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Abstract— In-vehicle network security plays a vital role in
ensuring the secure information transfer between vehicle and
Internet. The existing research is still facing great difficulties
in balancing the conflicting factors for the in-vehicle network
security and hence to improve intrusion detection performance.
To challenge this issue, we construct a many-objective intrusion
detection model by including information entropy, accuracy, false
positive rate and response time of anomaly detection as the four
objectives, which represent the key factors influencing intrusion
detection performance. We then design an improved intrusion
detection algorithm based on many-objective optimization to
optimize the detection model parameters. The designed algorithm
has double evolutionary selections. Specifically, an improved
differential evolutionary operator produces new offspring of the
internal population, and a spherical pruning mechanism selects
the excellent internal solutions to form the selected pool of the
external archive. The second evolutionary selection then produces
new offspring of the archive, and an archive selection mechanism
of the external archive selects and stores the optimal solutions in
the whole detection process. An experiment is performed using a
real-world in-vehicle network data set to verify the performance
of our proposed model and algorithm. Experimental results
obtained demonstrate that our algorithm can respond quickly
to attacks and achieve high entropy and detection accuracy as
well as very low false positive rate with a good trade-off in the
conflicting objective landscape.

Index Terms— Many-objective optimization, intrusion detec-
tion, information entropy, in-vehicle network.

I. INTRODUCTION

ITH the rapid development of vehicle communication
technology and computer network, in-vehicle informa-
tion system [1] is widely deployed on vehicles with abundant
applications, including intelligent navigation and intelligent
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parking [2]. In-vehicle network is an automobile internal data
interaction network composed of electronic control unit (ECU)
and communication bus, which integrates computer network,
communication, electronics and other technologies [3], [4].
These system applications require various vehicle external
interfaces, which also increase the attack path of hackers.
Therefore, it is very necessary to install intrusion detection
system (IDS) to ensure the safety of in-vehicle network [5].
IDS monitors the system and network transmission in real
time. It determines whether there is abnormal behavior by
collecting and analyzing the security log, audit data and other
available key point information in the whole communication
network [6]. If abnormal behavior is found, the system will
send an alarm or take other relevant defense measures. Differ-
ent from the traditional network security technology, IDS is
an active security defense technology [7]. As the most widely
used in-vehicle bus in automobile, vehicle controller area
network (CAN) bus is liable to many types of attacks. Without
the relevant information security mechanism and protection
means in the in-vehicle CAN bus network, any in-vehicle ECU
in the network may access other in-vehicle ECUs on CAN bus,
and the attacker may modify the source code of any ECU to
achieve the vehicle full control, which can seriously threaten
the driving safety of vehicles [8]. Therefore, the research on
CAN bus data anomaly detection is critical.

Recently, researchers have proposed a variety of intrusion
detection methods for CAN bus attacks [9]. Javed et al. [10]
provided a novel approach based on convolutional attention
incorporated with gated recurrent neural network to improve
the accuracy of detecting CAN bus attacks. Yu and Wang [11]
presented an intrusion detection method based on network
topology verification to improve the security of CAN bus net-
work. Olufowobi et al. [7] described a method for extracting
real-time model parameters from observations of CAN bus
and presented an IDS based on CAN bus real-time schedul-
ing capability and response time analysis. Derhab et al. [12]
designed an intrusion detection and filtering framework based
on histogram. It assembles CAN packets into windows and
calculates their corresponding histograms, which are used to
assist multi-class classifier to identify and filter the normal
CAN packets in the malicious traffic window. Choi et al. [6]
implemented an IDS mechanism that can monitor information
transmission in real time to protect the security of the CAN
bus. This IDS mechanism can detect the malicious CAN bus
messages that are transmitted in the in-vehicle network with
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high accuracy according to the difficult forgery of electrical
characteristics. Ying et al. [13] developed a vehicle intelligent
decision support system based on clock deviation for CAN
bus data to predict stealth attacks. Groza and Murvay [14]
proposed an intrusion detection mechanism based on CAN
bus data using Bloom filtering to help improve the accuracy
of detecting potential replay or modification attacks.

However, these existing detection methods only target on
one or few individual detection performance indicators, such
as accuracy, false positive rate and response time, and rarely
they address all the major factors that impact on the detection
performance [15]. In fact, the factors affecting the intrusion
detection performance of the CAN bus data for in-vehicle
network security come from many aspects [16]. Moreover,
these factors are inextricably linked and they influence each
other [17]. Therefore, there exist multiple conflicting detection
performance metrics. Generally, the shorter the response time
of detection, the poorer the detection accuracy and the false
positive rate may increase. On the other hand, lower the real-
time requirements allows the IDS with more detection time
to improve the accuracy [15], [18]. How to comprehensively
address the impact of these factors on CAN bus data intrusion
detection performance and effectively balance the conflicting
metrics is very challenging. Meanwhile, the multi knowledge
fusion decision-making learning usually shows better detected
intrusion behavior performance than individual learning, which
can make the learning mechanisms with different abilities
support each other, improve the reliability of prediction and
reduce the risk of classification errors [17]. Implementing
multi knowledge fusion is of great significance for improv-
ing correct classification and accurately identifying intrusion
behavior performance, which motivates our work.

Against this background, in this paper we formulate the
in-vehicle bus data of CAN anomaly detection problem as a
complex many-objective optimization problem (MaOP) [17].
The main contributions of this paper are listed as follows.

1) Considering that the vehicle is affected by many
uncertain factors, the information entropy theory is
applied [18]. A many-objective CAN bus data anomaly
detection optimization model is built to reflect detection
performance of in-vehicle network, and we adopt the
information entropy measurement, accuracy, false posi-
tive rate and response time of anomaly detection as the
four objectives to be optimized, which comprehensively
describe the underlying detection process.

2) We design a many-objective based algorithm with dou-
ble evolutionary selections, called MaOEA-ID, to opti-
mize the intrusion detection model decision-making
solution. We also introduce the idea of multi knowl-
edge fusion in the design of intrusion detection
algorithm [36], and the algorithm performance is greatly
improved through the evolutionary fusion of internal and
external population knowledge. An improved differential
evolutionary (DE) operator produces new offspring of
the internal population, and a spherical pruning mecha-
nism selects the excellent internal solutions to form the
selected pool of the external archive. Then the second
evolutionary selection produces new offspring of the
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updated archive, and an archive selection mechanism
for the external archive selects and stores the optimal
solution in the whole detection process.

3) An extensive simulation experiment is performed using
a real-world dataset to validate our proposed model and
algorithm. We also discuss and analyze some key param-
eters of the model design. The experimental results
demonstrate that our algorithm can respond quickly to
attacks and obtain high entropy and detection accuracy
as well as very low false positive rate with a good trade-
off in the conflicting objective landscape. In particular,
our method achieves better IDS performance for in-
vehicle network than existing state-of-the-art algorithms.

The paper is organized as follows. Section II reviews the
related work, which naturally leads to what motivates our
work, namely, the intrusion detection for in-vehicular network
is a complicated MaOP problem. In Section III, the in-vehicle
network security problem is detailed, and the many-objective
intrusion detection model is constructed. To optimize this
model, a many-objective evolutionary algorithm design is
proposed in Section IV, which is referred to as MaOEA-ID.
In Section V, an experiment is carried out using a real-
world in-vehicle network data set to validate our model and
algorithm. The paper is concluded in Section VI.

II. RELATED WORK

With the development of modern Internet, in-vehicle net-
work system has integrated a variety of emerging technologies
to provide more comfortable services, such as assisted driv-
ing and entertainment facilities [16], [19]. This however has
dramatically increased the potential attacks and securing the
in-vehicle network becomes critically important. Fig. 1 depicts
the abnormal detection process of common in-vehicle network.
The CAN bus data active transmission message has a stable
characteristic state when the vehicle is in the normal working
mode. Under stable conditions, the collected normal vehicle
behavior data are processed to obtain vehicle related knowl-
edge for reference. With the help of an efficient intrusion
detection algorithm, knowledge features are extracted, and the
vehicle normal behavior feature database is established. When
the CAN bus transmits the mixed data of the current vehicle
behavior again, the aforementioned data processing method
is used to obtain the test data that can be recognized by the
detection algorithm. To judge whether the vehicle behavior is
normal at the moment, the currently obtained data features are
extracted and compared with the feature base of the vehicle
normal behavior. If the evaluation result is within the threshold
range, the vehicle behavior is regarded as a normal working
state, otherwise it is regarded as abnormal [20].

A. Review of Existing Anomaly Detection Methods

Various CAN bus data anomaly detection methods can be
divided into three classes: statistics-based, rules-based and
machine learning based methods.

1) Statistics-Based Anomaly Detection: Alotibi et al. [21]
performed the anomaly detection for cooperative adaptive
cruise control in autonomous vehicles using statistical learning
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Fig. 1. Common anomaly detection process.

and kinematic model. This class of methods capture CAN
data flow by counting a large number of historical message
records, so as to establish a summary model that can model
the random behaviors of CAN data [21]. The summary model
is typically gone through three stages of development, namely,
univariate probability model based on independent Gaussian
variables, multi-variable model considering the correlation
between multi-variables, and time series model analyzing the
law of data changing with time [22]. The advantage of this
class of methods is that the detection system does not need
to have prior knowledge of the attack, and it can detect the
latest attack behavior in real time [23]. However, the detection
performance of high-dimensional data based on statistics is
poor, and the choice of abnormal threshold will affect the
detection performance [18], [21].

2) Rules-Based Anomaly Detection:  Han et al. [24]
designed and performed the one-way analysis of variance
test on CAN traffic data to distinguish the abnormal status
of the connected cars in IoT environment. This types of
detection methods divide the CAN data patterns into normal
data and abnormal data, under the guidance of known prior
or expert knowledge [15], [25]. These methods can achieve
good classification effect with high robustness, but the
detection decision-making process is extremely complex [15].
In particular, the detection conclusion often depends on the
expert’s ability and competent, and it consumes a lot of
manpower [25].

3) Machine Learning Based Anomaly Detection: Through
learning, the machine learning based methods can reconstruct
the existing knowledge structure, acquire new knowledge and
hence improve the detection performance [18], [20]. These
methods can be further divided into different categories.

a) Method based on bayesian network: It requires fewer
parameters and is easy to construct an uncertainty model with
good performance [26]. In [27], hardware security modules
and Bayesian algorithms were used to improve the security of
CAN networks. But the network feature variables are selected
based on experience. If the parameters are selected improperly,
it will cause a large false detection rate [15], [26].

b) Method based on neural network: Through training,
it can predict whether there is anomaly behavior accord-
ing to the known behavior data of vehicles [28]. In [29],
a graph neural network and a two-stage classifier cascade is
described to developed the CAN bus IDS and detect all attacks

a Anomaly behavior

simultaneously. The method is highly adaptive and has strong
parallel processing and fault tolerance capability. However,
it imposes high computational complexity when generating
the training model [30].

¢) Method based on fuzzy theory: Fuzzy theory has some
advantages in anomaly detection, as it does not require detailed
derivation and its decision-making process is similar to human
thinking mode. Yu et al. [31] proposed the use of time interval
conditional entropy fuzzy method to detect intrusion attacks
suffered in automotive CAN networks, which distinguishes
and detects attacks by collecting and utilizing the conditional
entropy values of conventional communication messages. It is
effective in the field of port scanning and detection but the
resource consumption is high [32].

d) Method based on genetic algorithm (GA): The
anomaly detection performance can be improved by apply-
ing GA in an iteration process to evolve towards a better
solution [33]. Xi et al. [33] described a multisource genetic
immune detector adaptive model in neighborhood shape-space
and applies it to anomaly detection. GA include operations
such as gene encoding and decoding, and their involved
crossover and mutation probability parameter settings may
require prior experience to determine, which may affect the
quality of the initial population decision solution to some
extent.

e) Method based on density: Tang and He [34] pre-
sented an effective density-based outlier detection method
where a relative density-based outlier score is assigned to
observations as a means of distinguishing major clusters in a
dataset from outliers. The algorithm, called the local anomaly
factor algorithm, assigns an anomaly degree to the object
to be detected relative to its local neighborhood, and it is
advantageous in detecting local anomaly data [15]. Due to
the need to traverse the entire data to calculate the distance,
this algorithm is not suitable for applications requiring short
response times in detection systems. In addition, it is necessary
to manually adjust parameters during the outlier clustering
process.

f) Method based on clustering: Indirect clustering based
on similarity measurement between samples can be used
to perform anomaly detection. Zhang et al. [17] designed a
novel weight-based ensemble classifier algorithm to iden-
tify abnormal messages of vehicular CAN bus network.
Similarly, the one-class SVM and isolation forest can
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also be used for anomaly detection [21]. These meth-
ods rely heavily on the effectiveness of clustering algo-
rithms, which may be a bottleneck in improving detection
performance.

B. Essence of Anomaly Detection Process

There are many factors that affect the intrusion detection
performance of the CAN bus data for in-vehicle network
security, and the key factors include information entropy
measurement reflecting the uncertainty of vehicle behavior,
detection accuracy, false positive rate, and response time of
anomaly detection. These factors are inherently linked and
they influence each other [17]. In other words, there exist
multiple conflicting key detection performance metrics. For
example, the shorter the response time of detection, the
lower the detection accuracy and higher the false positive
rate. On the other hand, the lower the real-time require-
ments, the intrusion detection system may impose higher
detection time, so as to improve the detection accuracy.
Consequently, the anomaly detection problem of CAN bus
data for in-vehicle network security should be viewed as a
MaOP, in order to effectively balance the multiple conflicting
metrics [35].

To better describe the problem, therefore, the generic CAN
bus data intrusion detection optimization can be formulated as
the following MaOP [17]

min f(X) = min {/1(X), 2(X). -~ w0}, (D)

g&(X) >0, 1<i=<n,
St [h;(X)=o, 1<) <ne @
where X = [x1 xp-- -x,,v]T is the n,-dimensional decision

variable vector and @ denotes the decision variable space,
while f,,(X) denotes the mth objective function and M is
the number of objectives. g;(X) > 0 is the ith inequality
constraint, and 4 ;(X) = 0 is the jth equality constraint. For
multi-objective optimization problems (MOPs), M > 2 should
be satisfied. When M > 4, MOPs are referred as MaOPs.
Furthermore, there are n; and n, represent upper bounds on
the number of inequality and equality constraints, respectively.

Different from the previous studies, in this paper, we com-
prehensively address the impact of the multiple factors on the
performance of CAN bus data intrusion detection to balance
the conflict metrics, which is of great practical significance
to the research on in-vehicle network security [15], [16],
[17]. Our work first builds a many-objective CAN bus data
anomaly detection optimization model by considering infor-
mation entropy, accuracy, false positive rate and response
time of anomaly detection as the four objectives. Then an
effective many-objective optimization approach is adopted to
optimize the detection model. We also introduce the idea of
multi knowledge fusion in the design of intrusion detection
algorithm [36], and the algorithm performance is greatly
improved through the evolutionary fusion of internal and exter-
nal population knowledge. The specific model construction
process and algorithm optimization principle are described in
the following two sections, respectively.
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III. IN-VEHICLE NETWORK SECURITY PROBLEM

A. System Description

CAN is a bus-topology communication network commonly
used in the in-vehicle network environment [6], [16]. It is a
non-preemptive communication network based on priority, and
can meet many specific requirements of in-vehicle network
environment, such as real-time processing, strong robustness
and cost-effective activity [2]. In the data link layer of CAN,
broadcast communication is used to transmit messages, allow-
ing any ECU to broadcast data packets to all the connected
ECUs. The smallest unit for information transmission in CAN
bus is CAN frame, which can be divided into the following
four types: data, remote, error and overload frame [17], each
serving a specific purpose as summarized in Table I.

Each CAN message contains the following information [8],
[17]: start of frame (SOF), arbitration field, control field, data
field, cyclic redundancy check (CRC), acknowledge character
(ACK) field and end of frame (EOF). The generic format
of data frame is shown in Fig 2. SOF indicates the start
of a packet and enables synchronization of all nodes on the
CAN bus. Arbitration filed (12 bits) is composed of arbitration
ID (11 bits) and remote transmission request (1 bit). The
Arbitration ID is used as a priority during a collision between
two or more CAN packets. The node who has the lowest ID
has the highest priority to send packets. Control field (4 bits)
provides information for the receiver to check if the packet is
successfully received. Data filed (64 bits) contains the actual
payload data, and it is up to 8 bytes. CRC field (16 bits) is
used for error detection. ACK field (2 bits) contains 2 bits with
1 bit for the ACK and the other bit for the ACK delimiter. EOF
(7 bits) indicates the end of the CAN packet.

From the above CAN network structure and message for-
mat, some security vulnerabilities of CAN bus data may be
exploited by attackers to launch network attacks, which may
endanger driving safety [37].

1) No Encryption: There is no inherent encryption method
to ensure confidentiality, which enables intruders to interview
sensitive data and cause privacy intrusion. At present, only
the communication matrix provided by the manufacturer offers
some confidentiality but it is not difficult to crack it [10], [38].
The current confidentiality mechanism is far from meeting the
confidentiality standard required.

2) No Certification: Any device connected to the CAN
bus can read and write to the bus [39]. The CAN bus
protocol has no provisions on authentication or access control
mechanism. In addition, the CAN message does not contain
the source address and destination address [40]. The node only
judges whether to receive the message according to the frame
identifier, and the legitimacy of the sender cannot be verified.
CAN protocol considers all data from the CAN bus to be
believable. Any malicious node can forge legitimate messages
to attack other nodes in the in-vehicle network.

3) Authenticity of the Message Cannot be Distinguished:
CAN protocol cannot distinguish the real error message from
the error message crafted by the attacker [41]. It cannot know
whether the device is indeed faulty or has been attacked, which
may result in the device in the bus off state.
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TABLE I
TYPES AND FUNCTIONS OF CAM FRAMES
Types Purpose
Data frame Transmission data sent by the sender

Remote frame
Error frame
Overload frame

Receiving direction requests data from the sender with the same ID
When an error occurs, notify other units of the error
Receiver sends it to the sender, indicating that it is not ready for reception

Ibit | 12 bits 4 bits 0-64 bits | 16 bits 2bits | 7 bits
SOF [ADIAHONSSNCONMOIN |, ..., WSRCSSSEN ACK Ficld
Field Field

Fig. 2. CAN data frame standard format.

TABLE 11
CONFUSION MATRIX

Type Predicted normal  Predicted attack
True normal TN FP
True attack FN TP

4) Vulnerable to Denial of Service (DoS) Attacks: CAN bus
adopts the broadcast communication mechanism and priority
of ID based message transmission. If the message with the
highest priority is sent, the node with lower priority will not be
able to access the network [42]. Attackers can continue to send
high-frequency messages, which will lead to the occupation
of CAN bus resources and the delay of signal transmission
and response of other nodes, resulting in node communication
failure in the vehicle and endangering driving safety.

B. Anomaly Detection Model Construction

It is important to evaluate network vulnerabilities and high-
light the security issues faced by CAN networks in the process
of constructing an intrusion detection model. To improve the
detection performance of an IDS, it is necessary to discover as
many attacks as possible, in real-time and with high precision.
For this purpose, we adopt the information entropy, accuracy,
false positive rate and response time of anomaly detection are
the four objectives to be optimized. To describe the process of
anomaly detection, the key is to analyze and find the possible
abnormal behavior in the IDS network through the description
of the normal behavior of network traffic, and the core problem
of anomaly detection is to realize the description of normal
traffic behavior, real-time detection, comprehensiveness of
information and sensitivity of response [17]. Generally, the
truth positive (TP), truth negative (TN), false positive (FP)
and false negative (FN) are employed to express the IDS
detection performance, and they can be intuitively displayed
by employing the confusion matrix shown in Table II.

1) Information Entropy (Obj;): Whether the CAN bus data
has the internal characteristics and rules consistent with the
behavior can be audited to determine if it has been invaded.
In the case of an intrusion, the proportion of high priority
instructions in the CAN bus will increase in a short time, while
the proportion of low priority messages will decrease [18],
[42]. This behavior will lead to abnormal change of the CAN
bus information entropy. Therefore, by using the information
entropy to describe the characteristics of CAN bus data, we can

analyze and audit the CAN bus data log to distinguish between
normal and abnormal vehicle behavior.

Specifically, let the average value and standard deviation
of information entropy in the CAN bus be avg and o,
respectively. The predicting decision condition interval of
normal behavior is (avg — ko, avg + ko), where k €
[0.001, 2] is a sensitive factor controlling the decision vari-
ables [18], [42]. Under normal circumstances, the decision
variable value of information entropy should be within the
decision range. The stronger the regularity of the CAN bus
data, the higher the information entropy value will be and
vice versa. When the information entropy value is lower than
the preset threshold, i.e., smaller than avg — ko, the in-vehicle
network behavior is regarded as an abnormal situation under
attack. Assume that the CAN bus data model can be repre-
sented as W = (D, W), where D = {d,d>, - ,d,} is the
state set of the in-vehicle IDS with n different states, appearing
within the sliding window of size W. The information entropy
of the CAN bus data in sliding window W can be expressed
as follows

n
H(D) =~ Py log Py, 3)
i=1

where Py is the probability of D in state d;.

The network state can be determined by detecting and
monitoring the in-vehicle network, and the number of message
or state d; appearing in sample window W can be obtained
by counting. Let the number of state d; appearing in W be
County,. Then the probability of d; appearing in sample win-

Countdl.

— , which satisfies
> Countg;
j=1

dow W can be calculated as Py, =

n
> P di =
i=1
entropy measurement of the IDS in sampling window W for

the in-vehicle network is obtained as

I and Pz > 0, Vi. Therefore, the information

n

. County,
Objle(D)Z—Z - —
i=1 | > County;
j=1 '
Countyg,
< log | — ounty, @
2 County,

j=1
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It is worth noting that for the DoS attack scenario, higher
information entropy value means better system stability.

2) Accuracy (Obj,): The accuracy rate reflects the ability
of the IDS to correctly judge the overall detection samples.
That is, it defines the classification ability to correctly judge
the normal samples as normal and the attack samples as
attacks [17], and it can be calculated according to

TP+TN
TP+TN+FP+FN
A high accuracy value indicates good detection performance.

3) False Positive Rate (Objs): The false positive rate
reflects the ability of the IDS to correctly predict the purity of
normal samples and avoid predicting attack samples as normal
samples. That is, it measures the proportion of attack samples
predicted as normal samples in the total attack samples [17],
and it can be calculated as follows

FpP
TN +FP’

A small false positive rate value indicates good detection
performance.

4) Response Time (Obj,): Response time describes the
time taken by a system to answer the requested message.
It is usually timed from the time when the request is sent
to the time when the system declares the request or reaches a
answer [8]. In the IDS, the response time of attack detection
is usually in the form of sliding window with a fixed number
of messages to monitor the possible attacks on the bus [43],
and it can be calculated as follows

Obj, = 5)

Objs = ©)

n
Obj, = Z (currenti;;me - attackﬁj;,me) , (7N
i=1

where currentg_’”e and attacki}_’”e are the current starting time

of responding to the attack and the time of detecting the
message attack, respectively. A short response time indicates
good detection performance.

IV. PROPOSED OPTIMIZATION ALGORITHM

Our CAN bus data intrusion detection model is a many-
objective optimization design with the four objectives, infor-
mation entropy, accuracy rate, false positive rate and response
time of anomaly detection, to be optimized. Recently, many
excellent many-objective optimization algorithms have been
designed to attain balanced solutions in convergence and
distribution (CaD) based on the distance or angle selection
mechanism [44]. By using distance or angle selection mech-
anism to choose elite solution, it ensures the final population
solutions distribute near the optimal Pareto-front as much
as possible, and at the same time, it takes the CaD of the
solutions into account to meet the needs of the actual prob-
lems [45], [46]. Different from these selection mechanisms,
in our MaOEA-ID, there are two areas that are optimized
separately during each iteration. Specifically, for the internal
population, an improved DE operator is applied to produce
new offspring, and a spherical pruning mechanism is employed
to select the excellent solutions. These excellent internal
solutions then form the selection pool for the external archive,
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and an archive selection mechanism of the external archive
is adopted to select and store the optimal solutions in the
whole detection process. We now detail these operations of
our MaOEA-ID.

A. Improved DE Operator

Typical DE algorithm starts the operation by randomly
generating the initial population and it takes the fitness value of
each individual in the population as the selection standard. The
main evolution process of DE includes three stages: mutation,
crossover and selection [45], [47], [48]. By controlling the
hybridization of parents according to the fitness value, the
mutation vector of DE is generated by the parent difference
vector, and is crossover with the parent vector to generate
offspring vector. At each evolution iteration, the population
is evolved into a better place in the objective landscape, and
eventually moves towards the Pareto-front.

However, the standard DE algorithm may arrive in a
non-dominated relationship between solutions in solving
MaOPs [45]. With its typical method of comparing fitness
values, it may be impossible to obtain the optimal individual in
screening and guiding the population to evolve towards a better
place. To effectively overcome this problem, an improved DE
operator can be adopted to ensure that the population evolves
towards a better place [49]. The rth iteration of this improved
DE operator is described as follows

Xi(t) + F - (X; (1) — Xi(1))

+F - (Xk () — Xi (1)),
X;(t) or Xy (1),

Xi(t) = if rand < CR,

otherwise,
(3

where X; is an individual randomly selected from the current
population, X; and X are two individuals randomly selected
from the top 10 percents of the individuals in the external
archive, while F is the contraction factor, rand is a random
number in the range of [0, 1] and CR is the crossover prob-
ability. By introducing two solutions of the external archive,
the diversity of solutions is improved [49].

B. Spherical Pruning Mechanism

To ensure that excellent solutions are selected from the set of
offspring solutions generated by the DE operator, the spherical
pruning mechanism is used. This mechanism analyzes the
current approximate Pareto-front (PF) solution set, denoted as
P F*, by normalizing all the population reference solutions
to the spherical coordinates. In addition, it ensures that the
size of the set of offspring solutions obtained meets the
requirements [50]. Fig. 3 depicts the relationship of different
solutions on the sphere. For each spherical sector, only one
solution with the lowest selection norm is selected, so that the
solutions are well distributed in the PF [51].

We now describe the normalization mapping relationship for
solution X;. The fitness value f(X;) in the spherical coordi-
nate can be expressed as E(X;) = [Z(f (X)) VT(f(Xi))]T,
where V (f(X)) = [Vi(f(Xi) -+ Vi1 (f(X)]" is the
arc vector, and Z(f(X;)) is the Euclidean distance from the
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solution f(X;) to the normalized ideal solution given by

f(Xideal) — f()?)leh}l’F*{fl(X),.” , fJm(X)} [52]. Given two

solutions X; and X;, X; has an spherical preference over X ;
if and only if:

{sPxny=sP (X))} ({zU &) <z (r&xp)}. ©

Here SP (X;) denotes the normalized spherical sector of
solution X; and is defined by

Vi(f(XD)
SP(PF™)

AT
VM—l(f(Xt))] (10)

SP (Xi) =|: 'SPy 1(PF)

in which SP(PF*) = [SP{(PF*)--- SPM,I(PF*)]T is the
hypercone grid on the objective space in the arc increment
vA = [vA...vA 1" Define vV = {vU, ..., vU_} and
vE ={vE, ..., vk |} as the sight range upper and lower
bounds from the ideal solution to the approximation solution
in P F*, respectively, which are computed according to

VU= max (Vi(f(X), -, Vu_1(F(Xi)}, (1D
F(X)EPF*

VE= min  {(Vi(f(X), -, V1 (F (X))} . (12)
f(Xi)ePF*

Then SP(PF*) is computed as

U L
Vl — Vl .« ..
VA

SP(PF*) = [

Algorithm 1 summarizes this spherical pruning mechanism,
where G = {X1, X»,---, Xn} is the population solution set
with N individuals and S is the excellent solution set added
in each generation.

C. Archive Selection Mechanism

Generally, the fitness function can be used to guide the
population toward the optimal PF in solving a MaOP [53].
Moreover, the CaD must be considered in the design of the
algorithm. Therefore, when designing the solution selection
mechanism of the external archive, it should ensure that the
algorithm has good CaD. For the archive selection mechanism,
the comprehensive fitness assessment (CFA) method [45]
is employed, which is used to store the optimal solutions
obtained in the whole detection process. By ensuring good
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Algorithm 1 Spherical Pruning Mechanism
Input: G (Population solution set);
Output: S (Excellent solution set);
Begin
For each solution in population set G do
Map its normalized spherical coordinates;
End For
Establish spherical coordinate grid;
For each solution in population set G do
Calculate its spherical sector;
Compare with the remainder solutions;
IF there does not exist the same spherical sector
Add the solution to S;
Else
Add the solution to S when it has the lowest norm;
End IF
End For
Return excellent solution set S;
End

CaD, the CFA also help to overcoming the limitations of
Pareto sorting and decomposition.

The CFA method Fun(X;,G) considers the factors of
equilibrium CaD in the solution space, and it is expressed
as:

Fun(Xi, G) = wi - Deon(Xi, ) + w2 - Dain(Xi, §),  (14)

where Dy, (X;, G) and Dy (X;, G) denote the ‘convergence’
and ‘diversity’ distances of X;, respectively, wi and w, are
two weight factors to balance the influence of these two CaD
distances. How to adjust the weight factors can be found
in [54]. The calculation of D¢, (X;, G) is given below

M
SDE(X;) = nglgi’nj#i mZ::l (sde(fn(Xi). fn(X)))%,
(15)
Deon(Xi, G) = Norm(SDE(X;)), (16)

where SDE(X;) is the distance using the shifted Euclidean
distance to the nearest neighbor [45], and the definition of
sde(e) can be found in [54], while Norm (e) is a normalization
operation [45]. Dg;y(X;, G) is calculated as follows

Dyiv(X;,G) =1— o))

The maximum and minimum values of the objectives should
be normalized to help reducing the oscillation of the objectives
in high-dimensional space. To prevent the size of the external
archive from exceeding the population size, the truncation
selection mechanism is used in the solution selection [55].
Algorithm 2 summarizes this archive selection mechanism,
where R is the external archive used to store the optimal
solutions generated and S is the new solution set added in
each generation.
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Algorithm 2 Archive Selection Mechanism
Input: N (size of population), R (current external archive),
S (new excellent solution set);
Output: R (updated external archive);

Begin
For i =1 to |R|
For j =1 to |S]

Check dominant relationship between two solutions
S;eS and R; € R;
IF Relationship is non-dominant
Add §; to R;
Else
Remove dominated solution R; from R;
End IF
End For
IF [R| > N
Calculate and rank CFA values;
Delete minimum CFA value until |R| = N;
End IF
End For
Return R;
End

Algorithm 3 MaOEA-ID
Input: N (population size);
Output: R (external archive);
Begin
Initialize population G with N individuals and external
archive R;
While stopping criterion is not met do
Generate offspring set Q from G and R by improved
DE operator;
G=6U
Use spherical pruning mechanism to obtain excellent
solution set S;
R = Archive selection mechanism(R, S);
Obtain offspring R* of external archive R using SBX
and PM operators;
R = Archive selection mechanism(RR, R*);
End while
Return R;
End

D. Algorithm Framework

As usual, our MaOEA-ID algorithm starts by initializing the
population set G with N individuals. The fast non-dominated
sorting method [45] is applied to the initial population set G,
and the non-dominated solutions of the initial population G
are taken as the initial external archive R. At each evolution
generation or iteration, the improved DE strategy is executed
to generate the offspring Q of the parent set G with the aid of
the external archive R. The new population is formed by com-
bining the parents G and offspring Q. For the newly formed
internal population G, the spherical pruning mechanism is used
to select the excellent solutions S (Algorithm 1). Then the
archive selection mechanism (Algorithm 2) is applied to the

Initial External
Population

Initial Internal
Population

Sfep3
CAN Message Extraction

Calculate the mean and ) )
standard deviation of the
entropy
1

Stepl

Generate Offspring by
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)
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)
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¥
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Obtain optimized model
parameters

11

Normal
Behavior

excellent solution set S and the current external archive R,
to generate the updated external archive R. To improve the
population diversity, the simulate binary crossover (SBX) and
polynomial mutation (PM) [45] are adopted for the archive R
in turn to select offspring R* of R. Finally, the new offspring
R* is fused with the external archive R by using the archive
selection mechanism (Algorithm 2) to obtain the new external
archive R. The process continues until the stop condition is
satisfied. In this paper, the evolution process is stopped when
the preset maximum number of iterations are reached.

The pseudo code of our proposed MaOEA-ID is summa-
rized in Algorithm 3, where G and Q are the parent and
offspring sets of the internal population, respectively, while
R and R* are the parent and offspring sets of the external
population, respectively. Observe that there exist double evo-
lutions of the internal population and the external population
(archive).

E. Detection Steps

The whole process for the intrusion detection of CAN
bus consists of the following steps. And the corresponding
detection step flow is described in Fig. 4.

Step 1: CAN message is extracted from the normal data
set, and the sliding window of size W is used as the sampling
window to obtain the data information [56]. Then, the mean
and standard deviation of the entropy are calculated.

Step 2: With the sliding window continuously moves for-
wards, the CAN message test data set containing attack is
extracted to obtain attack message.

Step 3: MaOEA-ID is used to optimize the parameters
of the anomaly detection model. By continuously adjusting
the algorithmic parameters including sliding window size and
sensitivity values, appropriate algorithmic parameter values
are found to balance various conflicting objectives and obtain
relatively good objective values.

Step 4: Compare the information entropy measurement
decision value calculated in Step 3 with the decision range
under the non-attack condition to determine whether there is
an attack block. If the value is inside the range, it is considered
as normal. Otherwise, it is considered to be an attack.

Step 5: Compare the obtained attack results with the marked
attack blocks to verify whether the detection is correct. By cal-
culating the accuracy, false positive rate and response time of
the test dataset message, the detection performance are visually
displayed.
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V. SIMULATION EXPERIMENT
A. In-Vehicle Network Security Dataset

Due to the diversity and uncertainty of attacks, there exist
various in-vehicle network security data sets [10], [18]. In this
paper, a real-life automotive CAN bus network dataset [57]
is employed, and the CAN message block with ID = 0 x
000 is added into the non-attack data set to obtain the DoS
attack data set [58]. Specifically, to create a more realistic
DoS scenario reflecting the uncertainty of attack, we copy the
message blocks from the CAN messages sent by the legitimate
ECU to the non-attack vehicle data set, and then add the DoS
attack data to the test data set and further make it Gaussian
distributed throughout the test data set [59].

It is widely believed that the network status changes when
the CAN network is under attack, which can be reflected in the
change of information entropy. To visually distinguish between
no attack and DoS attack scenarios in the dataset, we take
the first 320000 records of the normal dataset and the first
560000 records of the DoS attack dataset for experiments. Due
to the fact that the CAN bus is an event triggered network,
we use the fixed sliding window as the observation window.
Fig. 5 (a) and (b) show the changes of information entropy
with time in the normal data set and the data set with DoS
attack blocks, respectively, with the sampling window size of
80 and sensitive value k = 2. As observed, the fluctuation
range of the entropy is [4.2, 4.9] for the normal data set,
while in the data set with DoS attack block, the information
entropy changes in the range of (0, 5.0].

B. Parameters Settings

1) Detection Model Parameters: For the intrusion detec-
tion model, the sliding window size W and the sensitivity
parameter k are among the most important parameters for
the performance of IDS. The sliding window size W directly
affects the detection accuracy, false positive rate and response
time [18], where the maximum (Max) response time is mea-
sured from the beginning of the attack to its discovery in the
sliding window [58], while the sensitivity parameter k directly
affects the decision range of anomaly detection. After repeated
experiments, it is found that an appropriate combination choice
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of the sliding window size W and the sensitivity parameter k
should be selected from W € [20, 120] and k € [0.001, 2],
to balance the conflicting objectives.

2) Optimization Algorithmic Parameters: To demonstrate
the effectiveness of our proposed MaOEA-ID, we also employ
three existing state-of-the-art many-objective optimization
algorithms to optimize the anomaly detection model, and they
are the NSGA-III [60], the promising region evolutionary
algorithm (PREA) [61], and the hyperplane assisted evolu-
tionary algorithm (hpaEA) [62]. These algorithms have been
proved to be successful and effective in solving many practical
problems [53]. The algorithmic parameters of these benchmark
optimization algorithms are set according to the original
literature. In particular, for the NSGA-III and PREA, the two-
layer distribution method is adopted. For the MaOEA-ID,
the contraction factor F' and the crossover probability factor
CR are chosen in the ranges of [0.4, 0.95] and [0.3, 0.9],
respectively [45]. The population size is set to N = 100 for
all the algorithms. SBX probability and PM probability are
1 and 1/N, respectively. And the crossover index and mutation
index are uniformly set to 20. The stopping criterion for all
the algorithms is the maximum number of evolution iterations,
which is set to 10000. Each experiment is run independently
20 times with the test problem [63], [64].

C. Experiment Resuls

1) Influence of Sliding Window Size: To investigate the
impact of the sliding window size W on the performance of
the detection model, we fix the other important parameter,
namely, the sensitivity parameter, to k = 2, and conduct
the experiment with different sliding window sizes on the
first 560000 records of the DoS attack dataset. Table III lists
the detection performance achieved by varying the sliding
window size in the range of [20, 120] with the fixed k = 2.
It can be seen that as W increases from 20 to 120, the both
average entropy and the max response time increase gradually.
This means that a larger sliding window size improves the
probability of detecting the attack but increases the response
time of the detection. Impact of W on the false positive rate
exhibits a more complex trend. As W increases from 20 to 50,
the false positive rate increases but further increasing W leads
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TABLE III
INFLUENCE OF SLIDING WINDOW SIZE W WITH FIXED SENSITIVITY PARAMETER k& = 2 ON THE PERFORMANCE OF THE DETECTION MODEL

Sliding windows Size =~ Average Entropy

Accuracy (%)

False Positive Rate (%)  Max Response Time (ms)

1.49 4.73e-2
2.76 4.90e-2
2.81 5.07e-2
4.08 5.79-2
3.64 8.00e-2
0 8.96e-2
0 8.67e-2
0 9.92e-2
0 9.94e-2
0 9.97e-2
0 9.98e-2

20 4.02 87.96
30 4.23 84.27
40 4.37 83.04
50 4.43 84.46
60 4.48 85.62
70 4.52 82.51
80 4.54 88.22
90 4.57 88.32
100 4.58 91.33
110 4.60 97.44
120 4.61 99.28
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Fig. 6. Detection objectives (accuracy, false positive rate and response time) as the functions of sensitivity parameter k, given different sliding window sizes.

to the reduction of the false positive rate. When W > 70,
the false positive rate becomes zero. For the relatively small
W e [20, 70], the relationship between the accuracy and
W appears slightly irregular. However, for the large sliding
window size of W > 80, the accuracy increases with W, and
when W = 120, the accuracy is 99.28%.

2) Influence of Sensitivity Value k: Because the CAN bus is
an event triggered network, some subtle changes in the scene
may cause huge changes in the information entropy. In partic-
ular, the decision variables controlled by the sensitivity value
k have a great influence on the measurement of information
entropy, and the changes in the information entropy may be
irregular [10], [18]. Therefore, we concentrate on investigating

the impact of the sensitivity parameter k on the three detection
objectives of accuracy, false-positive rate and response time
using the first 560000 records of the DoS attack dataset. Fig. 6
depicts the accuracy, false-positive rate and response time as
the functions of k given four different values of the sliding
window size W. It can be seen that the accuracy decreases
as k increases given a fixed W, and the rate of reduction in
accuracy is larger for smaller sliding window size. By contrast,
the response time increases with the sensitivity parameter k
given a fixed sliding window size W, and the rate of increase
in response time is higher for larger W. Given W = 40,
60 and 80, respectively, Fig. 6(a), (b) and (c) show that the
false positive rate decreases quickly as k increases in the range
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Fig. 7.
positive rate (Obj3) and objective 4: response time (Objy4).

TABLE IV

FRIEDMAN TEST FOR COMPARISON ALGORITHMS BASED
ON NHV METRIC VALUE

Algorithms  Ranking
NSGA-III 3.20
PREA 2.57
hpaEA 2.06
MaOEA-ID 1.42

of k € [0.001, 2]. When the sensitivity value k exceeds this
range, the false positive rate tends to zero. For very high
sliding window size of W = 110, the false positive rate
remains zero regardless the value of k, as can be seen from
Fig. 6(d).

It can be seen that choosing appropriate values for the
sliding window size W and the sensitivity parameter k is
of great significance to improve the whole IDS performance.
Therefore, in addition to the parameters involved in obtaining
the information entropy and the detection classification pro-
cess, W and k are also included in our decision variables to
be optimized by the proposed MaOEA-ID and the benchmark
algorithms in the following comparison.

3) Comparison of Different Optimization Algorithms:
Table IV shows the Friedman test results of the involved
algorithms based on NHV metric value with the significance
difference level 0.05 [65]. And the performance ranking of the
involved comparison algorithms can be followed and listed
as follows: MaOEA-ID > hpaEA > PREA > NSGA-III,

Objective
(b) PREA

AN 214/
N

Objective

(d) MaOEA-ID

Pareto solution sets found by the four algorithms, where objective 1: information entropy (Obj), objective 2: accuracy (Obj,), objective 3: false

which means that MaOEA-ID has been proven to achieve good
performance.

To vividly compare the detection performance of the four
algorithms, their Pareto solution sets with the largest normal-
ized hypervolume (NHV) metric [66] value are plotted in the
parallel coordinates of the objective space, as illustrated in
Fig. 7, where each solution has 4 objectives and the solution’s
objective values are linked by line. The intuitive correlation
and conflicting relationships between the different objectives
are clearly demonstrated in Fig. 7, where it can be observed
that all the four algorithms converge to the PF, while they
have different objective landscapes, in terms of diversity.
Specifically, the solution sets of NSGA-III and MaOEA-ID
have similar distribution range of [0, 1] in Objz and Ob 4.
But MaOEA-ID has wider distribution ranges than NSGA-III
in Obj and Obj,. More specifically, the solution ranges
in Obji are [0, 1] and [0 0.95], respectively, while the
distribution ranges in in Obj, are [0, 0.6] and [0, 0.5],
respectively, for MaOEA-ID and NSGA-III. This indicates that
the solutions obtained by MaOEA-ID in solving Obj; and
Ob jr have higher diversity than NSGA-III. The distribution
range of PREA in Obj, is [0, 0.7], which is wider than
the other three algorithms. However, the values of its Pareto
solution set in Obj; and Objz distribute in the ranges of
[0, 0.85] and [0, 0.95], respectively, which are poorer than
those of NSGA-III and MaOEA-ID on the same objectives.
Clearly, the quality of the solution set obtained by hpaEA,
in terms of diversity, is poorer than the other three algorithms.
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The results of Fig. 7 hence suggest that the quality of the
solution set obtained by our MaOEA-ID, in terms of diversity,
is better than the three state-of-the-art benchmark algorithms.

To compare the detection performance of different algo-
rithms on each objective in more detail, the objective perfor-
mance comparison box figure is drawn in Fig. 8. To apply the
same common rule of comparison for all the four objectives,
namely, the smaller the better, the inverse of the information

entropy measurement, i.e., ——, and the inverse of the accu-

> objy

racy rate, i.e., #jz’ are showed in Fig. 8(a) and Fig. 8(b),
respectively. As can be seen from Fig. 8(a), all the algorithms
have highly similar boxes for the first objective. Based on the
comparison of upper and lower quartiles and median values,
a clear performance ranking for the first objective can be
drawn as: MaOEA-ID > hpaEA > NSGA-III ~ PREA,
where ‘>’ means ‘better’ and ‘~’ indicates ‘similar’. Based
on the median values of Fig. 8(b), an identical ranking of
MaOEA-ID > hpaEA > NSGA-III ~ PREA is obtained for
the second objective. For the objective of false positive rate
depicted in Fig. 8(c), the lower quartile and median value
of all the algorithms are close to 0. The box of MaOEA-
ID however is more compact and concentrated. Also the
upper limit value of MaOEA-ID is significantly smaller than
NSGA-III, PREA and hpaEA. This means that MaOEA-ID
achieves better results on false positive rate. The performance
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ranking for the third objective can be drawn as MaOEA-ID >
NSGA-III > PREA > hpaEA. For the objective of response
time given in Fig. 8(d), MaOEA-ID has smaller median value
than the other algorithms. NSGA-III and hpaEA have similar
upper quartile values that are higher than the upper quartile
value of PREA. In terms of response time, it may be concluded
that MaOEA-ID is better than the other three algorithms.
Note that typically more evaluation time and hence higher
response time is needed to attain better accuracy rate. That is,
these two objectives are conflicting to each other. And it can be
seen that our MaOEA-ID can not only improve the accuracy
of information entropy, but also make the upper limit of false
positive rate smaller and the box more compact and concen-
trated. This means that our MaOEA-ID can better balance
these conflicting objectives and achieves superior detection
performance over the existing state-of-the-art algorithms.

VI. CONCLUSION

We have constructed a many-objective based intrusion
detection model that considers information entropy, accuracy,
false alarm rate and response time of anomaly detection
as the four objectives for the in-vehicle network security
problem. An efficient MaOEA-ID with double evolutionary
selections has been designed to optimize this many-objective
intrusion detection model and hence to achieve good detection
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performance that balances the conflicting objectives. The
novelty of our MaOEA-ID has been its double evolutionary
selections that closely link and promote each other. For
the internal population, improved DE operator and spherical
pruning mechanism are adopted to produce new offspring
and select the excellent solutions, respectively. The excellent
internal solutions are used as the selection pool of the external
archive. New offspring of the external archive are generated
and an archive selection mechanism is adopted to select and
store the optimal solutions in the whole detection process.

To verify our intrusion detection model and optimization
algorithm, an experiment has been conducted involving a
a real-life automotive CAN bus network dataset. Extensive
experiments have been performed to investigate the important
impact of the sliding window size and the sensitivity parameter
to the detection performance. Concrete experimental results
have validated that our method responds quickly to attacks and
is capable of obtaining high entropy and detection accuracy
as well as very low false positive rate with a good balance
in the conflicting objective landscape. The extensive results
obtained have also demonstrated that our MaOEA-ID has
superior intrusion detection performance over the three state-
of-the-art benchmarks, NSGA-III, PREA and hpaEA, in terms
of higher diversity and better objectives.

To further improve detection performance and service life,
our future work will construct enhanced detection model by
considering more influencing factors. It is also obvious that
the effectiveness of MaOEA-ID is not limited to addressing
the in-vehicle network problem, but can readily be applied to
anomaly detection in other fields, such as medical images.
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