rd and y(t)i ∈ R are the i th input sample and the
associated output or label sample, respectively, for batch t .

The generic steaming process prediction is formulated as
the following framework. Let T − 1 be the number of batches
with complete process input and output data that the process
has generated so far and { f (1), . . . , f (T −1)

} be the previously
built local predictors. Because of delayed process output
measurement, when new batch T first arrives, it contains
only the process inputs {x(T )i }

nT
i=1. The predictor must be able

to accurately predict the true process output y(T )i based on
the process input x(T )i and the knowledge learned from the
previous batches, { f (1), . . . , f (T −1)

}. Only later when the true
process outputs {y(T )i }

nT
i=1 for a new batch are acquired, the

predictor f (T ) may then be constructed on the completed
data batch D(T )

= {x(T )i , y(T )i }
nT
i=1. Ideally, the knowledge

learned from the previous batches should accelerate this model

construction and the constructed f (T ) should contribute its
learned new knowledge to the learned knowledge library.

B. Revisit of ELLA

ELLA [22] learns and maintains a KB L ∈ Rd×k , which
forms a shared basis for all the predictors and facilitates
knowledge transfer between them. For each batch t , ELLA
constructs a local predictor f (t)(x) = f (x; θ (t)) that is
parameterized by a d-dimensional batch-specific parameter
vector θ (t). This model parameter is a linear combination of
the columns of L using the sparse coefficients s(t) ∈ Rk as
θ (t) = Ls(t). The dictionary L stores chunks of knowledge
that are shared for all the batches, and the sparse code s(t)
extracts the relevant pieces of knowledge for a particular batch
t . Hence, this model parameter factorization enables effective
knowledge transfer among batches. Typically, a local linear
model f (t)(x) = xT θ (t) is adopted, and therefore, we must
have k ≤ d . This is because in this case the columns of L,
i.e., the dimension of the KB, cannot exceed the dimension
of the input space d. Typically, k < d as some elements of x
may be collinear.

Given the process inputs and outputs {x(t)i , y(t)i }
nt
i=1 for each

batch t , ELLA optimizes the following cost function:

min
L,S

1
T

T∑
t=1

(
J

(
θ (t)

)
+ µ

∥∥s(t)
∥∥

1

)
+ λ∥L∥

2
F (1)

where J (θ (t)) = (1/nt )
∑nt

i=1 J (y
(t)
i − ŷ(t)i ) with J (·) being

the squared-loss function and ŷ(t)i = f (x(t)i ; θ (t)), S =

[s(1) s(2) · · · s(T )] is the matrix consisting of all the sparse
coefficient vectors, and the L1 norm is used to control the
sparsity of s(t) with the regularization parameter µ, while ∥·∥F

is the Frobenius norm, which regularizes the complexity of
dictionary L with the regularization parameter λ.

To solve this optimization, ELLA takes a second-order
Taylor expansion to approximate the objective around an
estimate θ̂

(t)
of the local predictor parameters for each batch

D(t), and only updates the coefficients s(t) for the current batch
at each time step. This process reduces the optimization (1)
to the problem of sparsely coding the local predictors in the
shared dictionary L, and it enables solving L and S efficiently
by the following recursive updating rules [22]:

s(t) = arg min
s

∥∥∥̂θ
(t)

− Ls
∥∥∥2

0(t)
+ µ∥s∥1 (2)

A = A +

(
s(t)

(
s(t)

)T
)

⊗ 0(t) (3)

b = b + vec
[

s(t) ⊗
((̂

θ
(t)

)T
0(t)

)]
(4)

L = L + mat

[(
1
T

A + λI (kd)

)−1 1
T

b

]
d×k

(5)

where ∥v∥
2
A = vT Av, the elements of L are initialized by

taking values randomly from (0, 1), and 0(t) = 0(̂θ
(t)
) is

the Hessian matrix of the loss J (̂θ (t)), while ⊗ denotes the
Kronecker product, A ∈ R(kd)×(kd) is initialized to the all
zero-element matrix, and b ∈ Rkd is initialized to the all
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zero-element vector. Furthermore, the vector stacking operator
vec[·] stacks the columns of matrix one by one to form a
vector, I (kd) is the (kd) × (kd) identity matrix, and the matrix
forming operator mat[·]d×k converts a (dk)-dimensional vector
into a (d × k)-dimensional matrix.

Remark 1: The theoretical justification of using L1- and L2-
norms to regularize the model complexity is well understood
in machine learning. In particular, imposing an L1-norm on
the model parameters has the desired property of enforcing
the sparsity of the model, i.e., making many parameters
to zero. Analysis of ELLA is also widely available in the
literature. For example, the convergence analysis of ELLA,
(2)–(5), to the solution of the optimization (1) can be
found in [22].

Remark 2: The dictionary size or the sparsity level k is
an important hyperparameter of ELLA, which is obviously
problem-dependent. Ideally, it would be highly desirable to
be able to determine the value of k from data. For the
single-task learning, this is indeed achievable as the L1-
norm of the encoding vector in the optimization naturally
enforces sparsity and automatically makes k smaller than d
according to the underlying data structure. However, ELLA
considers the multiple tasks, and it is unknown to us how to
automatically determine an appropriate value for k from data.
Therefore, the dictionary size k is typically chosen empirically
as in [22].

C. Challenge for Applying ELLA to Streaming Processes

As can be seen from the updating rules (2)–(5), each time
when a new batch t arrives, ELLA requires first to estimate an
initial local predictor θ̂

(t)
before it can update s(t) and L. The

updated sparse coding vector s(t) and dictionary L can then be
used to construct the new predictor to predict the true process
outputs for new batch t . In other words, the new local predictor
can only be constructed if at least some new batch data contain
both the process inputs and the corresponding process outputs.
However, for many streaming processes, it often takes a long
time to acquire process output data. When encountering a
new batch at first glance, typically only the process input
data are available for making predictions. This imposes a
serious challenge for applying the existing lifelong models to
streaming processes with delayed process output measurement,
since they need sufficient labeled data for new tasks to start
building new predictors for prediction.

To eliminate this need for labeled data for predicting new
batches and hence make the lifelong learning better suited
for industrial process prediction, we propose a novel lifelong
learning framework that makes full use of process inputs to
enable unsupervised knowledge transfer on predicting new
batches. Specifically, upon learning a few batches with com-
plete process input and output data, future local predictors for
new batches can be constructed given only input data. It is
worth emphasizing again that our scheme is completely novel
and it is very different from the scheme of [43] and [44],
which needs input data and task descriptors to construct local
predictors for new batches. For a complex industrial process,
it is impossible to craft its task descriptors.

IV. PROPOSED STREAMING PROCESS PREDICTION
FRAMEWORK

Our proposed industrial lifelong learning system is depicted
in Fig. 2. The industrial system operates in real-time to consec-
utively generate multiple data batches in the form of streams.
For each batch of data, we define the process input matrix
X (t)

= [x(t)1 x(t)2 · · · x(t)nt
] ∈ Rd×nt and the corresponding

desired output vector y(t) = [y(t)1 y(t)2 · · · y(t)nt
]
T

∈ Rnt . As a
new batch arrives, knowledge accumulated from the previous
batches is selectively transferred to predict the new batch,
and newly acquired information from the current batch is
stored in the KB for future use. To achieve knowledge transfer
on new batch prediction without output data, we propose to
incorporate input features into lifelong modeling framework
via coupled dictionary learning, enabling input features and
the local predictor to augment each other. For historical
batches with complete process input and output data, the local
predictor is constructed, while the input features are encoded
only by process inputs. To link two feature spaces, we use
two dictionaries that act as knowledge repositories for the two
spaces, and they are coupled by a joint sparse representation.
Because of the learned coupling, the local predictor for a new
coming batch can be reconstructed given only the process
inputs. This capacity of learning new predictors without tar-
geted output is particularly suitable for streaming industrial
process prediction, where acquisition of true process output
data may encounter long delay. We now detail each part of
our proposed framework.

A. Learning From Historical Batches

1) Local Predictor: For historical batch with complete
process input and output data (X (t), y(t)), a local model
f (X; θ) = XT θ is constructed. Specifically, the parameter
vector of the local model is computed using the regularized
least square (LS) estimator as

θ̂
(t)

=

(
X (t)(X (t))T

+ β Id

)−1
X (t) y(t) (6)

where β is a small positive regularization parameter, e.g., β =

10−6. The Hessian 0(t) of the squared-loss function J (θ (t))
around the single task solution θ̂

(t)
is given by

0(t) =
1

2nt

(
X (t)(X (t))T

+ β Id

)
. (7)

Hence, for historical data batches, we first compute the pre-
dictors parameter vectors θ̂

(t)
and Hessian matrices 0(t) before

performing knowledge transfer in the learning process.
2) Input Feature: In the process industry, the process

inputs also known as operational data X (t) are often easy
and quick to acquire online from sensors directly, while the
process output data y(t) are difficult to obtain by online
measurement and they typically take long time to acquire
from off-line laboratory analysis. In such cases, process output
data experience a delayed acquisition, which makes supervised
modeling impractical. Although input data itself cannot be
used to construct a predictor, they also contain essential
process operational information [45]. It is highly beneficial to
use the input data for unsupervised learning to supplement the
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Fig. 2. Illustration of industrial lifelong learning system. For historical batches, the process inputs are encoded as feature vector while both input and output
data are used to construct a local predictor. The input features and local predictor are factorized into two dictionaries that are coupled by a joint sparse coding.
When new batch arrives, the learner reconstructs local predictor for new coming batch using solely process inputs by knowledge transfer.

supervised modeling, thereby using it as a “backup” to predict
new batch when desired process output data are unavailable
for constructing the predictor timely.

To incorporate process inputs alone into the learning pro-
cedure, the input data matrix X (t)

∈ Rd×nt is transformed
into a d-dimensional feature vector that can link with the
predictor’s parameter vector θ ∈ Rd . To link these two spaces,
we can transform X (t) into the d-dimensional feature vector
ψ(X (t)), where ψ(·) is an operator that encodes a matrix into
a vector. The simplest encoding is the direction of the mean
value in each row of X (t). Expressing the i th column of X (t)

as x(t)i = [x (t)1,i x (t)2,i · · · x (t)d,i ]
T , we have

ψ
(
X (t))

=

[
x̄ (t)1 x̄ (t)2 · · · x̄ (t)d

]T∥∥∥[
x̄ (t)1 x̄ (t)2 · · · x̄ (t)d

]∥∥∥
2

= x̄(t) ∈ Rd (8)

where x̄ (t)j = (1/nt )
∑nt

i=1 x j,i , 1 ≤ j ≤ d . Hence, x̄(t) are the
input features for batch t . We next show how to link input
features with local predictor via coupled dictionary learning.

3) Coupled Dictionary Learning: The idea of coupled dic-
tionary learning was used in the scheme [43], [44] to link the
high-level task descriptions with the learned model to achieve
knowledge transfer for new tasks [43], [44]. Similarly, we use
the coupled dictionaries to link the local predictor’s space with
the input features’ space, so as to fully exploit process input
information and achieve predicting a new batch without the
need for process output data.

Recall that the lifelong learning approach factorizes the
predictor parameters θ (t) for each task as a sparse linear
combination of a shared dictionary by θ (t) = Ls(t), where each
column of L represents a cohesive chunk of knowledge [22].
The sparse coefficient vectors S encode the local predictors in
the shared dictionary, providing an embedding of the batches
based on how their predictors share knowledge.

In the same way, the input feature vector x̄(t) can also be
linearly factorized using a shared dictionary K ∈ Rd×k over
the process input’s space. K has a similar function with L,
which captures the relationships among the input features for
different batches. To link the two spaces, we enforce the two
dictionaries, L and K , to share the same sparse coefficient
vectors S so as to reconstruct both the local predictors and
the input features. Hence, for batch t

θ (t) = Ls(t), x̄(t) = K s(t). (9)

Because the two dictionaries are enforced to have the same
sparse code s(t), the relevant pieces of information for the local
predictor become coupled with its associated input features.
To optimize the coupled dictionaries L and K , the objective
(1) is reformulated for the coupled dictionaries as

min
L,K ,S

1
T

T∑
t=1

(
J

(
θ (t)

)
+ ρ

∥∥x̄(t) − K s(t)
∥∥2

2 + µ
∥∥s(t)

∥∥
1

)
+ λ

(
∥L∥

2
F + ∥K∥

2
F

)
(10)

where the parameter ρ balances the local predictor’s fit to the
input feature’s fit.

To solve the optimization (10) in a lifelong learning setting,
J (θ (t)) is approximated by a second-order Taylor expansion
around the regularized LS estimate θ̂

(t)
given in (6). That is,

we expand J (θ (t)) around θ̂
(t)

for each batch as

J
(
θ (t)

)
≈ J

(̂
θ
(t)

)
+ ▽J

(̂
θ
(t)

)(
θ (t) − θ̂

(t)
)

+
1
2

∥∥∥θ (t) − θ̂
(t)

∥∥∥2

0(t)
(11)

where ▽ denotes the gradient operator. The first term J (̂θ (t))
is a constant and can be omitted. Since θ (t) is the minimizer
of the objective J (θ (t)), ▽J (̂θ (t)) is zero, and the second
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term can also be removed. Thus, the loss function J (θ (t)) is
approximated by the last term of (11), which can be rewritten
as ∥̂θ

(t)
−Ls(t)∥2

0(t)
, given θ (t) = Ls(t). With the approximation

(11), the optimization (10) is simplified as

min
L,K ,S

1
T

T∑
t=1

(∥∥∥̂θ
(t)

− Ls(t)
∥∥∥2

0(t)
+ρ

∥∥x̄(t)−K s(t)
∥∥2

2+µ
∥∥s(t)

∥∥
1

)
+ λ

(
∥L∥

2
F + ∥K∥

2
F

)
. (12)

Further defining

2(t)
=

[
θ̂
(t)

x̄(t)

]
, H =

[
L
K

]
, 9(t)

=

[
0(t) 0d×d

0d×d ρ Id

]
(13)

where 0d×d is the d × d zero matrix, and the optimization
(12) can be rewritten in a concise form as

min
H,S

1
T

T∑
t=1

(∥∥2(t)
− Hs(t)

∥∥2
9(t) + µ

∥∥s(t)
∥∥

1

)
+ λ∥H∥

2
F . (14)

Clearly, the optimization (14) has the identical form to (1),
and it can be solved in the same way. Note that (14) can be
decoupled into the two optimization problems of similar form
on L and K , respectively. Hence, the two dictionaries can be
updated independently.

When batch t arrives, three steps are performed to update
the lifelong learning model, namely, compute s(t), update L,
and update K . The sparse vector s(t) is first computed using
the current basis H by solving the following L1-regularized
regression problem, which is a Lasso:

s(t) = arg min
s

∥∥2(t)
− Hs(t)

∥∥2
9(t) + µ

∥∥s(t)
∥∥

1. (15)

After s(t) is obtained, the two dictionaries, L and K , are
calculated independently by the recursive updating (3)–(5).
In particular, to update the dictionary K , we simply replace
0(t) by ρ Id , θ̂

(t)
by x̄(t), and L by K in (3)–(5).

B. Predicting a New Batch by Knowledge Transfer

The main advantage of linking the local predictor and the
input features is that we can construct the local predictor
for new batches using only process input data, which is
valuable for streaming processes. This capability of unsuper-
vised knowledge transfer is enabled by the coupled dictionary
learning, which allows us to use input features to recover the
local predictor through coupled dictionaries and sparse coding.

Given the process input data X (T ) for new batch T , we first
encode X (T ) as the feature vector x̄(T ) = ψ(X (T )), and then
estimate the sparse coding in the input feature space via Lasso
based on the previously learned dictionary K

ŝ(T ) = arg min
s

∥∥x̄(T ) − K s
∥∥2

2 + µ∥s∥1. (16)

Since this estimated ŝ(T ) also serves as the sparse coding for
the latent dictionary L, it can be used to recover the local
predictor for new batch T as

θ̃
(T )

= Lŝ(T ). (17)

This new local predictor θ̃
(T )

is obtained with the input
data X (T ) only, and it can then be used to predict the true

process outputs for new batch T as ŷ(T ) = (X (T ))T θ̃
(T )

.
This completely eliminates the need to wait for output data
to construct a model.

It can be seen from (16) to (17) that the construction of a
new local predictor depends on the previously built dictionary
L and the current input features x̄(T ). L contains the knowl-
edge learned from all the past batches, while the input features
contain the latest process operation information. Combining
both L and x̄(T ) can enhance the predictive performance of
the new model. This is another advantage of the proposed
unsupervised knowledge transfer.

Remark 3: Based on the coupled dictionary learning, the
premise of using the learned dictionary K and input features
to reconstruct the new predictor is that L and K are closely
related. Recall that we factorize the local predictor’s param-
eters and input features as θ (t) = Ls(t) and x̄(t) = K s(t),
respectively. The dictionary L is basically extracted from the
previously learned local predictors, and hence, it captures
the inner characteristics of the underlying system or the
relationship between process input and output. If we assume
that K and L contain similar knowledge of the process, the
input features given in Section IV-A2 must also characterize
the underlying system dynamics as well. In other words, the
predictor’s parameter is an implicit function of the process
input for individual batches. If the process characteristics were
completely independent of the process input, the use of input
features and dictionary K would not be able to reconstruct
an accurate predictor. However, this cannot be the case in
practice. This is because the output is always related to the
input, and hence, the process input is closely related to the
system characteristics. Since input features contain essential
process operation knowledge, the integration of the latest
operating information into the previously built KB can enhance
the accuracy of new predictor construction.

C. Algorithm Summary

The proposed lifelong learning framework for industrial
process prediction is summarized in Algorithm 1, which
operates naturally in three stages, namely, initial training,
online prediction, and KB adaptation.

1) Initial Training: Multiple historical batches with com-
plete process input and output data are collected and
used to build the KB for the lifelong learner. After
supervised training, the trained KB, L and K , are kept.

2) Online Prediction: When a new data batch with process
input data only arrives, the lifelong learner first con-
structs a new local predictor based on the trained KB
and input data by unsupervised knowledge transfer, and
then makes the prediction for the new data patch.

3) KB Adaptation: After observing the true output data, the
completed current batch data are used to update the KB
so as to acquire the most up-to-data knowledge.

It is worth recapping that the classic ELLA [22] cannot
be applied to this industrial streaming process prediction
application. This is because to perform online prediction
for new batches, ELLA first requires sufficient labeled data
to identify task relationships before bootstrapping a model
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Algorithm 1 Lifelong Learning-Based Streaming Process
Prediction

via knowledge transfer. However, the labeled data are not
available for online prediction. Also, the scheme of [43] and
[44] cannot be applied to this industrial streaming process
prediction application, since it is generally impossible to craft
high-level task descriptors for a practical industrial process.
In contrast, our framework constructs predictors for predict-
ing new batches by unsupervised knowledge transfer based
on process input information only. In addition, we use the
online KB adaptation in our framework because the process
characteristics can change significantly. It is vital to capture
the latest data characteristics in the KB. This is the elegance
of lifelong learning. Hence, our proposed lifelong learning
framework is very suitable for dynamic process prediction and
modeling particularly when the acquisition of process output
data is seriously delayed.

We now analyze the online computational complexity of
learning new batch by our method. The construction of local
predictor by the regularized LS estimator (6) has a complexity
on the order of O(d3). The adaptation of single dictionary
L ∈ Rd×k and sparse coding s(t) ∈ Rk costs O(k2d3).
Since we incorporate input features into lifelong learning
framework by augmenting L ∈ Rd×k into H ∈ R(2d)×k ,
the coupled dictionary adaptation costs O(k2(2d)3). Thus, the

overall complexity of per-batch adaptation is O(d3
+ k2(2d)3),

which is independent of batch number.
Remark 4: The online operations of our proposed lifelong

learning framework include online prediction and KB adapta-
tion. Specifically, when a new batch with process input data
only arrives, a local predictor is constructed explicitly by
unsupervised knowledge transfer based on process input and
the constructed model is used to predict the process outputs
for the batch. Later, only when the corresponding true process
output data are available, the supervised KB adaptation takes
place. Since the base model is linear, i.e., d is very small, and
furthermore k < d , the operations of online prediction and
KB adaptation are very fast, and the operation time of these
online operations is well within the time duration of a batch,
which may contain tens to hundreds of samples. In a nutshell,
the online operation time of our lifelong learning framework
is not an issue.

V. EXPERIMENTS

Two industrial applications for a penicillin fermentation
process and a WWTP are used to verify the effectiveness of
our proposed lifelong modeling framework. Three metrics, the
mean square error (mse), mean absolute error (MAE), and the
coefficient of determination (R2), are used to evaluate both
training and online prediction performance.

We operate the proposed framework in the following three
different learning modes.

1) Pro-Nonadaptive: The training data are first used to build
a KB. During online operation, the trained KB is fixed
and the learner makes prediction after receiving each
batch data. This is essentially Algorithm 1 minus KB
Adaptation part.

2) Pro-Adaptive: This is the completed Algorithm 1. After
online prediction and when the true process outputs for
the current batch become available, the KB is adapted to
capture the system characteristics in the current batch.

3) Pro-Idealized: This scheme continuously operates in
the training mode. After observing the complete pro-
cess input and output data of a new batch, a fully
updated KB is obtained that accumulates all the knowl-
edge from all the batches. This “full” KB is used to
reconstruct all the individual models for the individual
batches. The individual models then make the “predic-
tion” for the individual batches. It can be seen that only
pro-nonadaptive and pro-adaptive can be applied to the
scenario of adaptive online modeling and prediction for
streaming processes with delayed process output mea-
surement. Pro-idealized is impractical and is used here
to represent the idealized performance limit (training
performance) of the lifelong modeling framework.

Since the base model for the proposed framework is linear,
for a fair comparison, the proposed framework is compared
with the state-of-art linear models, including LS, Bayesian
augmented Lagrangian (BAL) [46], [47], partial LS (PLS) [6],
[45], RLS [39], [48], and clustering-based locally linear regres-
sion (CLR) [35], [36]. For the LS, BAL, and PLS, the training
data are used to construct models, and the trained models

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on February 28,2024 at 09:10:34 UTC from IEEE Xplore.  Restrictions apply. 



392 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 32, NO. 2, MARCH 2024

are fixed during online operation. For the CLR, the k-means
clustering is first used to partition the training input data
into multiple data clusters, and local models are built by LS
for individual clusters. The number of clusters is determined
by grid search based on the training mse. The trained local
linear model set is fixed in online operation. During online
prediction, the Euclidean distances are measured between the
training clusters and the new input data, and the local model
with the closest distance is selected for prediction. We also
modify this CLR with ensemble model learning called “CLR-
ensemble,” where the trained local models are combined with
weights based on the distances for prediction. The standard
RLS performs online prediction and adaptation on the sample-
by-sample base. Specifically, the model adapted at the previous
sample is used to make the prediction on the current input
sample. After this sample prediction, the true process output
sample is assumed available, and the RLS performs the
model adaptation using the process input–output sample pair.
We refer to this standard RLS as “RLS-idealized,” which
cannot be used in adaptive online modeling and prediction
for streaming processes with delayed process output measure-
ment. It is used here to represent the idealized performance
limit achievable if there exists no delay in the acquisition
of process output. To have a fair comparison with our pro-
adaptive, we modify the classic RLS with batch prediction and
adaptation called “RLS-batch.” Specifically, the RLS model
updated from the previous batch is used to predict the new
batch. After the true process output data for this new batch
have been acquired, it updates the model over the batch, and
the updated model will be used for the prediction of the next
batch. It is worth recapping that LS, BAL, PLS, CLR, CLR-
ensemble, and our pro-nonadaptive are nonadaptive models,
i.e., they only make online prediction with input and do not
make model adaptation.

A. Penicillin Fermentation Process

The penicillin fermentation process is a biochemical
fed-batch process with multimode time-varying characteristics.
It was widely used for performance assessment of adaptive
modeling approaches [28], [29]. During the fermentation
process, the penicillin and substrate concentrations are two
hard-to-measure process outputs, which may take hours to
acquire from laboratory analysis. Our goal is to predict
these two process outputs using easy-to-measure process input
variables before obtaining their true values from laboratory
measurements. The process inputs and outputs are tabulated
in Table I. Based on the knowledge of this process, the
process input vector at sample i is defined as xi = ui =

[u1i u2i · · · u10i ]
T

∈ R10. By changing different operating con-
ditions, 1600 samples are collected from the PenSim tool [28],
and they are divided into the training (800 samples) and online
testing (800 samples) sets. During online operation, batches
of data are received consecutively. In practice, the batch size
is determined by applications, e.g., delayed acquisition time
for process output. In general, a large batch size enables
constructing a more accurate local model for each batch while
a small one can better capture the time-varying local data
characteristics of different batches. Also, the batch size should

TABLE I
VARIABLE DESCRIPTION OF PENICILLIN FERMENTATION PROCESS

not be too large so that the process can be approximated by
a local linear model over each batch. The batch size is set to
100 in this experiment.

For the proposed framework, the dictionary size k and the
regularization parameters are chosen empirically. In addition,
ρ is an important parameter that balances the model’s fit to
the input data’s fit [44], and we set ρ = 1 to achieve its best
prediction performance. The forgetting factor of RLS is set to
0.98. The ridge term for LS models is empirically set to 10−5.
The number of latent variables for PLS is set to 6 to attain
its best performance. The augmented Lagrangian parameter
and regularize parameter for BAL are carefully chosen to be
10−3 to obtain its best performance. The number of clusters
for CLR and CLR-ensemble is set to 8, as the training mse
does not decrease with further increase in clusters.

The performance comparison of various methods for pre-
dicting penicillin concentration and substrate concentration is
tabulated in Tables II and III, respectively. As expected, the
training performance of the LS, BAL, PLS, and RLS is the
same or similar but our proposed lifelong learning framework
attains a slightly better training performance, since it includes
input features in knowledge transfer to enrich the modeling
accuracy. CLR and CLR-ensemble attain much better training
performance than the other methods, because they incorpo-
rate local data characteristics of different regions to enhance
the overall modeling capacity. What really matters, however,
is the prediction performance. In terms of online prediction
accuracy, the nonadaptive LS, BAL, and PLS schemes achieve
similar performance but again our pro-nonadaptive achieves a
slightly better online prediction performance, again because it
includes input features in constructing predictive model. With
batch adaptation after predicting new batches, our pro-adaptive
scheme outperforms the pro-nonadaptive scheme by around
2 dB in the testing mse. The online prediction accuracy of CLR
and CLR-ensemble degrades spectacularly from the training
accuracy and becomes even inferior to nonadaptive single
modeling approaches. Its poor prediction performance may be
due to the nonsmoothness of the boundaries for the subspaces
identified in training. Also, local models learned in training
may not capture newly emerged data states in unseen data.
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TABLE II
PERFORMANCE COMPARISON OF LS, BAL, PLS, RLS, CLR, AND PROPOSED METHOD FOR PREDICTING PENICILLIN CONCENTRATION IN PENICILLIN

FERMENTATION PROCESS

Fig. 3. Prediction performance comparison of RLS-batch and Pro-batch for
predicting (a) penicillin concentration and (b) substrate concentration in the
penicillin fermentation process.

The RLS-batch has very poor online prediction performance.
At first glance, this may seem strange but it actually makes
sense. The RLS algorithm has a short memory, allowing it to
forget the past data and concentrate on the current data char-
acteristics. Hence, after batch adaptation, the model forgets
most of the past knowledge and captures the characteristics
of the current batch. This model is used to predict the next
batch. For a process with highly time-varying characteristics,
the characteristics of the next new batch can be very different

Fig. 4. Comparison of online mse learning curves of various methods
for predicting (a) penicillin concentration and (b) substrate concentration
in the penicillin fermentation process. The curves of RLS-batch, CLR, and
CLR-ensemble are outside the plot.

from those captured in the model, and this is the root cause
of its poor adaptive performance. In contrast, in our pro-
adaptive scheme, the learned KB contains information from
all the past batches and, moreover, the process operational
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Fig. 5. Prediction error comparison of the proposed framework in three differ-
ent learning modes for predicting (a) penicillin concentration and (b) substrate
concentration in the penicillin fermentation process.

information of the current batch is extracted for unsupervised
model adaptation to accurately predict the current batch.
In Fig. 3, we compare the online predictions of RLS-batch
and our pro-adaptive with the true process outputs for further
illustration of the above discussion. With sample-by-sample
adaptation, RLS-idealized is capable of attaining the excellent
online prediction performance that is very close to the training
performance. But this adaptive scheme cannot be applied to
the penicillin fermentation process with delayed process output
measurement. Also, as expected, the impractical pro-idealized
provides the ultimate performance limit. The online mse
learning curves of various methods are compared in Fig. 4,
where the mse value at test sample t , mse(t), is calculated
from the first test sample to the t th test sample as

mse(t) =
1
t

t∑
i=1

(yi − ŷi )
2 (18)

in which yi denotes the i th process output sample, and ŷi is
its prediction.

The prediction errors of our lifelong learning framework
in three different learning modes are compared in Fig. 5.
It can be seen that the performance of pro-adaptive is much

Fig. 6. Performance of lifelong learning of consecutive training tasks for
predicting (a) penicillin concentration and (b) substrate concentration in the
penicillin fermentation process.

better than that of pro-nonadaptive, and it is very close to the
idealized training performance offered by pro-idealized. This
again demonstrates the importance of online KB adaptation
and knowledge sharing mechanism. To further investigate
this online learning mechanism for building KB, we study
the impact of the number of training batches on the online
prediction performance of the two practical lifelong learn-
ing schemes, pro-nonadaptive and pro-adaptive, over all the
online test batches. The experimental results are plotted in
Fig. 6, where the effectiveness of the adaptive lifelong model,
pro-adaptive, is self-evident. On predicting the penicillin con-
centration, for example, two training batches are enough for
pro-adaptive to attain a comparable performance to the case
of using all the eight training batches. This demonstrates that
equipped with online KB adaptation, the pro-adaptive scheme
is capable of compensating for the lack of training data/tasks
by continually acquiring most up-to-data knowledge online.

B. Wastewater Treatment Plant

The WWTP detailed in [49] is a dynamic process subject
to large perturbations in influent flow rate and pollutant load,
together with uncertainties on the composition of the incoming
wastewater. The operation of this WWTP is to remove organic
matter and perform nitrification and denitrification. To achieve
this aim, it is essential to estimate the flow rate during the plant
operation. The process inputs and outputs of this WWTP are
listed in Table IV. The influent data are collected under severe
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TABLE III
PERFORMANCE COMPARISON OF LS, BAL, PLS, RLS, CLR, AND PROPOSED METHOD FOR PREDICTING SUBSTRATE CONCENTRATION IN PENICILLIN

FERMENTATION PROCESS

TABLE IV
VARIABLE DESCRIPTION OF WWTP

weather conditions (combination of dry weather and long rainy
period), which makes the underlying system characteristics
highly time-varying and imposes a challenge on predictive
models [50]. The plant knowledge suggests that the plant
input vector at sample i can be chosen as xi = ui =

[u1i u2i · · · u5i ] ∈ R5. We collect 1300 samples from the
WWTP dataset, among which the first 500 samples are used
for training, while the rest are for online prediction. To better
capture the local characteristics of this dynamic process, the
batch size is set to 50. Hence, there are total of 26 data batches.
The first ten batches are used for training, while the rest
16 batches are for online prediction and adaptation. The dictio-
nary size k, regularization parameters, and ρ are set to 2, 10−8,
and 1, respectively, for the proposed method. The number of
latent variables for PLS is three. The augmented Lagrangian
parameter and regularize parameter for BAL are chosen to be
10−3. The cluster number for CLR and CLR-ensemble is set
to 25 empirically.

The performance comparison for various models is pre-
sented in Table V, and their online mse learning curves are
given in Fig. 7. Again, the same observations regarding the
various methods compared can be drawn as for the penicillin
fermentation process with two exceptions. First, RLS-batch in
this case achieves a slightly better prediction accuracy than the
nonadaptive LS, BAL, and PLS. This is because the batch size
is smaller, and there are sufficient adjacent batches which have
similar characteristics; see the true process output sequence
plotted in Fig. 8. Second, different from the previous case
study, the CLR and CLR-ensemble attain slightly better online

Fig. 7. Comparison of online mse learning curves of various methods for
predicting flow rate of WWTP.

Fig. 8. Process output (flow rate) of WWTP.

prediction accuracy than the LS, BAL, PLS, RLS-batch, and
pro-nonadaptive. But they are inferior to the pro-adaptive,
because the trained local models of CLR and CLR-ensemble
cannot capture the abrupt change in testing data. This again
demonstrates the importance of model adaptation. A notable
feature in the online mse learning curves of Fig. 7 is that
around the test sample 300, there is a sharp deterioration in
online prediction accuracy for all the methods. This “abnor-
mal” phenomenon can be explained by the time-varying plant
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TABLE V
PERFORMANCE COMPARISON OF LS, BAL, PLS, RLS, CLR, AND PROPOSED METHOD FOR PREDICTING FLOW RATE OF WWTP

Fig. 9. Comparison of (a) predicted outputs and (b) prediction errors of the
proposed framework in three different learning modes for WWTP.

characteristics caused by abrupt weather change, shown in
Fig. 8. Like the 500 training samples, the first 300 test samples
(samples t = 500–800) are taken at a dry weather period but
the next 300 test samples (t = 800–1100) are taken in a long
rainy period. Hence, the underlying plant dynamics experience
an abrupt change around t = 800, and the data characteristics
become very different from those of the training data. This
kind of sudden sharp change is difficult for any adaptive model
to cope well with.

The online prediction results of the proposed framework
in three learning modes are compared in Fig. 9. It can be
seen that pro-nonadaptive is hardly able to track the abrupt
process drift starting at t = 800, while pro-adaptive does

offer some capability to track this abrupt change in the plant
dynamics. It is informative to exam the pro-adaptive scheme’s
prediction behaviors over the rainy period in more detail.
Observe from Fig. 9(a) that for the first rainy data batch
(test samples 300–350), the local predictor performs poorly,
because the current KB is learned from the previous dry data
batches. After online prediction, the batch adaptation enables
the KB to encode the new rainy characteristics. Consequently,
for the next two batches (test samples 350–450), the prediction
accuracy improves significantly. The prediction performance is
degraded again for the next batch (test samples 450–500) as
the underlying plant characteristic begins to change to a dry-
weather one. Because online adaptation after batch prediction
is able to capture this new dynamic, the subsequent batch
prediction (test sample 500 onward) achieves high accuracy.

VI. CONCLUSION AND FUTURE RESEARCH

This article has proposed a novel lifelong learning frame-
work for online modeling and prediction of industrial
time-varying streaming processes with delayed process output
measurement. Our main contribution has been to encode input
data into feature vector that contains essential process oper-
ating information and to use these input features to augment
local predictors on each batch data. We have used coupled dic-
tionary learning to connect the input feature’s space with the
predictor’s parameter space, where the two spaces are linked
through two dictionaries that are coupled by the same sparse
coding. The proposed learning framework has the capability
of unsupervised learning, which enables the learner to rapidly
reconstruct local predictors for the new coming batches given
only process inputs and provide timely predictions for the
true process outputs. Two industrial case studies, involving
a penicillin fermentation process and a WWTP, have been
used to demonstrate the effectiveness and the intrinsic learning
mechanism of our proposed framework for online prediction
and adaptation of industrial processes with hard-to-measure
process output variables.

This article has opened up a new research direction for
streaming process data analytics and modeling under the
framework of lifelong learning. There are many theoretical
and practical issues that deserve further investigation. One
important issue is how to define the KB in lifelong learning
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by incorporating prior process knowledge [7], [45] and prior
knowledge of the underlying process’s critical constraints [51],
[52]. This article has incorporated operation knowledge,
namely, process inputs, into lifelong learning to enhance
modeling performance and enable online prediction. Other
interpretable process physical features can also be integrated.
Although the delay time of process output data acquisition is
determined by the constraints of industrial applications, there
is a scope for investigating how to choose appropriate batch
size. The base model for lifelong learning is linear. A long-
term research is to study the potential of adopting a nonlinear
base model in lifelong learning.
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