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Multilabel Distribution Learning Based on
Multioutput Regression and Manifold Learning

Chao Tan , Sheng Chen , Fellow, IEEE, Genlin Ji , and Xin Geng , Member, IEEE

Abstract—Real-world multilabel data are high dimensional,
and directly using them for label distribution learning (LDL)
will incur extensive computational costs. We propose a multilabel
distribution learning algorithm based on multioutput regression
through manifold learning, referred to as MDLRML. By exploit-
ing smooth, similar spaces’ information provided by the samples’
manifold learning and LDL, we link the two spaces’ manifolds.
This facilitates using the topological relationship of the man-
ifolds in the feature space to guide the manifold construction
of the label space. The smoothest regression function is used
to fit the manifold data, and a locally constrained multioutput
regression is designed to improve the data’s local fitting. Based
on the regression results, we enhance the logical labels into the
label distributions, thereby mining and revealing the label’s hid-
den information regarding importance or significance. Extensive
experimental results using real-world multilabel datasets show
that the proposed MDLRML algorithm significantly improves
the multilabel distribution learning accuracy and efficiency over
several existing state-of-the-art schemes.

Index Terms—Label distribution learning (LDL), manifold
learning, multilabel learning (MLL), multioutput regression.

I. INTRODUCTION

IN TRADITIONAL machine learning, the primary goal is to
resolve the problems related to single-label learning. Here,

single-label learning means that a sample belongs to only one
predefined class. But in real life, multiple class labels are often
applicable to a sample, and the process of determining which
labels are applicable to a sample is referred to as multilabel
learning (MLL). In recent years, MLL has become popular in
a variety of fields, including text classification, gene function
analysis, image recognition, and video detection [1], [2].
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A hot research topic related to MLL is label distribution
learning (LDL). Researchers have employed LDL in a variety
of ways, with different degrees of success. Geng [3] was the
first to propose the concept of label distribution, in an effort
to solve the problem of insufficient training samples in the
age-estimation problem. Geng et al. [4] proposed an algorithm
for LDL based on improved iterative scaling, called IIS-LDL,
to estimate facial age, which is the first proposal of the LDL
algorithm. Two further algorithms for LDL based on a quasi-
Newton method (called BFGS-LDL) and the neural network-
based method (referred to as CPNN), respectively, were also
proposed later [5]. Geng [3] further proposed more algorithms
for LDL, including AA-BP and AA-KNN. A label distribution
support vector regressor (LDSVR) algorithm [6] considered
LDL as a regression problem. In addition, LDL has been
applied to practical applications. For example, Zhou et al. [7]
used emotion distribution to identify facial expressions. LDL
also has been studied in the fields of natural scene annotation [8],
crowd counting [9], and video analysis [10].

Real-life MLL applications are usually high dimensional.
For high-dimensional multilabel datasets, many original
machine-learning methods perform poorly without effective
feature extraction for data, leading to prohibitive computa-
tional costs. Conversely, reducing dimensionality as a pre-
processing step, for example, by extracting the optimal rep-
resentative features or transforming the original data into
a low-dimensional space [11], [12] often greatly improves
learning algorithms.

Manifold learning is a powerful tool for dimensionality
reduction. Three famous local methods in manifold learning
are: 1) locally linear embedding (LLE) [13]; 2) Laplacian
eigenmaps (LEMs) [14]; and 3) the local tangent space align-
ment algorithm (LTSA) [15]. LLE [13] projects data points
onto a low-dimensional space that preserves local geomet-
ric properties, using local neighborhood information of each
point, while LEM [14] uses the weighted distance between
two points as the loss function to obtain dimension reduction
results. In contrast, LTSA [15] constructs a local tangent space
for each point and obtains globally low-dimensional embed-
ding results through affine transformation of the local tangent
spaces to increase the class separability. For multilabel prob-
lems, it is possible to deal with every single label individually
using manifold learning-based dimensionality reduction. The
work [16] presented one of the first attempts to use the LLE
method in the label space for MLL. Later, Xu et al. [17]
also used the LEM method in a label enhancement algorithm.
However, a strong correlation always exists between class
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labels, and processing each label separately may degrade class
separability. To mitigate the degradation in class separability,
the data manifold retains the original data’s intrinsic geometry
to the greatest extent after performing dimensionality reduc-
tion. To effectively avoid degrading class separability, both
the sample attributes and label distribution should be jointly
considered.

Currently, a few multilabel dimensionality-reduction
methods exist, which partially exploit label information.
Yu et al. [18] proposed a multilabel latent semantic index
(MLSI) to preserve input information and capture cor-
relation between multiple outputs. Zhang and Zhou [19]
performed multilabel dimensionality reduction via depen-
dency maximization (MDDM), which essentially maximizes
feature attributes and class label dependence. Park and
Lee [20] used generalized linear discriminant analysis (LDA)
to contend with multilabel problems by using least-squares
regression to process high-dimensional multilabel text data.
Li et al. [12] proposed a method called multilabel dimen-
sionality reduction via semisupervised discriminant analysis
(MSDA), which only uses partial label information and
exploits the graph weight matrix of sample attributes and
the similarity correlation matrix of partial sample labels to
preserve the global and local intrinsic geometry of the original
data. Xu [21] built a weighted multilabel LDA framework
to consolidate two existing multilabel LDA-type methods
with binary and correlation-based weight forms, and further
collected two additional weight forms with entropy and fuzzy
principles. Mikalsen et al. [22] presented a noisy multilabel
semisupervised dimensionality reduction (NMLSDR) method
to denoise the noisy multilabel data and label the unlabeled
data simultaneously. The NMLSDR learns a projection
matrix for reducing the dimensionality by maximizing the
dependence between the enlarged and denoised multilabel
space and the features in the projected space. Ji et al. [23]
considered a framework for extracting shared structures in
multilabel classification. A common subspace is assumed to
be shared among multiple labels, and the optimal solution to
the proposed formulation is obtained by solving a generalized
eigenvalue problem. For high-dimensional problems, direct
computation of the solution is expensive, and an efficient
algorithm was developed in [23].

For many real-world learning problems, data contain only
logical labels rather than label distributions. A solution is
to transform logical label into label distribution by mining
the information on label importance contained in the training
samples, which improves LDL’s precision. Geng et al. [24]
proposed a label-enhancement algorithm for LDL, which relies
on mining label-related information hidden in the training sam-
ples to convert the training samples’ original logical labels
into label distributions. Although label distribution is not given
explicitly, often it is included implicitly in the training sam-
ples. If this implicit label distribution can be recovered using
some appropriate method, LDL can be harnessed to mine more
semantic information. Xu et al. [17] proposed an algorithm
called graph Laplacian label enhancement (GLLE) to recover
label distributions from logical labels. This label enhance-
ment reinforces the supervision information in training sets.

In order to preserve the local structure of the label distri-
bution in the embedding space, Peng et al. [25] proposed a
multiscale locality preserving (MSLP) algorithm to implement
LDL label embedding. For real-world data, the labels may
encounter problems, such as redundancy and noise. This is
because the noise is inevitably generated during the collec-
tion and preparation of some data points. MSLP is designed
to be insensitive to these data points in order to alleviate this
problem.

It can be seen that label embedding (LE) has become a hot
research topic in MLL and LDL. In particular, the effective
exploitation of label correlations is crucial for the successful
application of LDL. In order to realize LE in LDL, the fol-
lowing issues must be tackled properly: 1) how to exploit the
information of label distributions efficiently; 2) how to recover
the label vector to satisfy the constraints of label distribution;
and 3) learning must be a multioutput regression. These con-
siderations motivate our work. In this article, we propose a
new multilabel distribution learning algorithm based on mul-
tioutput regression and manifold learning, called MDLRML.
Our contributions are summarized as follows.

1) We apply manifold learning to multilabel data to map
raw sample data onto a low-dimensional subspace.

2) We exploit the feature space manifold’s topological rela-
tionship to guide the reconstruction of the label space
manifold by constructing a smooth regression function.

3) We also design a constrained multioutput regression to
improve the data’s local fitting.

4) Finally, based on the regression results, we enhance
the logical label to a label distribution for the samples’
multilabel distribution learning and predicting.

Extensive experiments using real-world multilabel datasets
with ground-true label distributions demonstrate the effective-
ness and superior performance of the proposed MDLRML
algorithm over a range of the existing methods.

Before we proceed, we define a few technical terminologies.
1) Label Manifold: The label manifold is reconstructed

with the transferred local topological structure from
the feature manifold and logical labels. With the label
manifold, a mapping from the feature manifold to the
label manifold can be effectively found with a regres-
sion process. The label manifold contains more semantic
information, which is beneficial to the learning process.

2) LE: The feature manifold and label manifold are two
different spaces but they share the local topological
structure according to the smoothness assumption. The
labeling manifold is not explicitly provided in the train-
ing examples. To reconstruct the label manifold, the key
is this local topology. In order to study the label mani-
fold, the label space should be extended to the Euclidean
space. This process is called LE.

3) Label Distribution: This is a new machine-learning
paradigm, where each instance is annotated by label dis-
tribution. The label distribution represents the degree to
which each label describes an instance.

4) Label Extension: According to the smoothness assump-
tion, the local topological structure can be transferred
from the feature space to the label space. This is
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Fig. 1. Example about the relevance or irrelevance of each label.

called the extension from the logical label space to the
Euclidean label space.

II. RELATED WORK

A. Multilabel Learning Based on Manifold Learning

Among the previous research efforts in MLL, many have
focused on converting the logical label space into a Euclidean
label space. Hou et al. [16] explored manifolds in the label
space by treating labels as numbers. In this way, the label set
contains more semantic information, which is beneficial to the
learning process. The multilabel manifold learning algorithm,
referred to as ML2, proposed by Hou et al. [16] naturally
induces a local topology according to the smoothing hypoth-
esis [26] by extending from the logical label space to the
Euclidean label space. However, ML2 extends the original log-
ical label space to the Euclidean space without dimensionality
reduction. According to Hou et al. [16], this method is the
first attempt to explore the label space’s manifold structure
in MLL.

Xiang et al. [27] proposed an algorithm for nonlinear
dimensionality reduction (NLDR). Tangent space projection is
estimated at each data point on the manifold, through which
the data point itself and its neighbors are represented in tan-
gent space with local coordinates. An optimization framework
is developed based on the reconstruction error analysis, which
is capable of yielding a global optimum. Motivated by the
observation that the true cluster assignment matrix for high-
dimensional data can be embedded in a linear space spanned
by the data, Nie et al. [28] proposed a spectral embedded clus-
tering (SEC) framework, in which a linearity regularization is
added into the objective function to naturally deal with out-
of-sample data. They also presented a new Laplacian matrix
constructed from a local regression of each pattern and incor-
porated it into their framework to capture both local and global
discriminative information for clustering. Xiang et al. [29]
reformulated the LLE and LTSA algorithms within a unified
regression framework in terms of locally linear transforma-
tions. The authors also presented an improved LLE algorithm
that learns the manifold in a way similar to LLE but with
significant performance improvement.

For many real-world data, performing dimensionality reduc-
tion as a preprocessing will greatly improve the learning
algorithm’s performance. Tai and Lin [30] attempted to reduce
computational costs by seeking a major correlation between
labels, especially for datasets with a large number of labels,
where the Euclidean space’s cardinality is a combination of the

logical label vectors. Sun et al. [31] projected the feature and
label spaces onto new spaces by maximizing the correlation
between the two spaces’ projections. Both these approaches
reduce the label space’s dimensionality.

The well-established methods for MLL include the
MLL algorithm based on the neural-network model (BP-
MLL) [32], the multilabel naive Bayes classification algorithm
(MLNB) [33], the multilabel lazy learning approach (ML-
kNN) [34], and the ML2 [16].

B. Multilabel Distribution Learning

MLL studies the problem that each example or instance is
associated with a set of labels. The learning process essentially
constructs a mapping from instances onto labels, that is, the
task is to learn the multilabel predictor that maps an instance
onto the relevant label set [35], [36]. Geng [3] defined the
learning process of an instance’s labeled distribution as LDL.
LDL, multioutput regression [37], and multiordinal regres-
sion [38] have some similarities because they all use the
numerical labels to annotate instances.

To label an instance x, a natural way is to assign a real num-
ber dy

x to each possible label y, and dy
x represents the degree

to which y describes x. Assume that dy
x ∈ [0, 1], and further

assume that the label set is complete, that is, all the labels in
the set fully describe an instance so that

∑
y dy

x = 1. Then,
the description of the above condition is called the description
degree dy

x of y to x. For a particular instance, the description
degrees of all the labels constitute a probability-distribution
data form and, therefore, it is called the label distribution. The
learning process on a dataset labeled by a label distribution is
hence referred to as LDL [3].

The emergence of LDL makes it possible to learn richer
semantics than just multilabels from data, such as more
accurately characterizing the relative importance of different
multilabels associated with the same instance. Geng [3] argued
that both single-label learning and MLL may be regarded as
special cases of LDL. In other words, LDL may be consid-
ered as a more general machine-learning framework. However,
the application of LDL is based on the assumption that each
instance is labeled by a label distribution set that covers the
importance of all labels, which often is not met in practice. The
data in practical applications are mostly labeled by single label
or multilabels with uniform label distribution, namely, single
logical label or multiple logical labels, which lacks complete
label distribution information. Despite this, the supervision
information in these data is essentially following a certain
unknown label distribution. Although this label distribution
is not given explicitly, often it is contained implicitly in the
training samples. Therefore, if this information can be recov-
ered through some appropriate method, the label distribution
learned can help us discern more semantic information.

In most supervised learning problems, label distribution
is more general than logical label because the boundaries
between relevance or irrelevance of labels to instance are
unclear. When multiple labels are associated with an instance,
the relative importance of them is more likely to be different
than equal, that is, we do not have uniform label distribution
in general. In Fig. 1, a natural scene image is annotated with

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on June 18,2022 at 09:13:24 UTC from IEEE Xplore.  Restrictions apply. 



TAN et al.: MULTILABEL DISTRIBUTION LEARNING BASED ON MULTIOUTPUT REGRESSION AND MANIFOLD LEARNING 5067

Fig. 2. Label distribution of a natural scene image.

labels, such as sky, water, buildings, and clouds. But the
relative importance of each label to the image is different.

Unlike MLL, LDL represents greater flexibility in pro-
cessing label ambiguity because it uses the label distribution
instead of a binary label vector to annotate each instance.
Fig. 2 shows an example of LDL in the field of natural
scene annotation, where the description degree represents the
relevant degree of each label with the image.

However, it is difficult to obtain the label distribution
directly because the process of quantifying the description
degree is expensive. We need an effective way of recovering
the label distributions from the logical labels of the train-
ing set by exploiting the correlation between the topological
information in the feature space and the labels. This process
is referred to as LE [25]. LE enhances supervised information
in the training set by exploiting the relative importance of
each label. Some works establish the relationship between the
instances and the labels via graphics and convert the logical
label into label distribution [16], [39]. After the label distribu-
tion is recovered, more effective supervised learning methods
can be used by utilizing the label distribution.

To convert the logical labels into the label distributions, the
existing LDL algorithms include the LDSVR [6], CPNN [5],
and AA-KNN [3]. Differing from these well-known methods,
our MDLRML is based on multioutput regression via manifold
learning. The algorithm migrates the feature space’s topolog-
ical structure into the label space. By using the supervised
information of the original label space to guide the learn-
ing of the feature manifold space, the main features of the
original samples are extracted. With the reduced-dimensional
main features and their associated label estimates to form the
multioutput regression, the unknown label distributions are
estimated with enhanced accuracy.

III. PROPOSED METHOD

The original data are generally distributed on certain mani-
folds in both the feature and label spaces, and the manifolds of
these two spaces are linked according to the smooth hypoth-
esis [26]. Therefore, the feature space manifold’s topological
relationship can act as a guide in constructing the label space
manifold. Hence, we can reconstruct the label manifold by
transferring the local topology structures from the feature man-
ifold and the existing logical labels. In other words, the feature
and label manifolds are in two different spaces, and yet they
share some local topology. This property of shared local topol-
ogy can be utilized by manifold learning methods to guide the

label manifold’s reconstruction and to preserve the structural
information between two spaces.

For high-dimensional data, the ultimate goal of dimen-
sionality reduction is for linear transformation of data in
low-dimensional subspaces to be quite close to the intrinsic
dimension, that is, the minimum dimension required to rep-
resent high-dimensional data in the low-dimensional manifold
subspaces, thereby preserving the global and local geometry
structure. Our proposed algorithm nonlinearly reduces dimen-
sionality on multilabel data and associates the samples’ feature
space to the manifold of the data’s label space, by combining
their label distributions to indicate the description degree of
each label per instance. Then, we can reconstruct the label
manifold automatically from the multilabel data.

When performing feature extraction on big data streams, we
can approximate the feature manifold by incrementally align-
ing the overlapping local linear neighborhood patches. Then,
we find the weight of each neighborhood patch using the least-
squares procedure, and reconstruct the label manifold using a
local topological structure transformed from a feature mani-
fold and a logical label. We design a multioutput regressor to
learn and predict the samples’ multilabel distribution and use
the quadratic programming method for reconstruction. Finally,
we establish the correlated relationships between the samples
and labels based on regression results, thereby enhancing the
logical labels to the label distributions.

Based on the aforementioned considerations, our MDLRML
algorithm primarily solves the following critical problems.

A. Reconstructing Label Manifold via Manifold Learning

The feature space’s topology structure for a multilabel train-
ing set S can be represented by a graph G = (X , E,W), where
X � {X = [x1 · · · xN]|xi ∈ R

m, 1 ≤ i ≤ N} is a set of ver-
tices composed of N examples xi, and E is a set of edges,
while W � {W ∈ R

m×d} is an edge weight matrix set of the
graph, which reflects the mapping relationship between sam-
ples xi in the feature manifold space R

m and the label space
R

d. In practice, m � d. First, in the feature space, we assume
that the manifold of the examples’ distribution satisfies local
linearity, that is, any example xi can be reconstructed by lin-
early combining its k-nearest neighbors, and we obtain the
reconstruction weight matrix W̃ ∈ R

m×d̂ by minimizing the
following Frobenius-norm based cost function:

min
∥
∥X − W̃T

∥
∥

F (1)

where T = [t1 · · · tN] ∈ R
d̂×N whose columns represent the

eigenvectors of X in a low-dimensional (̂d-dimension) space.
Specifically, we seek ti for 1 ≤ i ≤ N to preserve as much of
the local geometry in the d-dimensional feature space.

When new sample xN+1 arrives, its k neighbors on the orig-
inal dataset X are selected. Assume that the k neighbors of
xN+1 contain sample xi, and we denote these k samples by
Xi = [xi1 · · · xik ]. We can construct the matrix Bi = ViVT

i and
extract its features, where Vi ∈ R

k×d̂ represents the feature
vectors of XT

i Xi corresponding to its d̂ largest eigenvalues [40].
Assume that Bi is approximated by its first d̂ largest singular
values and their corresponding singular vectors. We can solve
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the feature-extraction problem using the singular value decom-
position (SVD) on Bi. Specifically, Bi = ViVT

i ≈ Qi�PT
i ,

where � � diag{σ1, . . . , σ̂d} is a diagonal matrix containing
the first d̂ largest singular values of Bi arranged in descending
order while Qi = [qi1 · · · qîd

] ∈ R
k×d̂ and Pi ∈ R

k×d̂ are the
two matrices composed of the corresponding d̂ left and right
singular vectors, respectively.

Inspired by the LTSA [15], we construct the optimal low-
dimensional (̂d-dimension) coordinates ti, 1 ≤ i ≤ N, in (1),
based on the coordinates of Qi = [qi1 · · · qîd

] in the feature
space spanned by B’s principal components. Specifically, let
Ti = [ti1 · · · tik ] ∈ R

d̂×k contain ti. Then, Ti is given by

Ti = 1

k
Ti1k1T

k + YiQT
i + Ei (2)

where 1k is the k-dimensional column vector whose element
are all ones, Yi ∈ R

d̂×d̂ is the local affine transformation,
and Ei ∈ R

d̂×k represents the reconstruction error. To save
as much of the low-dimensional geometry information in the
feature space as possible, we need to find Ti, that is, ti, and
Yi to minimize the reconstruction error Ei as follows:

min
ti,1≤i≤N

N∑

i=1

(

‖Ei‖2
F =

∥
∥
∥
∥Ti

(

Ik − 1

k
1k1T

k

)

− YiQT
i

∥
∥
∥
∥

2

F

)

(3)

where Ik is the k-dimensional identity matrix. By using Yi =
Ti(Ik − (1/k)1k1T

k )Qi, we have Ei = Ti(Ik − (1/k)1k1T
k )(Ik −

QiQ
†
i ), where Q†

i is the Moore–Penrose generalized inverse
of Qi.

In order to obtain a unique solution, the centralization and
normalization constraints are added to the coordinates T, and
the reconstruction error can be expressed as

N∑

i=1

∥
∥
∥
∥Ti

(

Ik − 1

k
1k1T

k

)(
Ik − QiQ

†
i

)∥∥
∥
∥

2

F
= trace

(
T�TT) (4)

where � = ∑N
i=1 SiRiRT

i ST
i in which Si ∈ R

N×k is the 0-1
selection matrix such that Ti = TSi and Ri is given by

Ri =
(

Ik − 1

k
1k1T

k

)(
Ik − QiQ

†
i

)
. (5)

The eigenvectors corresponding to the d̂ largest eigenvalues
of the matrix � are the low-dimensional embeddings that
minimize the reconstruction error.

B. Multioutput Regression Function for Fitting Manifold
Data

The LE algorithm based on manifold [24] assumes that the
data are distributed on certain manifolds in both the feature
space and label space, and it uses the smooth hypothesis to
link the manifolds of the two spaces so that the topological
relationship of the feature space manifold can be utilized to
guide the construction of the label space manifold. Assuming
that the manifold of the example distribution satisfies the local
linearity, that is, any example xi can be reconstructed by a
linear combination of its k-nearest neighbors, the reconstruc-
tion weight matrix W̃ can be obtained by minimizing the
reconstruction error as presented in Section III-A.

We propose a multioutput regression for fitting manifold
data. Given the training set X = [x1 · · · xN] and the cor-
responding logical label matrix L = [l1 · · · lN], where li ∈
{0, 1}d, our aim is to recover the label distribution matrix
D = [d1 · · · dN], where di ∈ [0, 1]d, from the logical label
matrix L. Traditional label space is spanned by the label vec-
tors li. In order to study the label manifold, the label space
should be extended to a Euclidean space. Each dimension of
the space still corresponds to a label, but the value is extended
from logical {0, 1} to real [0, 1]. Such numerical label can be
used to represent the label’s relevance to the example, and
it carries more semantic information to describe the instance
more comprehensively than the logical label [16]. To solve
this label extension problem, we consider the model

di = �Tϕi + b (6)

where � = [θ1 θ2 · · · θd] ∈ R
d×d is the weight matrix in

the label space and b = [b1 b2 · · · bd]T ∈ R
d, while ϕi ∈ R

d

is the nonlinear transformation to a low-dimensional feature
space, that is, the low-dimensional embedding coordinates
corresponding to the d̂ largest eigenvalues of the matrix �

that minimize the reconstruction error. Then, the multioutput
(d-output) support vector regression (SVR) can be generalized
by minimizing the following objective function:

F(�, b) = 1

2

d∑

j=1

∥
∥θ j
∥
∥2 +

N∑

i=1

L(ui) (7)

where L(·) is the chosen SVR loss function, ui = ‖ei‖, and
ei = li − �Tϕi − b.

By solving the quadratic programming problem associated
with the cost function (7) to determine the numerical label di,
the proposed algorithm based on manifold reconstructs the
feature and label spaces’ manifolds. The algorithm uses the
smoothness assumption to migrate the feature space’s topo-
logical relationship into the label space, thereby enhancing
the logical label to the label distribution. Specifically, the L2
norm is used to define the loss function in (7) [6]

L(ui) =
{

0, ui < ε

(ui − ε)2, ui ≥ ε.
(8)

To minimize (7), the iterative quasi-Newton method known as
iterative reweighed least squares (IRWLSs) [41] is used. First,
L(ui) is approximated by its first order Taylor expansion at the
solution of the current ιth iteration, denoted by e(ι)

i and u(ι)
i ,

namely

L′(ui) = L
(

u(ι)
i

)
+ ∂L(u)

∂u

∣
∣
∣
u=u(ι)

i

(
e(ι)

i

)T

u(ι)
i

(
ei − e(ι)

i

)
. (9)

Then, we further construct a quadratic approximation

L′′(ui) = L
(

u(ι)
i

)
+ ∂L(u)

∂u

∣
∣
∣
u=u(ι)

i

u2
i −

(
u(ι)

i

)2

2u(ι)
i

= 1

2
a(ι)

i u2
i + τ

(10)
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where τ is a constant term and

a(ι)
i = 1

u(ι)
i

∂L(u)

∂u

∣
∣
∣
u=u(ι)

i

=
⎧
⎨

⎩

0, u(ι)
i < ε

2
(

u(ι)
i −ε

)

u(ι)
i

, u(ι)
i ≥ ε.

(11)

Substituting (10) into (7) yields the weighted least-squares
(WLSs) problem given by

F′′(�, b) = 1

2

d∑

j=1

∥
∥θ j
∥
∥2 + 1

2

N∑

i=1

a(ι)
i u2

i + τ. (12)

In order to solve the WLS problem (12), each component
(θ j, bj) can be independently solved by equating its gradient
to zero [42] for j = 1, . . . , d

∂F′′

∂θ j
= θ j − �TDa

(
ωj − �θ j − 1Nbj

) = 0d (13)

∂F′′

∂bj
=
(

a(ι)
)T(

ωj − �θ j − 1Nbj
) = 0. (14)

Here, � = [ϕ1 ϕ2 · · · ϕN]T ∈ R
N×d is the nonlinear trans-

formation of the samples xi to the d-dimensional space,
that is, the optimal solution of (4), and Da ∈ R

N×N is
the diagonal matrix given by Da = diag{a(ι)

1 , a(ι)
2 · · · a(ι)

N },
while ωj = [[l1]j [l2]j · · · [lN]j]T , [l]j denotes the jth element
of l, and 0d is the d-dimensional zero vector. Furthermore,
a(ι) = [a(ι)

1 a(ι)
2 · · · a(ι)

N ]T . Then, the optimal solution of (12) is
found by solving the following linear equations for 1 ≤ j ≤ d:

[
�TDa� + Id �Ta(ι)

(
a(ι)
)T

� 1T
Na(ι)

][
θ j

bj

]

=
[

�TDaωj(
a(ι)
)T

ωj

]

. (15)

The multioutput SVR cannot be solved as the standard SVR
but we can use an iterative method, similar to the one proposed
in [42]. This procedure first obtains θ j and bj. Then, the direc-
tion of the optimal solution of (15) is used as the descending
direction for optimizing F(�, b). The algorithm iterates until
the SVR solution is reached, and the solution for the next
(ι + 1)th iteration, denoted as �(ι+1) and b(ι+1), is obtained
via a line search algorithm along this direction.

C. Enhancing to Label Distribution With Sigmoid Function

Sigmoid function can be used to constrain each component
of a distribution to within the range of [0, 1]. With the sigmoid
function acting directly as the regression target, we have the
regression problem that minimizes the objective function

�(�, b) = 1

2

d∑

j=1

∥
∥θ j
∥
∥2 + α

N∑

i=1

L(ui) + β

N∑

i=1

L(ri) (16)

where α +β = 1, L(·) is the loss function defined in (8), ri =
‖ci‖, and ci = li−f (xi) ∈ R

d, while the SVR label distribution
f (xi) is defined by an elementwise sigmoid vector [6]

[
f (xi)

]
j = 1

1 + exp
(
−[�Tϕi

]
j − bj

) , 1 ≤ j ≤ d. (17)

For notational convenience, we will denote (17) concisely as

f (xi) = 1

1 + exp
(−�Tϕi − b

) . (18)

Algorithm 1 Procedure of MDLRML
Require: Multilabel sample set X of N examples, logical label

matrix L, and edge weight matrix W reflecting mapping
relationship of sample x between feature manifold space
R

m and label space R
d.

New sample xN+1 and matrix Xi = [
xi1 · · · xik

]
containing

its k neighbors which includes sample xi.
Ensure: Label distribution D for multilabel sample set X.

1: Part I. Reconstructing label manifold via manifold learn-
ing:

2: I.1 Construct matrix Bi = ViVT
i and extract its features,

where Vi contains feature vectors of XT
i Xi corresponding

to d largest eigenvalues, for 1 ≤ i ≤ N.
3: I.2 Perform SVD on Bi to obtain matrix Qi consisting of

singular vectors corresponding to d largest singular values,
for 1 ≤ i ≤ N.

4: I.3 Optimize objective function (3), select eigenvectors
of � corresponding to its first d largest eigenvalues as
low-dimensional embeddings that minimize reconstruction
error.

5: Part II. Multilabel distribution learning with sigmoid
function enhanced multioutput regression:

6: II.1 Form the sigmoid function enhanced multioutput SVR
model with the cost function (16).

7: II.2 Minimize (16) by using IRWLS to construct WLS
problem (23) whose optimal solution is solution (24).

However, substituting (17) into (16) does not lead to a con-
vex quadratic form and it is difficult to find the optimization
results. To address this problem, an alternative regression
is adopted to reform the minimization of (16) to a convex
quadratic programming process [6]. Specifically, the “error”
vector ci is defined by the alternative regression as

[ci]j = − log

(
1

[li]j
− 1

)

− [
�Tϕi

]
j − bj, 1 ≤ j ≤ d (19)

or “concisely” as

ci = − log

(
1

li
− 1

)

− �Tϕi − b. (20)

Similarly, we adopt the IRWLS. The loss function L(ri) can
be approximated by the solution of the current ιth iteration,
denoted by c(ι)

i and r(ι)
i , as

L′′(ri) = 1

2
q(ι)

i r2
i + τ (21)

where

q(ι)
i = 1

r(ι)
i

∂L(r)

∂r

∣
∣
∣
r=r(ι)

i

=
⎧
⎨

⎩

0, r(ι)
i < ε

2
(

r(ι)
i −ε

)

r(ι)
i

, r(ι)
i ≥ ε

(22)

and τ is a constant term. Hence, we arrive at

�′′(�, b) = 1

2

d∑

j=1

∥
∥θ j
∥
∥2 + 1

2

N∑

i=1

(
αa(ι)

i u2
i + βq(ι)

i r2
i

)
+ τ.

(23)
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The solution of the WLS problem (23) can readily obtained
by solving the following linear equations for 1 ≤ j ≤ d:

[
α�TDa� + Id α�Ta(ι)

α
(
a(ι)
)T

� α1T
Na(ι)

][
θ j

bj

]

=
[

α�TDaωj − β�TDqηj

α
(
a(ι)
)T

ωj − β
(
q(ι)
)T

ηj

]

(24)

where Dq = diag{q(ι)
1 , . . . , q(ι)

N }, and q(ι) = [q(ι)
1 · · · q(ι)

N ]T ,
while

ηj =
[

log

(
1

[l1]j
− 1

)

· · · log

(
1

[lN]j
− 1

)]T

∈ R
N . (25)

The direction of the optimal solution of (24) is used as the
descending direction for optimizing �(�, b), and the solu-
tion for the next (ι + 1) iteration, denoted as �(ι+1), b(ι+1) is
obtained via a line search algorithm along this direction. By
calculating the optimal solution of (24), it is convenient to find
the direction of the optimal solution for the WLS problem (23),
and the solution for the optimization (16).

Let the cost function value of the WLS problem (23) at
the ιth iteration be Lcost(ι). Then, the iterative procedure is
terminated when

Lcost(ι − 1) − Lcost(ι)

Lcost(ι − 1)
< ξ (26)

where ξ is small positive number, such as ξ = 10−5.

D. Proposed MDLRML Algorithm

By combining the results of Sections III-A–III-C, we arrive
at our proposed MDLRML algorithm, which is summarized
in Algorithm 1.

We use a 3-D synthetic dataset with 1000 points to illus-
trate the effectiveness of our method in recovering the label
distributions. The third dimension of the data is calculated
as the Gaussian distribution of the first two dimensions. The
Gaussian distribution has zero mean, and the variance of each
dimension is 1. Fig. 3(a) depicts the data points in the feature
space. The label space is 2-D, and Fig. 3(b) shows the true
label points. Comparing Fig. 3(a) with (b) reveals the ratio-
nality of the smoothness assumption, that is, the points close
to each other in the feature space are also close in the label
space. Fig. 3(c) shows the reconstructed label points, where the
reconstruction weight matrix W̃ is obtained by minimizing the
cost function (1). Observe that the reconstructed label points
closely resemble the true label points. Note that in part I of
reconstructing the label manifold, dimensionality reduction has
occurred on the original dataset, and this results in a change
in the scale of the estimated label space.

1) Convergence Analysis: In Algorithm 1, part II involves
using the IRWLS algorithm to solve the corresponding mul-
tioutput SVR problem [42]. It is well known that the conver-
gence of the IRWLS to a stationary point is guaranteed [43].
Therefore, the convergence of the MDLRML to a solution is
guaranteed. The rate of convergence has also been proved for
IRWLS [43]. Hence, our MDLRML is guaranteed to converge
to a solution in finite number of iterations.

Fig. 3. (a) Synthetic data points in the feature space. (b) True numerical
label points. (c) Reconstructed numerical label points.

2) Remark: In the proposed MDLRML, without the sig-
moid function enhancement, that is, without the third term in
the cost function (16), the algorithm still works. We will refer
to the algorithm consisting of only Section III-A and III-B
as MDLRML-3. Similarly, the algorithm without the second
term in the cost function (16), denoted as the MDLRML-
2, will also work. In the experimental evaluation section, we
will test all these three algorithms, to evaluate their achievable
performance. It is expected that the MDLRML will outperform
both MDLRML-2 and MDLRML-3.

3) Complexity Analysis: The complexity of feature decom-
position in part I.1 is on the order of k3, and the complexity
of SVD in I.2 is on the order of d × k3 while the complexity
of I.3 can be worked out to be d×N ×k3. Therefore, the com-
putational complexity of part I, reconstructing label manifold
via manifold learning, is on the order of d × N × k3, denoted
as O(d × N × k3).

Let the number of iterations for IRWLS in part II be
upper bounded by Iup. The complexity per iteration of the
IRWLS follows the complexity of SVR, which is on the order
of O(N3). Therefore, the complexity of part II, multilable
distribution learning, is on the order of O(Iup × N3).

Since the number of samples N is much larger than d and
k, the computational complexity of MDLRML is on the order
of O(Iup × N3).

Interestingly, the complexity of MDLRML may be lower
than those of the MDLRML-3 and MDLRML-2. This is
because the data form for the MDLRML-3 has one Kronecker
delta matrix Da which is sparse, and the data form for
MDLRML-2 has one Kronecker delta matrix Dq, which is
sparse, while the MDLRML has two sparse Kronecker delta
matrices Da and Dq. Therefore, the data for the MDLRML
are sparser than those for MDLRML-2 and MDLRML-3. As
a result, the MDLRML may take less number of iterations to
converge than the other two algorithms. This analysis will be
further confirmed in the next section.

IV. EXPERIMENTAL EVALUATION

A. Experimental Setup

1) Comparison Algorithms: In the experimental evaluation
of our proposed MDLRML, MDLRML-3, and MDLRML-2
algorithms, we choose four well-established MLL algorithms
for comparison, which are the BP-MLL [32], MLNB [33],
ML-kNN [34], and ML2 [16]. We also select three well-
known LDL algorithms, the LDSVR [6], CPNN [5], and
AA-KNN [3], as the benchmarks for comparison with our
MDLRML, MDLRML-3, and MDLRML-2.
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TABLE I
CHARACTERISTICS OF MULTILABEL DATASETS [44] USED IN EXPERIMENTAL EVALUATION WITH MLL METRICS

TABLE II
MULTILABEL DATASETS WITH GROUND-TRUE LABEL DISTRIBUTIONS

FROM [3] USED IN EXPERIMENTAL EVALUATION WITH LDL METRICS

2) Datasets: To compare our algorithms with the
aforementioned MLL and LDL algorithms, we select ten
real-world multilabel datasets from Mulan website [44] for
performance evaluation. Table I summarizes the features of
these datasets. Half of these datasets are regular sized and
half of them are large scale. These datasets, therefore, cover a
wide range of multilabel attributes. In Table I, S is the num-
ber of examples, T is the number of testing samples, dim(S)

denotes the feature dimensions, L(S) is the number of class
labels, LCard(S) is the label cardinality, LDen(S) is the label
density, DL(S) denotes the distinct label sets, and F(S) is the
feature type.

To compare the accuracy of the estimated label distribu-
tions obtained by our algorithms with those obtained by the
aforementioned LDL algorithms, we use 15 real-world datasets
of [3] with the known ground-true label distributions. Table II
summarizes these datasets.

3) Evaluation Metrics: We choose five widely used evalu-
ation metrics for MLL, and they are: 1) Hamming loss; 2) one
error; 3) coverage; 4) ranking loss; and 5) average precision.
For average precision, the larger the value, the better the
performance. Hence, we use ↑ after this evaluation metric,
that is, average precision ↑. For the other four metrics, the
smaller the values, the better the performance. Therefore, we
use ↓ after the evaluation index.

For the 15 real-world datasets of Table II with the known
ground-true label distributions used in LDL, we can compare

the estimated label distributions with the ground-true label
distributions. We employ six representative label distribution
evaluation indicators [3] for this task, which are: 1) Chebyshev
distance; 2) Clark distance; 3) Canberra distance; 4) Kullback–
Leibler divergence; 5) cosine coefficient; and 6) intersectional
similarity.

B. Experimental Result Comparison Based on MLL Metrics

1) Comparison of Achievable MLL Metrics: In the exper-
imental comparison of our algorithms with the seven chosen
benchmark algorithms using the ten real-world datasets, half
the examples in each dataset are selected randomly as a train-
ing set, and the remaining half are used to form a test set.
No preprocessing is performed on data. We set the algorith-
mic parameters of the MDLRML as follows. The number of
k nearest neighbors is set to k = 10. This value is chosen sim-
ply to be consistent with the value of k used in the benchmark
algorithms [16]. We choose d̂ = 8. In fact, we have tested
the values of d̂ from 1 to 9, and the results obtained are all
similar. Similar to [16], we set λ = 1 and ε = 0.01. We set
α = β = 0.5 to maintain the balance of the two loss terms
in (16). The termination threshold is set to ξ = 10−5.

We used ten-fold cross-validation on each dataset, and we
record each algorithm’s average performance on the five MLL
evaluation metrics in Tables III–VII, respectively, where the
bold-font value indicates the best performance among the algo-
rithms. The entries of each row in a table record the metric
values achieved by the corresponding algorithms, where the
bracketed numbers indicate the ranks achieved for this dataset.
For example, for the row corresponding to the dataset Yeast
in Table III, the Hamming loss metric entry for the MLNB is
0.2061(3). This indicates that the MLNB attains the Hamming
loss value of 0.2061 and ranks the second best for Yeast.
From the experimental results, we see that on the regular-sized
and large-scale datasets, our MDLRML ranks first in more
than half of the evaluation metrics. The effectiveness of our
MDLRML is especially evident on large-scale datasets. The
last row of each table compares the average ranks of the ten
algorithms over all the ten datasets for the corresponding eval-
uation metric. It can be seen that our MDLRML consistently
comes out top.

As expected, the MDLRML outperforms MDLRML-2 and
MDLRML-3 on every metric over all the datasets. It can
also be seen that MDLRML-2 and MDLRML-3 achieve the
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TABLE III
PERFORMANCE COMPARISON OF TEN ALGORITHMS ON TEN DATASETS [44] USING HAMMING LOSS ↓

TABLE IV
PERFORMANCE COMPARISON TEN ALGORITHMS ON TEN DATASETS [44] USING RANKING LOSS ↓

TABLE V
PERFORMANCE COMPARISON OF TEN ALGORITHMS ON TEN DATASETS [44] USING ONE ERROR ↓

TABLE VI
PERFORMANCE COMPARISON OF TEN ALGORITHMS ON TEN DATASETS [44] USING COVERAGE ↓

same performance. This demonstrates the effectiveness of our
proposed approach of combining the two loss terms.

2) Computational Time Comparison: Table VIII compares
the runtimes measured in seconds of all the ten algorithms.

The experiments are carried out on MATLAB 2016a, run-
ning on a PC with i5-6200 2.30-GHz processor of 4 cores
and 8 GB of RAM. It can be seen that our MDLRML comes
out on the top, and it consistently outperforms the other

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on June 18,2022 at 09:13:24 UTC from IEEE Xplore.  Restrictions apply. 



TAN et al.: MULTILABEL DISTRIBUTION LEARNING BASED ON MULTIOUTPUT REGRESSION AND MANIFOLD LEARNING 5073

TABLE VII
PERFORMANCE COMPARISON OF TEN ALGORITHMS ON TEN DATASETS [44] USING AVERAGE PRECISION ↑

TABLE VIII
RUN TIME (S) ↓ COMPARISON OF TEN ALGORITHMS ON TEN DATASETS [44]

TABLE IX
FRIEDMAN STATISTICS FF , IN TERMS OF EACH EVALUATION METRIC

AND THE CRITICAL VALUE AT A SIGNIFICANCE LEVEL OF 0.05
(COMPARING ALGORITHMS 8 AND DATASETS 10)

seven MLL and LDL benchmark algorithms. Observe that
the MDLRML attains faster runtimes than MDLRML-2 on
most of the datasets. Also, the MDLRML-3 seems converging
slower than the MDLRML-2 for all these ten datasets, as it
imposes higher runtimes than the latter. The results of runtime
comparison, therefore, indicates that the MDLRML typically
converges faster than both MDLRML-2 and MDLRML-3.

3) Friedman Test and Critical Difference Diagram:
Friedman test statistically compares relative performance
among multiple algorithms over a number of datasets [45]. We
use the Friedman test to statistically compare the performance
of our MDLRML and the other seven benchmark MLL and
LDL algorithms on the ten datasets. Table IX shows the
Friedman statistic FF and critical value on each evalua-
tion metric at a significance level of 0.05, among the eight
comparison algorithms and ten datasets.

As confirmed in Table IX, the FF values on all the eval-
uation metrics are greater than the critical value. Therefore,
Bonferroni–Dunn test [45] can be employed as a post hoc test

Fig. 4. CD diagrams given CD = 2.9467 of Nemenyi tests on the eight
algorithms for Hamming loss evaluation metric.

Fig. 5. CD diagrams given CD = 2.9467 of Nemenyi tests on the eight
algorithms for ranking loss evaluation metric.

to show the algorithms’ relative performances. Specifically,
based on Table IX, we use Nemenyi test [45] to check the aver-
age ordering comparison between two algorithms. Figs. 4–9
represent these results with a critical difference (CD) graph
for each evaluation metric, respectively. When the significance
level is 0.05, the number of comparison algorithms is 8, and
the number of datasets is 10, the CD value is CD = 2.9467 for
the Nemenyi test. In the CD diagram, the average ordering of
each algorithm is marked on the same coordinate axis. If the
difference between the average order of the two algorithms is
less than the CD value, then there is no significant difference
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TABLE X
EXPERIMENTAL RESULTS OF SIX LDL ALGORITHMS ON 15 DATASETS [3] MEASURED BY CHEBYSHEV DISTANCE ↓

TABLE XI
EXPERIMENTAL RESULTS OF SIX LDL ALGORITHMS ON 15 DATASETS [3] MEASURED BY CLARK DISTANCE ↓

TABLE XII
EXPERIMENTAL RESULTS OF SIX LDL ALGORITHMS ON 15 DATASETS [3] MEASURED BY CANBERRA DISTANCE ↓

between the two algorithms and they will be connected by a
line segment in the CD graph. Algorithms not connected with
the MDLRML in the CD diagrams are considered to have
significant performance difference from the control algorithm,
given the CD value of 2.9467 at a significance level of 0.05.

C. Experimental Result Comparison Based on LDL Metrics

Experimental results of the six LDL algorithms, that is,
the bechmarks LDSVR, CPNN, and AA-KNN as well as our
MDLRML, MDLRML-2, and MDLRML-3, applied to the 15
real-world datasets of [3] are compared in Tables X–XV for
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TABLE XIII
EXPERIMENTAL RESULTS OF SIX LDL ALGORITHMS ON 15 DATASETS [3] MEASURED BY KULLBACK-LEIBLER DIVERGENCE ↓

TABLE XIV
EXPERIMENTAL RESULTS OF SIX LDL ALGORITHMS ON 15 DATASETS [3] MEASURED BY COSINE COEFFICIENT ↑

Fig. 6. CD diagrams given CD = 2.9467 of Nemenyi tests on the eight
algorithms for one error evaluation metric.

Fig. 7. CD diagrams given CD = 2.9467 of Nemenyi tests on the eight
algorithms for coverage evaluation metric.

the six evaluation metrics, respectively, where we calculate the
corresponding algorithms’ average ranks over the 15 datasets
in the last row of each table. The results show that our

Fig. 8. CD diagrams given CD = 2.9467 of Nemenyi tests on the eight
algorithms for average precision evaluation metric.

Fig. 9. CD diagrams given CD = 2.9467 of Nemenyi tests on the eight
algorithms for runtime(s) evaluation metric.

MDLRML consistently performs best among the six LDL
algorithms for all the six measures. From the average ranks
given in Tables X–XV, we can infer that the algorithms’
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TABLE XV
EXPERIMENTAL RESULTS OF SIX LDL ALGORITHMS ON 15 DATASETS [3] MEASURED BY INTERSECTIONAL SIMILARITY ↑

TABLE XVI
RUN TIME (S) ↓ COMPARISON OF SIX LDL ALGORITHMS ON 15 DATASETS [3]

rankings over the six evaluation indicators are as follows:

MDLRML � MDLRML-2 ≈ MDLRML-3

� LDSVR ≈ CPNN � AA-KNN.

The results of the runtime comparison for all the six
algorithms over the 15 real-world datasets of [3] are
presented in Table XVI. In addition to achieve the best LDL
performance, our MDLRML also has the fastest runtime.
Observe that the MDLRML is significantly faster than both
MDLRML-2 and MDLRML-3 for these 15 datasets.

V. CONCLUSION

A novel multilabel distribution learning algorithm has
been proposed based on multioutput regression via manifold
learning. In our MDLRML, manifold learning has been
applied to multilabel data to map feature data onto a low-
dimensional subspace. We have used the feature space mani-
fold’s topological structure to guide the label space manifold
learning and to construct a smooth multioutput regression
function. We have further enhanced the multioutput regres-
sion with a sigmoid function to improve LDL. The exper-
imental results have shown that this approach significantly

improves the effectiveness of multilabel distribution learn-
ing. Specifically, employing a large number of real-world
multilabel datasets and using several existing MLL and LDL
algorithms as the benchmarks, we have demonstrated that our
MDLRML not only achieves the best performance, in terms
of a wide range of MLL and LDL metrics but also has the
fastest runtime.
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