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A Generic Postprocessing Technique for Image Compression
S. Chen, Z. He, and B. L. Luk

Abstract—A postprocessing technique is developed for image
quality enhancement. In this method, a distortion-recovery model
extracts multiresolution edge features from the decompressed
image and uses these visual features as input to estimate the
difference image between the original uncompressed image and
the decompressed image. Coding distortions are compensated
by adding the model output to the decompressed image. Unlike
many existing postprocessing methods, which smooth blocking
artifacts and are designed specifically for transform coding or
vector quantization, the proposed technique is generic and can
be applied to all of the main coding methods. Experimental
results involving postprocessing four coding systems show that
the proposed technique achieves significant improvements on the
quality of reconstructed images, both in terms of the objective
distortion measure and subjective visual assessment.

Index Terms—Image compression, image recovery, neural net-
works, postprocessing, visual features.

I. INTRODUCTION

I MAGE CODING is a principal technique for reducing
the requirements on bandwidth and storage capacity. The

majority of current image-coding methods cause distortions
in reconstructed images. In practice, it is always a tradeoff
between the coding bit rate and the coded image quality.
Generally speaking, increasing coding bit rate can improve
the quality of the reconstructed image, but this is limited by
channel bandwidth or storage capacity. Alternatively, post-
processing—which improves the quality of the reconstructed
image after coding and decoding have been completed—can be
an effective approach to achieve a good-quality reconstructed
image without requesting extra bit rate. Existing postprocessing
methods can roughly be divided into two categories: those em-
ploying filtering to smooth blocking artifacts in reconstructed
images [1]–[5] and those formulating postprocessing as an
image-recovery problem [6]–[11].

The filtering approach is mainly designed to achieve better
viewing quality because smoothing basically provides some
artificial “make-up” on reconstructed images. This is accept-
able and adequate for applications where obtaining pleasant
viewing quality for entertainment is the main purpose. Since
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filtering also causes unwanted over-smoothing on image edges,
this class of methods is not appropriate for applications which
require genuinely good image quality with minimum distor-
tions. The second class of methods rely heavily on the accuracy
of a priori image models used and the optimization algorithms
adopted. These methods often involve adaptive filtering to
limit excessive smoothing. In addition, existing postprocessing
methods are specifically designed for block-based coding
methods with fixed coding block sizes, such as transform
coding (TC) and vector quantization (VQ), where blocking
artifacts are serious sources of distortions. They cannot be
applied to nonblock-based predictive coding (PC), where
blocking artifacts do not exist and blurred edges are main
coding distortions. These methods are also impractical to use
for quadtree (QT) coding [12], which has variant block sizes.

The motivation of this research is the need for a postpro-
cessing technique which is able to correct the actual coding
distortions and applicable to all the major coding systems. The
key here is the ability to recover the distortion image, defined as
the difference between the original and decoded images. It can
be shown that main coding losses are due to edge distortions,
including blurred edges and blocking artifacts (the latter can
be regarded as spurious edges). This suggests that the basic
task of postprocessing is to correct these edge distortions. Our
distortion-recovery model consists of a visual feature extractor
to extract edge information from the decoded image, and a
mapping to map the visual features of the decoded image onto
the distortion image. Specifically, visually important edge
features are computed as multi-scale first-order derivatives.
Interestingly, this gradient extractor imitates certain charac-
teristics of visual cortex [13]–[15]. As the exact relationship
between the gradient features of the decoded image and the
distortion image is unknown, a neural network—referred to as
the neural network visual model (NNVM)—is trained to learn
this relationship.

We demonstrate the advantages of the proposed postpro-
cesing technique on four coding systems, namely TC, VQ, and
QT coding and PC. Our experimental results confirm that the
NNVM achieves significant improvements on the quality of
reconstructed images, in both the objective distortion measure
and subjective viewing assessment. We also implement two
typical existing postprocessing methods [1], [8] to compare
them with the proposed approach in identical coding environ-
ments. The simulation results show that the proposed technique
generally has better postprocessing gains over the two existing
methods.
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Fig. 1. A generic postprocessing approach for image coding.

II. THE PROPOSEDAPPROACH

The schematic of the proposed approach is depicted in Fig. 1.
In our approach, a distortion-recovery model estimates the dis-
tortion image from the decompressed image and adds this es-
timate to the decoded image to compensate coding distortions.
Obviously, the relationship between the decoded image and the
distortion image is highly complicated and may be impossible
or unadvisable to correct all the coding distortions. We start with
a brief discussion on main sources of coding distortions for the
three major coding methods, PC, TC, and VQ. This will point to
the way for building up an efficient distortion-recovery model.

A. Main Coding Distortions

The coding error of the most popular PC system, the differen-
tial pulse code modulation (DPCM) consists of the slope over-
load and granular noise [16]. The slope overload causes visual
blurring at the edges in the reproduced image, and these edge
distortions are visually more annoying than granular noise [17].
In a TC system, such as the DCT coding, high spatial frequency
components are either coded with very few bits or deleted com-
pletely [18]. This helps to achieve significant data compression
but also causes distortions mainly at the edges in the reproduced
image. The process of VQ is to find a representative codeword
in the codebook for each input vector [19]. Since a codeword is
the centroid (average) of all the vectors in a class, the process
of averaging leads to smoothed edges in the reproduced image.
Coding methods based on nonoverlapping blocks, such as TC
and VQ, also give rise to the blocking artifacts, namely visible
discontinuities between adjacent blocks [20]. Blocking artifacts
may be viewed as exotic or spurious edges.

Perceptually, edges and contours of objects in an image be-
long to the most important features which characterize the pic-
ture. Errors at edges have more influence on the picture quality
than errors in other image regions [21]. Therefore, the quality
of the reproduced image relies very much on the fidelity of the
reconstructed edges. The main coding distortions are edge dis-
tortions, including blurred edges and blocking artifacts. These
edge distortions are the main visual disturbances for human ob-
servers viewing images. Reducing these distortions can signifi-
cantly improve visual quality of reproduced images. The distor-
tion-recovery model in Fig. 1 is a realization or approximation
of the underlying functional relationship between the decoded
image and the distortion image. It is clear that the main task of
this model is to correct edge distortions. To achieve this aim, we
adopt the following strategy. A decoded image of size
is divided into blocks of size , and pixels of each block
are fed into a visual feature extractor, which extracts edge fea-
tures of the block. These edge features are then mapped onto
the corresponding block in the distortion image. We will refer
to as the postprocessing block size. Fig. 2 illustrates this

Fig. 2. Schematic of the proposed distortion-recovery model. The
postprocessing block size isn � n and the total number of gradient features
isM .

distortion-recovery model. The basic idea is that after learning,
the output of the model will be a good estimate of the distortion
image, which can then be added to the decoded image to com-
pensate actual coding distortions.

B. Edge-Feature Extractor

Edge features of an image block are extracted as multiscale
first-order directional derivatives, since gradients are known to
represent edges well. Psychovisual experiments have demon-
strated that stimuli in vertical and horizontal directions have
more visual sensitivity than stimuli in other directions [17]. The
horizontal and vertical derivatives are, therefore, chosen to rep-
resent edges along vertical and horizontal directions, respec-
tively. Furthermore, the combination of these two directional
derivatives can represent edges in any other directions. To cal-
culate derivatives for an block in different scales, the block
is recursively divided into four equal-size sub-blocks until the
sub-block size is reduced to . For a generic sub-block of
size , a pair of horizontal and vertical derivatives
are calculated as

(1)

(2)

where is the pixel value at position in . The
outputs of the visual feature extractor, the multi-scale deriva-
tives, can be arranged in a vector form

(3)

The total number of derivatives, , for an block is deter-
mined by the formula

(4)

It is worth emphasizing that this edge-feature extractor incor-
porates certain characteristics of visual cortex. It is known that
there are visual feature detectors in visual cortex, called simple,
complex, and hypercomplex cells, which are sensitive to edge
patterns of various orientations in different scales [13]–[15]. A
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(a)

(b)

Fig. 3. Images used for: (a) training and (b) testing.

simple cell responds maximumly to edges with particular orien-
tation in its receptive field. A complex cell also responds max-
imumly to edges, but has a larger receptive field. A hypercom-
plex cell responds mostly to edge patterns and can generalize its
response over several complex cells. In the proposed edge-fea-
ture extractor, an image block of certain size is divided into
smaller sub-blocks. Derivatives of small sub-blocks can model
visual features detected by simple cells, and derivatives of larger
sub-blocks can represent features detected by complex cells.
The collection of multi-scale derivatives can mimic the response
of a hypercomplex cell, which is able to generalize all the de-
tails over the given area in the visual field.

Obviously, the choice of the postprocessing block size
has important influence on the complexity and performance of

the model. Ideally, the block size should be as large as possible.
However, too large a block size would make computation and
storage impractical. From (4), it can be seen that the total
number of derivatives increases exponentially asincreases.
The size of the model therefore increases dramatically as
the postprocessing block size increases. On the other hand,
increasing can provide more gradient information, and
this can result in a better performance, provided that enough
training data are available to train the model properly. For
postprocessing of block-based coding systems, such as TC and
VQ, the postprocessing block size should be larger than the
coding block size, so that blocking artifacts at coding block
boundaries can be corrected. Experimental results on choosing
block size will be given later.
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Fig. 4. Postprocessing gain averaged over eight test images as a function of postprocessing block size. The NNVM has 40 hidden neurons. (a) JPEG with Quality
= 7. (b) JPEG with quality= 14. (c) VQ with bit rate= 0.25 bpp. (d) VQ with bit rate= 0.5 bpp. (e) QT with bit rate= 0.25 bpp. (f) QT with bit rate= 0.5 bpp.
(g) PC: coding bit= 1, quantizing step= 4. (h) PC: coding bit= 2, quantizing step= 4.

C. Neural Network Visual Model

We use a one-hidden-layer neural network to learn the rela-
tionship between the edge features and distortion patterns, and
call the resulting distortion-recovery model the NNVM. Specifi-
cally, the inputs to the NNVM, the edge features, are normalized

to the range ; the hidden-layer outputs of the NNVM are
given by

(5)
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(a) (b)

(c) (d)

Fig. 5. Postprocessing gain averaged over eight test images as a function of the number of hidden neurons in the NNVM. The postprocessing block size is16�16

for JPEG, VQ, and QT, and8� 8 for PC. (a) JPEG with Quality= 7. (b) VQ with bit rate= 0.25 bpp. (c) QT with bit rate= 0.25 bpp. (d) PC: coding bit= 1,
quantizing step= 4.

where is the number of hidden neurons, and the outputs of
the NNVM are given by

(6)
where and are fixed scaling and shifting constants for map-
ping the model outputs onto the range of pixel values. The acti-
vation function is the bipolar sigmoid function

(7)

The number of the hidden-layer neurons, , is determined
during training using the following procedure. Given an ap-
propriate block size , we start with a small hidden layer
and gradually increase the size of the hidden layer until the
performance stops improving. The network weights and

are learned using the stochastic gradient algorithm
[22], [23]. The total number of adjustable parameters
for the NNVM is

(8)

With and , for example,
. To collect training data from a coding system, a training

image of size is compressed and then decompressed.
The corresponding distortion image is obtained by subtracting
the decoded image from the original image. The decoded and
distortion images are divided into blocks. A pair of blocks
gives rise to a pair of input and desired output. As an image can
only provide pairs of training data, many

images should be used in order to collect sufficient training data
samples.

III. EXPERIMENTAL RESULTS AND COMPARISON

The proposed postprocessing technique was applied to four
coding methods, TC, VQ, and QT coding and PC. The coding
algorithms employed were the JPEG [24] for TC, the algorithm
based on the Kohonen self-organizing feature map [25] for VQ
design, the improved QT algorithm [12] for QT coding, and the
algorithm using a neural network predictor [26] for PC. Sixteen
images of size with 8 bits per pixel (bpp), as shown
in Fig. 3, were involved in the experiment. The first eight im-
ages were used to provide training data, and the other eight im-
ages were used as test images. We also implemented two typical
existing postprocessing methods, Reeve’s filtering method [1],
and Paek’s modified projection onto convex set (PCS) method
[8] to compare them with our approach in the identical TC and
VQ coding environments. It should be pointed out that these
two existing algorithms are impractical for postprocessing of
QT and PC systems.

Fig. 4 shows the postprocessing gains averaged over the eight
test images as a function of the postprocessing block size, ob-
tained by the the NNVM with . In Fig. 4, when
increased to , a sharp drop in peak signal-to-noise ratio
(PSNR) gain occurred. This was because the training data set
was too small, compared with the model size. The number of
hidden neurons for the NNVM also had to be determined.
Fig. 5 depicts the postprocessing gains averaged over the eight
test images versus the number of hidden neurons, given the post-
processing block size for JPEG, VQ, and QT coding,
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(b) (c)

(d) (e)

Fig. 6. Face portions of original, JPEG coded (Quality= 7) and
post-improved images of “Lena.” (a) Original image. (b) JPEG coded (PSNR
= 28.85. (c) NNVM (PSNR gain= 0.81 dB). (d) Reeve’s (PSNR gain= 0.69
dB). (e) Paek’s (PSNR gain= 0.36 dB).

and for PC. The results in Fig. 4 suggest that a block size
of is adequate for postprocessing of JPEG, VQ, and QT
coding. The JPEG algorithm used had a standard coding
block size and the VQ employed in the study had a coding block
size of . The QT had variable block sizes, depending on
image activities, and majority of the blocks were and .
A postprocessing block size larger than coding block sizes en-
sures that the distortions at coding block boundaries can be cor-
rected. The PC is nonblock based and a smaller postprocessing
block size of appears sufficient. The results of Fig. 5 sug-
gest that is sufficient for the NNVM to achieve ade-
quate performance.

Tables I–IV compare the postprocessing gains obtained using
the NNVM and two existing algorithms for the JPEG and VQ.
Tables V–VIII list the postprocessing gains obtained using the
NNVM for the QT coding and PC. Fig. 6 depicts the original and
JPEG-coded images of “Lena” together with the three post-im-
proved images. Fig. 7 shows the VQ coded image and the three

(a) (b)

(c) (d)

Fig. 7. Face portions of VQ coded (bit rate= 0:25 bpp) and post-improved
images of “Lena.” (a) VQ coded (PSNR= 26.53 dB). (b) NNVM (PSNR gain
= 1.13 dB). (c) Reeve’s (PSNR gain= 0.64 dB). (d) Paek’s (PSNR gain= 0.02
dB).

(a) (b)

Fig. 8. Face portions of QT coded (bit rate= 0:25 bpp) and post-improved
images of “Lena.” (a) QT coded (PSNR= 29.66 dB). (b) NNVM (PSNR gain
= 0.91 dB).

(a) (b)

Fig. 9. Face portions of PC coded (coding bit= 1, quantizing step= 4) and
post-improved images of “Lena.” (a) PC coded (PSNR= 24.17 dB). (b) NNVM
(PSNR gain= 2.87 dB).

corresponding post-improved images of “Lena.” Figs. 8 and
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TABLE I
PSNR VALUES (dB) OF JPEG CODING

(QUALITY = 7) AND POSTPROCESSINGGAINS (dB). THE POSTPROCESSING

BLOCK SIZE FOR THE NNVM I S16 � 16 AND THE NNVM HAS 40
HIDDEN NEURONS

TABLE II
PSNR VALUES (dB) OF JPEG CODING (QUALITY = 14) AND POSTPROCESSING

GAINS (dB). THE POSTPROCESSINGBLOCK SIZE FOR THENNVM I S 16� 16

AND THE NNVM HAS 40 HIDDEN NEURONS

9 compare the QT and PC coded images of “Lena” with the
post-improved images obtained using the NNVM, respectively.
These pictures give face portions of their corresponding im-
ages for a clearer visual evaluation. The results given in Ta-
bles I–IV, and Figs. 6 and 7 demonstrate that the NNVM has
superior performance over Reeve’s and Paek’s algorithms for
postprocessing of TC and VQ systems, in terms of both the ob-
jective PSNR measure and subjective visual evaluation. For the
VQ case, the performance of Paek’s algorithm was particularly
poor, as it is designed for the TC with an coding block size.
The results shown in Tables V–VIII, and Figs. 8 and 9, confirm
that the NNVM is particularly effective for post-improving QT
coding and PC systems.

Reeve’s and Paek’s methods were used in the comparative
study, as they represents two typical approaches of the existing
postprocessing methods and can readily be implemented. For
many other existing postprocessing methods, we can make
some comparisons using the results reported in the literature.
For the sophisticated space-variant filtering method [2], the
improvement given by the authors was 0.40 dB for a VQ
coded “Lena” image at an original coding PSNR of 29.90
dB. The NNVM achieved a postprocessing gain of 0.80 dB
for a VQ coded “Lena” image at an original coding PSNR of
30.20 dB. For Tien and Hang’s postprocessing methods [3],
their experimental results gave a postprocessing gain of 0.36
dB at most for TC-coded images, while the NNVM achieved
average improvements up to 0.77 dB for TC-coded images. For
the adaptive -filtering method [5], the varying postfiltering

TABLE III
PSNR VALUES (dB) OF VQ CODING (BIT RATE = 0:25 bpp) AND

POSTPROCESSINGGAINS (dB). THE POSTPROCESSINGBLOCK SIZE FOR THE

NNVM I S 16� 16 AND THE NNVM HAS 40 HIDDEN NEURONS

TABLE IV
PSNR VALUES (dB) OF VQ CODING (BIT RATE = 0:5 bpp) AND

POSTPROCESSINGGAINS (dB). THE POSTPROCESSINGBLOCK SIZE FOR THE

NNVM I S 16� 16 AND THE NNVM HAS 40 HIDDEN NEURONS

TABLE V
PSNR VALUES (dB) OF QT CODING (BIT RATE = 0:25 bpp) AND

POSTPROCESSINGGAINS (dB). THE POSTPROCESSINGBLOCK SIZE FOR THE

NNVM I S 16� 16 AND THE NNVM HAS 40 HIDDEN NEURONS

method [4], and another modified PCS method [9], the authors
did not provide any numerical distortion measurements.

IV. CONCLUSION

A generic postprocessing technique for image coding has
been developed. Unlike many existing postprocessing methods,
which basically smooth blocking artifacts to achieve better
viewing quality, the proposed technique corrects actual coding
losses. Our model is inspired by the mechanism of visual
perception in visual cortex. It uses gradient features to estimate
coding distortions. This has been shown to be very effective
in dealing with blurred edges and blocking artifacts, the
two main coding distortions. An important advantage of our
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TABLE VI
PSNR VALUES (dB) OF QT CODING (BIT RATE = 0:5 bpp) AND

POSTPROCESSINGGAINS (dB). THE POSTPROCESSINGBLOCK SIZE FOR THE

NNVM I S 16� 16 AND THE NNVM HAS 40 HIDDEN NEURONS

TABLE VII
PSNR VALUES (dB) OF PC (CODING BIT = 1, QUANTIZING STEP= 4) AND

POSTPROCESSINGGAINS (dB). THE POSTPROCESSINGBLOCK SIZE FOR THE

NNVM I S 8� 8 AND THE NNVM HAS 40 HIDDEN NEURONS

TABLE VIII
PSNR VALUES (dB) OF PC (CODING BIT = 2, QUANTIZING STEP= 4) AND

POSTPROCESSINGGAINS (dB). THE POSTPROCESSINGBLOCK SIZE FOR THE

NNVM I S 8� 8 AND THE NNVM HAS 40 HIDDEN NEURONS

approach is that the same simple design can be employed for
postprocessing of different coding systems. This is in contrast
to existing postprocessing methods, which are limited to TC or
VQ. Experimental results of applying the proposed technique
to four coding systems confirm that the proposed technique
has better postprocessing gains and wider applications over
existing methods.
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