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[using (1)] and�(n) = 0:0193 [using (7)] were in good accordance
wth the empirically measured value�(5)(n) = 0:0157. Again, note
that the high number of available patterns privileges the GF-based
approximation.

V. CONCLUSION

This letter has extended Vapnik’s theory by exploiting basic prop-
erties of KWMs. The validity of the involved research consists in a
general procedure allowing one to estimate a classifier’s VC-dim in
the multiclass case: one need only repeat the procedure exemplified in
Section IV-B for the proper value ofNc and then apply expression (1).
An additional, peculiar result of the presented approach lies in the op-
portunity given by (7) to estimate a classifier’s GF.
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The Relevance Vector Machine Technique for Channel
Equalization Application

S. Chen, S. R. Gunn, and C. J. Harris

Abstract—The recently introduced relevance vector machine (RVM)
technique is applied to communication channel equalization. It is demon-
strated that the RVM equalizer can closely match the optimal performance
of the Bayesian equalizer, with a much sparser kernel representation
than that is achievable by the state-of-art support vector machine (SVM)
technique.

Index Terms—Bayesian classification, equalization, relevance vector ma-
chines (RVMs), support vector machines (SVMs).

I. INTRODUCTION

The state-of-art support vector machine (SVM) technique [1] has
been gaining popularity in regression and classification, due to its many
attractive features and promising empirical performance. It is generally
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believed that the formulation of SVM embodies the structural risk min-
imization principle, thus combining excellent generalization properties
with a sparse kernel representation. The communication channel equal-
ization is concerned with reliably detecting transmitted data symbols
in the presence of distorting channel and noise. Since data symbols are
drawn from a finite alphabet set, channel equalization can be viewed
as a classification problem [2] and the SVM technique has found its
application in equalization problems [3]–[6]. These works have shown
that the SVM equalizer can closely match the optimal performance of
the Bayesian equalizer. However, the results have also revealed that, for
equalization application, the SVM technique does not result in a suf-
ficiently sparse model. Typically, an SVM equalizer will have five to
ten times more kernels than the number of the noise-free channel states
that is required by the Bayesian equalizer. This “weakness” is due to
the nature of the SVM method, as each misclassified training data is
necessitated as a support vector (SV).

Modern communication systems have high data rates, and time for
an equalizer to make a decision regarding a data symbol is extremely
small. Thus decision complexity is a critical factor to consider. The fact
that the SVM requires a relatively large number of kernels to approxi-
mate the optimal solution will limit its practical application. Recently,
Tipping [7] introduced a relevance vector machine (RVM) method,
which is based on a Bayesian framework [8], [9] and has an identical
functional form to the SVM. The results given in [7] have demon-
strated that the RVM has a comparable generalization performance
to the SVM but requires dramatically fewer kernel functions than the
SVM. In this correspondence, we apply the RVM method to channel
equalization. Our results confirm that the RVM equalizer can closely
match the Bayesian equalizer performance, and it has a much sparser
kernel representation than the SVM equalizer. An RVM equalizer typ-
ically has fewer kernel functions than the noise-free channel states. A
drawback of the RVM method is that it involves a highly nonlinear it-
erative optimization process. As in the case of the SVM, however, we
only use the RVM method to design an equalizer “off-line” based on a
block of training data. This design complexity will not pose too serious
a problem.

II. CHANNEL EQUALIZATION

Consider the channel which generates the received signal samples of

rk =

n �1

i=0

cisk�i + nk (1)

where
ci channel impulse response (CIR) taps;
nc CIR length;
Gaussian white noisenk has zero mean and variance�2n;
transmitted symbolsk takes the value from the symbol set

f�1g.
An equalizer uses the information contained in the observation vector
rk = [rkrk�1 . . . rk�m+1]

T to produce an estimatêsk�d of sk�d,
wherem is called the equalizer order and0 � d � m + nc � 2 the
equalizer delay. The received signal vectorrk can be expressed as

rk = rk + nk = Csk + nk (2)

whereC is anm� (m+nc � 1) Toeplitz CIR matrix, whose(i; j)th
element iscj�i for 0 � j � i � nc � 1 and zero otherwise. No-
tice thatsk hasNs = 2m+n �1 possible combinations, denoted as
~sj , 1 � j � Ns. Thus,rk takes values from the channel state set:
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R �
= f~rj = C~sj , 1 � j � Nsg. This set can be divided into two sub-

sets conditioned on the value ofsk�d: R� �
= f~rj 2 Rjsk�d = �1g.

The optimal maximuma posteriori probability (MAP) or Bayesian
equalizer is defined as [2]

ŝk�d = sgn(yk) with yk =
~r 2R

�j~s
(d)
j

(2��2n)m=2

� exp �krk � ~rjk2
2�2n

(3)

where~s(d)j 2 f�1g denotes thedth element of~sj , which serves as the
class label, and�j is thea priori probability of~rj .

The optimal Bayesian equalizer requires the complete knowledge of
all the noise-free channel states, which is generally unknown. Kernel-
based models have clear advantages, as they can be trained using noisy
data.

III. T HE RELEVANCE VECTORMACHINE EQUALIZER

Given a block ofN training datafrk; tk = sk�dgNk=1, consider the
equalizer of the form

y(r) =

N

l=1

wlKl(r) (4)

wherewl are the “weights” andKl(r) = K(r; rl). For equaliza-
tion application, the kernel functionK(�; �) is naturally chosen to be
a Gaussian function with its variance being an estimate of the channel
noise variance. The relevance vector (RV) approach for classification
[7] can readily be applied to construct the equalizer (4). Denotet =
[t1 . . . tN ]T andw = [w1 . . . wN ]T . The posterior probability ofw
is

p(wjt; ���) = p(tjw; ���)p(wj���)
p(tj���) (5)

where
p(wj���) prior with ��� = [�1 � � ��N ]T denoting the vector of

hyperparameters;
p(tjw; ���) likelihood;
p(tj���) evidence.

Following the Bayesian classification framework [9], the likelihood is
expressed as

p(tjw; ���) =
N

l=1

(f(y(rl)))
t (1� f(y(rl)))

1�t (6)

where

f(x) =
1

1 + exp(�x) (7)

is the logistic sigmoid function. The Gaussian prior is chosen

p(wj���) =
N

l=1

p
�lp
2�

exp ��lw
2
l

2
: (8)

As the marginal likelihoodp(tj���) cannot be obtained analytically by
integrating out the weights from (6), an iterative procedure is necessi-
tated [9].

With a fixed given���, the MAP solutionwMAP can be obtained by
maximizing log(p(wjt; ���)) or, equivalently, by minimizing the fol-
lowing cost function:

J(wjt; ���) =
N

l=1

�lw
2
l

2
� tl log(f(y(rl)))

� (1� tl) log(1� f(y(rl))) : (9)

The gradient ofJ with respect tow is

rJ = Aw +�
T (f � t) (10)

where
A = diagf�1; . . . ; �Ng;
f = [f(y(r1)) . . . f(y(rN))]T ;
matrix� has elements�i; j = K(ri; rj).

The Hessian ofJ is

H = r2
J = �

T
B�+A (11)

whereB = diagff(y(r1))(1 � f(y(r1))), . . . ; f(y(rN))(1 �
f(y(rN)))g.

The posterior is approximated aroundwMAP by a Gaussian approx-
imation with the covariance

� = (Hjw )�1 (12)

and the mean

��� = [�1 . . . �N ]T = � �
T
Btjw : (13)

The hyperparameters��� are updated using [8]

�
new
i =

1� �oldi �i; i

�2i
(14)

with �i; i being the diagonal elements of�.
The introduction of an individual hyperparameter for every weight

of the model (4) is the key feature of the RVM, and is ultimately re-
sponsible for the sparsity properties of the RVM method [7]. During
the optimization process, many of the�i are driven to large values, so
that the corresponding model weightswi are effectively pruned out.
Thus the corresponding model termsKi(�) can be removed from the
trained model represented by (4). The simple iterative procedure that
we adopt to construct an RVM equalizer is summarized as follows.

Initialization) TheN �M kernel matrix� is initialized with
M = N , i.e., every training data point is considered as a candidate
kernel. Each weightwi is initially associated with a same value of
the hyperparameter�i.

Step 1) Given current value���, find wMAP by minimizing
the cost function (9). A simplified conjugate gradient algorithm
[10] is used in the optimization. Alternatively, the iteratively
reweighted least-square algorithm [11] can be used.
Step 2) The hyperparameters are updated using (14). If a�i >

Lg, whereLg is a preset large positive value,M := M � 1,
the corresponding column in� is removed, and thus the cor-
responding weightwi and model termKi(�) is pruned out the
model.
Test) If the hyperparameters��� remain sufficiently unchanged
in two successive iterations (no removal of hyperparameters) or a
preset maximum iteration number is reached, stop; otherwise go
to Step 1.

IV. SIMULATION RESULTS

Two examples were used in simulation to test the RVM algorithm
discussed in the previous section and to compare its performance with
the SVM.

Example 1: The transfer function of the CIR wasC(z) = 0:5 +
1:0z�1, and the equalizer structure was given bym = 2 andd = 1.
The number of the noise-free channel states isNs = 8. The training
data set contained 200 points. For a channel signal to noise ratio (SNR)
of 12 dB, when the error/margin tradeoff parameterC for the SVM was
chosen to beC � 2:0, the size of the SVM was not reduced any further
and remained typically 64 SVs in various runs. The RVM on the other
hand found the number of RVs in the range of six to ten in various runs.
Fig. 1 shows typical results of the SVM and RVM, respectively. It is
clear that the RVM method results in a much sparser model and the
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TABLE I
BER PERFORMANCE ANDNUMBER OFKERNELSUSED BY VARIOUS EQUALIZERS FOREXAMPLE 2, GIVEN THREESNRS. THE SVM HAD A C � 6:0

Fig. 1. Comparison of the optimal Bayesian decision boundary (solid) with
those (dotted) of the SVM equalizer (a) and the RVM equalizer (b) for Example
1, given SNR= 12 dB. The� and+ are the two classes of the noise-free
channel states, small circles and dishes are the two classes of the training data,
respectively, and big circles denote SVs (a) and RVs (b).

RVs bear close resemblance to the prototypes, the noise-free channel
states. Fig. 2 compares the bit error rate (BER) of the optimal Bayesian
equalizer as a function of SNR with that of the RVM equalizer. Again,
for a given SNR value, a training set of 200 points was used to construct
the RVM equalizer, and the number of RVs was found to in the range
of five to ten. The BERs of the SVM equalizer constructed under the
same training conditions are not shown in Fig. 2, as they are similar to
those of the RVM equalizer. However, the SVM equalizer has a much
larger number of kernels, typically around 64.

Example 2: The transfer function of the CIR wasC(z) = 0:3 +
0:8z�1+0:3z�2, and the equalizer was defined bym = 3 andd = 1.
The number of the noise-free channel states isNs = 32. Given three
SNR conditions with each having a training data set of 500 points,
Table I summarized the results obtained using the SVM and RVM
methods, respectively, in comparison with the optimal Bayesian equal-
izer. Fig. 3 compares the BER performance of the Bayesian equalizer
with that of the RVM equalizer, given a range of SNR values. For a

Fig. 2. Performance comparison for Example 1. The number of training data
for each given SNR was 200 and average numbers of RVs were six (low SNRs)
and eight (high SNRs).

Fig. 3. Performance comparison for Example 2. The number of training data
for each given SNR was 500 and average numbers of RVs were in the range of
12 to 30 (for low SNRs to high SNRs).

given SNR value, the number of training data for constructing the RVM
was 500. The numbers of RVs found were typically in the range of 12
(for lower SNRs) to 30 (for high SNRs). The BERs of the SVM equal-
izer, not shown in Fig. 3, are similar to those of the RVM equalizer. The
numbers of SVs found however were typically more than 270.

V. CONCLUDING REMARKS

For high-speed data communications, to meet real-time compu-
tational requirements, an equalizer should have a size as small as
possible without sacrificing too much performance. In this correspon-
dence, the RVM has been shown to provide an effective method for
constructing such an equalizer. The results obtained have demonstrated
that the RVM equalizer can closely match the optimal performance of
the Bayesian equalizer with fewer kernels.

For time-varying channels, it is necessary to adapt an equalizer in a
sample-by-sample manner. Like the SVM, the RVM is a block-data-
based method and cannot offer this desired sample-by-sample adapta-
tion. A possible solution is to use the RVM in link initialization to con-
struct an initial equalizer, and then switch to using a stochastic gradient
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minimum BER adaptive algorithm [12] for tracking the time-varying
channel.
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Global Convergence of Delayed Dynamical Systems

Tianping Chen

Abstract—In this paper, we discuss some delayed dynamical systems, in-
vestigating their stability and convergence in critical case. To ensure the sta-
bility, the coefficients of the dynamical system must satisfy some inequali-
ties. In most existing literatures, the restrictions on the coefficients are strict
inequalities. The tough question is what will happen in the case (critical
case) the strict inequalities are replaced by nonstrict inequalities (i.e., “ ”
is replaced by “ ”). The purpose of this paper is to discuss this critical case
and give an affirmative answer in the case that the activation functions are
hyperbolic tangent.

Index Terms—Delayed neural networks, global convergence, stability.

I. INTRODUCTION

Recently, delayed Hopfield neural networks and cellular neural net-
works attracted attentions of researchers. A single time delay� > 0
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was introduced in [13] by Marcus and Westervelt, where they consid-
ered following differential equations with delay:

Ci

dui(t)

dt
=�

ui(t)

Ri

+

N

j=1

Tijvj(t� � ) + Ii

i = 1; . . . ; N u(t0) = u
0 2 R

N (1)

where
vj = gj(uj);
j = 1; � � � ; N ;
all gj activation functions, for example, sigmoidal functions, etc.
System (1) has much more complicated dynamics than original Hop-

field networks due to the delay. For results on this system, refer, for
example, to [1].

In [9], Gopalsamy and He considered a modification of (1) by incor-
porating different delays�ij � 0, i.e.,

dui(t)

dt
=�biui(t) +

N

j=1

aijgj(uj(t� �ij) + Ii

i = 1; . . . ; N (2)

wheregj are sigmoidal functions.
After then, there are several papers (see [3], [4], [7], [12], [14], etc.)

discussing the following delayed neural networks:

dui(t)

dt
=�iui(t) +

N

j=1

aijgj(uj(t))

+

N

j=1

bijfj(uj(t� �j)) + Ii i = 1; . . . ; N (3)

where allgi andfi satisfy Lipschitz condition with Lipschitz constants
�i and�i, i = 1; . . . ; N , respectively. And the following global con-
vergence theorem has been proved.

Theorem A: If the activation functionsgi i = 1; . . . ; N satisfy
(H1), (H2), and the coefficients in the dynamical system (3) satisfy
the following inequalities:

�i +

N

i=1

jaij j�j +

N

i=1

jbij j�j < 0 i = 1; . . . ; N (4)

wherei > 0 are certain constants. Then the dynamical system (3) has
a unique equilibriumu�, which is globally and asymptotically stable
(exponentially).

If the inequality sign “<” is reversed, the previous theorem fails to
be true. One can give an example of a delayed dynamical system, which
has several equilibrium points and some are unstable or an example of
a system, of which the solutions diverge.

It is natural to ask: What will happen if the strict inequalities (4) are
replaced by the following nonstrict inequalities?

�i +

N

i=1

jaij j�j +

N

i=1

jbij j�j � 0 i = 1; . . . ; N: (5)

The purpose of this paper is to give an affirmative answer when the
activation functions are hyperbolic tangent. (For the systems without
delays, see [8]).
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