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Complex-Valued B-Spline Neural Networks for
Modeling and Inverting Hammerstein Systems

Sheng Chen, Fellow, IEEE, Xia Hong, Senior Member, IEEE, Junbin Gao, and Chris J. Harris

Abstract— Many communication signal processing applications
involve modeling and inverting complex-valued (CV) Hammer-
stein systems. We develop a new CV B-spline neural network
approach for efficient identification of the CV Hammerstein
system and effective inversion of the estimated CV Hammerstein
model. In particular, the CV nonlinear static function in the
Hammerstein system is represented using the tensor product from
two univariate B-spline neural networks. An efficient alternating
least squares estimation method is adopted for identifying the CV
linear dynamic model’s coefficients and the CV B-spline neural
network’s weights, which yields the closed-form solutions for both
the linear dynamic model’s coefficients and the B-spline neural
network’s weights, and this estimation process is guaranteed to
converge very fast to a unique minimum solution. Furthermore,
an accurate inversion of the CV Hammerstein system can
readily be obtained using the estimated model. In particular, the
inversion of the CV nonlinear static function in the Hammerstein
system can be calculated effectively using a Gaussian–Newton
algorithm, which naturally incorporates the efficient De Boor
algorithm with both the B-spline curve and first-order derivative
recursions. The effectiveness of our approach is demonstrated
using the application to equalization of Hammerstein channels.

Index Terms— B-spline neural networks, complex-valued (CV)
neural networks, De Boor algorithm, equalization, Hammerstein
model, Wiener model.

I. INTRODUCTION

COMPLEX-VALUED (CV) artificial neural networks have
attracted considerable attention from both theoretical

research and practical application communities [1]–[12]. In
particular, the communication signal processing community
has long been interested in neural network representations
for the CV nonlinear systems as well as in inverting the
CV nonlinear systems. It is well-known that most artificial
neural networks cannot be automatically extended from the
real-valued (RV) domain to the CV domain because the
resulting model would in general violate Cauchy–Riemann
conditions, and this means that the training algorithms become
unusable. A number of analytic functions were introduced for
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the fully CV multilayer perceptrons [4]. A fully CV radial
basis function network was introduced in [8] for regression
and classification applications. Alternatively, the problem can
be avoided using two RV artificial neural networks, one
processing the real part and the other processing the imaginary
part of the CV signal/system. A more challenging problem is
the inversion of a CV nonlinear system, which is typically
found in communication signal processing applications. This
is a much under-researched area, and a few existing methods,
such as the algorithm proposed in [10], are not very effective
in tackling practical CV signal processing problems.

The RV signal processing field offers motivations and
inspirations for the development of efficient techniques for
modeling and inversion of the CV nonlinear systems. A popu-
lar approach to nonlinear systems modeling in the RV domain
is to use block-oriented nonlinear models, which comprise
the linear dynamic models and static or memoryless non-
linear functions [13]–[19]. In particular, the two types of
RV block-oriented nonlinear models that have found wide
range of applications are the Wiener model [20]–[26], which
comprises a linear dynamical model followed by a nonlinear
static transformation, and the Hammerstein model [27]–[34],
which consists of a nonlinear static transformation followed
by a linear dynamical model. An efficient B-spline neural
network approach for modeling CV Wiener systems was
derived in [35]. With its best conditioning property, the RV
B-spline curve has been used in computer graphics and
computer-aided geometric design [36]. The B-spline curves
consist of many polynomial pieces, offering versatility. In par-
ticular, the De Boor algorithm [37], which uses numerically
stable recurrence relations, offers a highly efficient means of
constructing B-spline curve. The B-spline basis functions have
been widely applied for the RV nonlinear system modeling
[38]–[41]. The CV B-spline neural network algorithm derived
in [35] is highly efficient for modeling the CV Wiener systems.
Recently, we have extended [35] and further developed this
highly effective B-spline neural network method for both
modeling and inverting the CV Wiener systems, with an
application to digital predistorter design [42].

Many communication signal processing applications involve
propagating the CV signals through the CV nonlinear dynamic
systems that can be represent by the Hammerstein model.
For example, in order to improve the power efficiency of
modern digital communication systems, the high power ampli-
fier (HPA) at the transmitter is often driven to near the
nonlinear saturation operating region [43]–[46]. This nonlinear
distortion at the transmitter combined with the dispersive trans-
mission medium forms a Hammerstein channel that seriously
distorts the transmitted signal. At the receiver, equalization of
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this CV Hammerstein channel is necessary for recovering the
transmitted information sequence, which can be formulated as
an identification and inversion of the CV Hammerstein system.
We develop a novel CV B-spline neural network approach
for efficient identification of the CV Hammerstein system as
well as accurate inversion of the CV Hammerstein system
based on the estimated CV Hammerstein model. Our original
contribution is twofold. First, we extend [35] for the CV
B-spline modeling to accommodate CV Hammerstein systems,
and we develop a highly efficient alternating least squares (LS)
method to identify the CV model coefficients of the linear
dynamic subsystem as well as the CV weights of the B-spline
neural network that models the static nonlinear subsystem,
in the closed-form solutions. Since the cost function for this
identification task is convex with respect to the coefficients
of the linear model or the weights of the B-spline model,
separately, and moreover, the solution is unique, our alter-
nating LS estimator is guaranteed to converge very fast to
a unique minimum, unlike the standard coordinate gradient-
descent algorithm of [47] and [48]. Second, we develop an
accurate and efficient inversion of the CV Hammerstein system
based on the estimated B-spline model. In particular, the inver-
sion of the CV nonlinear static function in the Hammerstein
system can be effectively achieved using the Gauss–Newton
algorithm that utilizes naturally the B-spline curve and first-
order derivative recursions.

The effectiveness of this general approach for identification
and inversion of the CV Hammerstein systems is demonstrated
using the application to nonlinear equalization of Hammerstein
channels, which is a nontrivial and challenging task. First,
input signals for identifying the Hammerstein channel are
not persistently exciting. In particular, under normal operating
conditions of the HPA, there are very few or no transmitted
digital signal near or in the saturation region of the nonlinear
HPA. But, the CV B-spline neural network is capable of
extrapolating well the nonlinear characteristics of the HPA
into the saturation region where there are no training data.
Second, the received signal is corrupted by the noise and,
therefore, the input to the nonlinear equalizer or the inversion
of the Hammerstein channel is highly noisy. The inversion of
the Hammerstein channel under a noisy input causes the well-
known noise enhancement problem. The most challenging
difficulty, however, is due to the fact that the nonlinear static
mapping of the HPA is one to one only up to the input
saturation point. When the HPA is operating into the highly
saturation region, transmitted digital symbols at the edges
of the symbol constellation are distorted into the same sat-
urated output amplitude value. Consequently, the CV B-spline
model identified may not be strictly invertible over the output
saturation region of the HPA. Despite of these difficulties,
our proposed approach is effective and works well for this
challenging application.

II. IDENTIFICATION AND INVERSION OF CV
HAMMERSTEIN SYSTEMS

A CV number x ∈ C can be represented either by the
rectangular form x = xR + jxI , where j = √−1, whereas

xR = �[x] and xI = �[x] denote the real and imaginary parts
of x , or alternatively by the polar form x = |x | ·exp(j � x) with
|x | denoting the amplitude of x and � x its phase.

A. CV Hammerstein System

The generic CV Hammerstein system considered in this
paper consists of a cascade of two subsystems: 1) a CV
nonlinear static function �(·) : C → C and 2) a CV
linear dynamic system presented by a finite-duration impulse
response (FIR) filter of order L. Furthermore, the output of
the system is corrupted by a CV additive white Gaussian noise
(AWGN). Therefore, the system is represented by

w(k) = � (x(k)) (1)

y(k) = ỹ(k) + n(k) =
L

∑

i=0

hiw(k − i) + n(k), h0 = 1 (2)

where x(k) ∈ C and y(k) ∈ C are the system’s input and
output, respectively, and n(k) is the system’s AWGN with
E[|nR(k)|2] = E[|nI (k)|2] = σ 2

n , whereas ỹ(k) represents
the noise-free system’s output. The z transfer function of the
FIR filter is defined by

H (z) =
L

∑

i=0

hi z
−i , h0 = 1 (3)

with the CV coefficient vector given by h = [h1 h2 · · · hL ]T ∈
CL . Note that h0 = 1 is assumed. This is because, if this
is not the case, h0 can always be absorbed into the CV
static nonlinearity �(·), and the linear filter’s coefficients
are rescaled as hi/h0 for 0 ≤ i ≤ L. Without loss of
generality, the following assumptions are made regarding the
CV nonlinear static function (1) of the Hammerstein system.

Assumption 1: �(·) is a one to one mapping, i.e., it is an
invertible and continuous function.

Assumption 2: xR(k) and xI (k) are upper and lower
bounded by some finite and known real values.

For practical applications, these two assumptions typically
hold. Our aim is to identify the above Hammerstein system,
i.e., given the input–output data set DK = {x(k), y(k)}K

k=1, to
identify the underlying nonlinear function �(·) and to estimate
the FIR filter parameter vector h, as well as to provide an
accurate inversion of the above Hammerstein system based on
the identified model. Note that the signal w(k) between the two
subsystems is unavailable and the output data {y(k)}K

k=1 are
noisy. We will develop a CV B-spline neural network approach
for an efficient identification of this Hammerstein system and
then derive an effective algorithm for an accurate inversion of
this Hammerstein system based on the estimated Hammerstein
model �̂(·) and ĥ.

B. CV B-Spline Neural Network

The CV B-spline neural network [35] is adopted to represent
the mapping ŵ = �̂(xR + jxI ) : C → C that is the estimate
of the underlying CV nonlinear function �(·). Assume that
Umin < xR < Umax and Vmin < xI < Vmax, where
Umin, Umax, Vmin, and Vmax are known finite real values.
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Fig. 1. Visualisation of the De Boor recursion for Po = 4 and Nb = 5,
where Umin = U3 and Umax = U6.

Within this range, the B-spline basis functions as model basis
have the best approximation capability according to the Stone–
Weierstrass approximation theorem, i.e., the basis function is
complete. Although any polynomial function can also be used
to approximate a continuous function, the B-spline functions
are proven to be optimally stable bases [49].

A set of univariate B-spline basis functions based on xR is
parameterized by the order (Po −1) of a piecewise polynomial
and a knot sequence, which is a set of values defined on the
real line that break it up into a number of intervals. To have NR

basis functions, the knot sequence is specified by (NR +Po+1)
knot values, {U0, U1, . . . , UNR+Po}, with

U0 < U1 < · · · < UPo−2 < UPo−1

= Umin < UPo < · · · < UNR < UNR +1

= Umax < UNR+2 < · · · < UNR +Po . (4)

At each end, there are Po−1 external knots that are outside the
input region and one boundary knot. As a result, the number of
internal knots is NR + 1 − Po. Given the set of predetermined
knots (4), the set of NR B-spline basis functions can be formed
by using the De Boor recursion [37], yielding

B(�,0)
l (xR) =

{

1, if Ul−1 ≤ xR < Ul

0, otherwise
1 ≤ l ≤ NR + Po (5)

B(�,p)
l (xR) = xR − Ul−1

Up+l−1 − Ul−1
B(�,p−1)

l (xR)

+Up+l − xR

Up+l − Ul
B(�,p−1)

l+1 (xR)

for l = 1, . . . , NR + Po − p and p = 1, . . . , Po. (6)

The derivatives of the basis functions B(�,Po)
l (xR) for 1 ≤ l ≤

NR can also be computed recursively according to

d B(�,Po)
l (xR)

dxR
= Po

UPo+l−1 − Ul−1
B(�,Po−1)

l (xR)

− Po

UPo+l − Ul
B(�,Po−1)

l+1 (xR). (7)

The De Boor recursion is illustrated in Fig. 1. Po = 3 or 4 is
sufficient for the most practical applications. The number of

B-spline basis functions should be chosen to be sufficiently
large to provide accurate approximation capability but not
too large as to cause overfitting and to impose unnecessary
complexity. The internal knots may be uniformly spaced in
the interval

[

Umin, Umax
]

. The extrapolation capability of the
B-spline model is influenced by the choice of the external
knots. Note that there exist no data for xR < Umin and
xR > Umax in identification but it is desired that the B-spline
model has certain extrapolating capability outside the interval
[Umin, Umax]. The external knots can be set empirically to
meet the required extrapolation capability.

Similarly, a set of univariate B-spline basis functions based
on xI can be established. Suppose that the order of the
piecewise polynomial is again (Po −1) and there are NI basis
functions. Then, the knot vector is defined on the imaginary
line in a similar manner, which is specified by the (NI +Po+1)
knot values, {V0, V1, . . . , VNI +Po}. In particular

V0 < V1 < · · · < VPo−2 < VPo−1

= Vmin < VPo < · · · < VNI < VNI +1

= Vmax < VNI +2 < · · · < VNI +Po . (8)

Again, at each end, there are Po − 1 external knots that are
outside the input region and one boundary knot, leaving NI +
1 − Po internal knots. Similarly, the set of NI B-spline basis
functions are constructed by the De Boor recursion [37] as

B(�,0)
m (xI ) =

{

1, if Vm−1 ≤ xI <Vm

0, otherwise
1 ≤ m ≤ NI +Po (9)

B(�,p)
m (xI ) = xI − Vm−1

Vp+m−1 − Vm−1
B(�,p−1)

m (xI )

+ Vp+m − xI

Vp+m − Vm
B(�,p−1)

m+1 (xI )

for m = 1, . . . , NI + Po − p and p = 1, . . . , Po (10)

while the derivatives of the B-spline basis functions
B(�,Po)

m (xI ) for 1 ≤ m ≤ NI are given recursively by

d B(�,Po)
m (xI )

dxI
= Po

VPo+m−1 − Vm−1
B(�,Po−1)

m (xI )

− Po

VPo+m − Vm
B(�,Po−1)

m+1 (xI ). (11)

Using the tensor product between the two sets of univariate
B-spline basis functions [40], B(�,Po)

l (xR) for 1 ≤ l ≤ NR

and B(�,Po)
m (xI ) for 1 ≤ m ≤ NI , a set of new B-spline basis

functions B(Po)
l,m (x) can be formed and used in the CV B-spline

neural network, giving rise to

ŵ = �̂(x) =
NR
∑

l=1

NI
∑

m=1

B(Po)
l,m (x)ωl,m

=
NR
∑

l=1

NI
∑

m=1

B(�,Po)
l (xR)B(�,Po)

m (xI )ωl,m (12)

where ωl,m = ωRl,m + jωIl,m ∈ C, 1 ≤ l ≤ NR and 1 ≤
m ≤ NI , are the CV weights. The CV B-spline neural network
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Fig. 2. Schematics of Hammerstein system identification and deconvolution.

(12) can obviously be decomposed as the following two RV
B-spline neural networks:

ŵR =
NR
∑

l=1

NI
∑

m=1

B(�,Po)
l (xR)B(�,Po)

m (xI )ωRl,m (13)

ŵI =
NR
∑

l=1

NI
∑

m=1

B(�,Po)
l (xR)B(�,Po)

m (xI )ωIl,m . (14)

Because of the piecewise nature of B-spline functions, for
any point evaluation, there are only Po basis functions with
nonzero values for each of the real and imaginary parts,
leading to P2

o nonzero terms in both (13) and (14). This
is advantageous as Po can be set to a quite low value.
The complexity of the De Boor recursion is in the order
of P2

o , O(P2
o ). Thus, the computational cost of calculating

both (13) and (14) scales up to about three times of the
De Boor recursion, including evaluation of both real and
imaginary parts as well as the tensor product calculation.
Notably, additional cost for derivative evaluation is minimal,
as (7) and (11) are a byproduct of the De Boor recursion.
In addition, there are only Po nonzero first-order derivative
terms in each of (7) and (11). Compared with other CV neural
networks based on different spline functions [3], [50], [51],
our approach is clearly different in terms of model represen-
tation and identification algorithm. The advantages of our CV
B-spline neural network, in comparison with these other spline
functions [3], [50], [51], are discussed in [35].

C. Hammerstein System Identification

The schematic view of the CV Hammerstein system iden-
tification is depicted in the left part of Fig. 2. For the chosen
two sets of knots, (4) and (8), and the polynomial degree Po,
denote the weight vector of the CV B-spline neural network
(12) as

ω = [

ω1,1 ω1,2 · · · ωl,m · · · ωNR ,NI

]T ∈ C
N (15)

where N = NR NI . Given a block of training input–output data
{x(k), y(k)}K

k=1, where x(k) = [x(k) x(k − 1) · · · x(k − L)]T,
the task is to estimate ω and h. The identification task can be
formulated as the one that minimises the cost function

Jicf(h,ω) = 1

K

K
∑

k=1

|e(k)|2 = 1

K

K
∑

k=1

|y(k) − ŷ(k)|2 (16)

with

ŷ(k)=
L

∑

i=0

hi ŵ(k − i)=
L

∑

i=0

hi

NR
∑

l=1

NI
∑

m=1

B(Po)
l,m (x(k − i))ωl,m

(17)

in which h0 = 1. Note that the cost function (16) is convex
with respect to h when fixing ω and is convex with respect to ω

given a fixed h. We adopt an iterative procedure of alternating
the LS estimation of h and the LS estimation of ω. Unlike
a generic coordinate gradient descent algorithm [47], [48],
we have the close-form solutions for both h and ω and our
estimate is unique, owing to the unique parameterization of
h and ω. Thus, our estimation algorithm converges fast to a
unique and unbiased estimate of h and ω jointly.

Initialization. Define the amalgamated parameter vector as

θ = [

ωT h1ω
T h2ω

T · · · hLωT]T ∈ C
(L+1)N (18)

and the B-spline basis function vector φ(k) ∈ RN for the input
x(k) as

φ(k) = [

φ1,1(k) φ1,2(k) · · ·φl,m(k) · · · φNR ,NI (k)
]T (19)

with

φl,m(k) = B(Po)
l,m (x(k)), 1 ≤ l ≤ NR , 1 ≤ m ≤ NI . (20)

Furthermore, define the desired output vector as

y = [

y(1) y(2) · · · y(K )
]T ∈ C

K (21)

and the regression matrix P ∈ RK×(L+1)N as

P =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

φT(1) φT(0) · · · φT(1 − L)
...

...
...

...

φT(k) φT(k − 1) · · · φT(k − L)
...

...
...

...

φT(K ) φT(K − 1) · · · φT(K − L)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (22)

Then, the LS estimate of θ is readily given by

θ̂ = (

PT P
)−1 PT y. (23)

The first N elements of θ̂ provide a unique and unbiased
LS estimate for the weight vector of the CV B-spline neural
network ω defined in (15), which will be denoted as ω̂

(0).
Alternating LS estimation. For 1 ≤ τ ≤ τmax, where τmax is

the maximum number of iterations, the following is performed.

1) Given the fixed ω̂
(τ−1), calculate the LS estimate ĥ

(τ )
.

Especially, define the desired output vector as

yh = [

yh(1) yh(2) · · · yh(K )
]T ∈ C

K (24)

with

yh(k) = y(k) − φT(k)ω̂(τ−1) = y(k) − ŵω(k) (25)

and the regression matrix Q ∈ CK×L as

Q =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ŵω(0) ŵω(−1) · · · ŵω(1 − L)
...

...
...

...
ŵω(k − 1) ŵω(k − 2) · · · ŵω(k − L)

...
...

...
...

ŵω(K − 1) ŵω(K − 2) · · · ŵω(K − L)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (26)



CHEN et al.: CV B-SPLINE NEURAL NETWORKS 1677

Then, the LS estimate ĥ
(τ )

is readily given by

ĥ
(τ ) = (

QH Q
)−1 QH yh . (27)

2) Given the fixed ĥ
(τ )

, calculate the LS estimate ω̂
(τ ).

Especially, set ĥ(τ )
0 = 1, and introduce

ϕl,m(k) = ∑L
i=0 ĥ(τ )

i B(Po)
l,m (x(k − i)) ∈ C. (28)

Now, introduce the regressor vector ϕ(k) ∈ CN given by

ϕ(k) = [

ϕ1,1(k) ϕ1,2(k) · · ·ϕl,m(k) · · ·ϕNR ,NI (k)
]T

(29)

and define the regression matrix

S = [

ϕ(1) ϕ(2) · · · ϕ(K )
]T ∈ CK×N . (30)

Then, the LS estimate ω̂
(τ ) is readily given by

ω̂
(τ ) = (

SH S
)−1 SH y. (31)

A few iterations are sufficient for this estimation procedure
to converge to a joint unbiased estimate of h and ω that is the
unique minimum solution of the cost function (16).

D. Hammerstein System Inversion

For the Hammerstein system (1) and (2), there exists two
types of inversion: 1) the preinversion and 2) the postinversion.
In either case, the exact inversion of the Hammerstein system
is a Wiener system consisting of a linear filter followed by
a nonlinear static function. However, for the preinversion, the
input to the Wiener inverse model is typically a clean, i.e.,
noise-free, signal, whereas for the postinversion, the input
signal to the Wiener inverse model is noisy. In this paper, we
consider the more challenging postinversion or deconvolution
of the CV Hammerstein system as depicted in the right part
of Fig. 2.

1) Inversion of Hammerstein System’s Linear Filter: The
identification algorithm of Section II-C produces the estimate
of the Hammerstein system’s linear filter

Ĥ(z) = 1 +
L

∑

i=1

ĥi z
−i .

Let the transfer function of the Wiener inverse model’s linear
filter be

G(z) = z−ι ·
Lg
∑

i=0

gi z
−i (32)

where the delay ι = 0 if H (z) is minimum phase. To guarantee
an accurate inversion, the length of the inverse linear filter Lg

should be chosen to be three to four times of the length of h,
but not too long in order not to amplify the noise in the input
signal too much. The solution of the Wiener inverse model’s
linear filter g = [g0 g1 · · · gLg ]T may be obtained directly by
solving the set of linear equations specified by

G(z) · Ĥ(z) = z−ι (33)

which is also known as the zero-forcing (ZF) solution. Note
that g0 = 1 as h0 = 1. However, as the input y(k) to the filter
G(z) is noisy, the ZF solution may suffer from the drawback

of amplifying the noise n(k) in the input signal y(k) too
much. The well-known minimum mean square error (MMSE)
solution [52] offers a better tradeoff between the accuracy of
inversion and the noise amplification.

Define the coefficient matrix Ĥ ∈ C
(Lg+1)×(L H +1), where

L H = L + Lg , corresponding to the estimated Hammerstein
system’s linear filter as

Ĥ =

⎡

⎢

⎢

⎢

⎢

⎣

ĥ0 ĥ1 · · · ĥ L 0 · · · 0

0 ĥ0 ĥ1 · · · ĥ L
. . .

...
...

. . .
. . .

. . . · · · . . . 0
0 · · · 0 ĥ0 ĥ1 · · · ĥ L

⎤

⎥

⎥

⎥

⎥

⎦

= [

ĥ0 ĥ1 · · · ĥι · · · ĥL H

]

(34)

where ĥ0 = 1. Then, the MMSE solution of g is expressed as

gMMSE =
(

Ĥ Ĥ
H + 2σ̂ 2

n
σ 2

w
I L H +1

)−1
ĥι (35)

in which I L denotes the L × L identity matrix

σ 2
w = E

{∣

∣�(x(k))
∣

∣

2} ≈ 1/K
K

∑

k=1

∣

∣�̂(x(k))
∣

∣

2

and 2σ̂ 2
n is the estimate of the noise power given by 2σ̂ 2

n ≈
Jicf

(

ĥ, ω̂
)

. The optimal value for ι can in fact be chosen to
minimize the MMSE of the combined linear system of ĥ and
g

Jcmmse(ι) = σ 2
w

(

1 − ĥH
ι

(

Ĥ Ĥ
H + 2σ̂ 2

n
σ 2

w
I L H +1

)−1
ĥι

)

. (36)

2) Inversion of Hammerstein System’s Static Nonlinear
Function: Given the CV Hammerstein system’s static non-
linearity �(·), we wish to compute its inversion defined by
x(k) = �−1(w(k)). This task is identical to find the CV root
of w(k) = �(x(k)), given w(k). In Section II-C, the estimate
�̂(·) for �(·) has been obtained based on the CV B-spline
neural network. We now show that �̂−1(·) can be effectively
obtained. Given �̂(·), we have

ŵR(k) =
NR
∑

l=1

NI
∑

m=1

B(�,Po)
l (xR(k))B(�,Po)

m (xI (k))ω̂Rl,m (37)

ŵI (t) =
NR
∑

l=1

NI
∑

m=1

B(�,Po)
l (xR(k))B(�,Po)

m (xI (k))ω̂Il,m (38)

where ω̂l,m = ω̂Rl,m + jω̂Il,m . Define ζ(k) = w(k) − ŵ(k) and
the squared error (SE)

S(k) = ζ 2
R(k) + ζ 2

I (k). (39)

If S(k) = 0, then x(k) is the CV root of w(k) = �̂(x(k)).
Thus, the task is equivalent to the one that minimizes the
SE (39). We propose to use the following Gauss–Newton
algorithm to solve this optimization problem with the aid of
the efficient De Boor algorithm.

By denoting the iteration step with the superscript (t) and
giving a random initialization of x (0)(k) that satisfies Umin <
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x (0)
R (k) < Umax and Vmin < x (0)

I (k) < Vmax, the iterative
procedure is given by

[

x (t)
R (k)

x (t)
I (k)

]

=
[

x (t−1)
R (k)

x (t−1)
I (k)

]

− η
(

(

J(t)
x

)TJ(t)
x

)−1(
J(t)

x

)T

×
[

ζ
(t−1)
R (k)

ζ
(t−1)
I (k)

]

(40)

where η > 0 is the step size, ζ (t)(k) = w(k) − ŵ(t)(k) with
ŵ(t)(k) = �̂

(

x (t)(k)
)

, and J(t)
x is the 2 × 2 Jacobian matrix

given by

J(t)
x =

⎡

⎢

⎣

∂ζR(k)

∂xR(k)

∂ζR(k)

∂xI (k)
∂ζI (k)

∂xR(k)

∂ζI (k)

∂xI (k)

⎤

⎥

⎦

|x(k)=x (t)(k).

(41)

The entries in (41) are given by
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∂ζR(k)
∂xR(k) = −

NR
∑

l=1

NI
∑

m=1

d B(�,Po)
l (xR(k))

dxR(k) B(�,Po)
m (xI (k))ω̂Rl,m

∂ζR(k)
∂xI (k) = −

MR
∑

l=1

NI
∑

m=1
B(�,Po)

l (xR(k)) d B(�,Po)
m (xI (k))

dxI (k) ω̂Rl,m

∂ζI (k)
∂xR(k) = −

NR
∑

l=1

NI
∑

m=1

d B(�,Po)
l (xR(k))

dxR(k) B(�,Po)
m (xI (k))ω̂Il,m

∂ζI (k)
∂xI (k) = −

NR
∑

l=1

NI
∑

m=1
B(�,Po)

l (xR(k)) d B(�,Po)
m (xI (t))

dxI (k) ω̂Il,m

(42)

for which the De Boor algorithm, (5)–(7) and (9)–(11), can
be used for their calculation efficiently. The algorithm is
terminated when S(k) < ρ, where ρ is a preset required
precision, e.g., ρ = 10−8, or when t reaches a predeter-
mined maximum value. The step size η of the Gauss–Newton
algorithm can be set to a relatively large value. As this
is a 2-D problem, 10 iterations are often sufficient for the
Gauss–Newton algorithm to converge. It can readily be seen
that our B-spline function approach has clear advantages in
calculating �−1(·), in comparison with other alternative spline
function approaches [3], [50], [51].

III. EQUALIZATION OF HAMMERSTEIN CHANNELS

Modern digital communication systems, such as the high-
order quadrature amplitude modulation (QAM) system [53]
and the multicarrier orthogonal frequency division multiplex-
ing system [54], are highly bandwidth efficient, but they
require that the HPA at the transmitter has a very large
linear dynamic range, which cannot be met by practical
HPAs [43]–[46]. Consequently, the HPAs at the transmitters
of these systems are often driven to near the nonlinear
saturation operating region, causing nonlinear distortions to
the transmitted signals. Note that, in order to achieve better
power efficiency, the HPAs may be deliberately operating near
their saturation regions. Transmission media or channels for
these high bandwidth-efficiency communication systems are
typically dispersive and can be represented by linear FIR
filters [55]. Therefore, the communication channel for these
systems is a Hammerstein system consisting of the HPA non-
linearity at the transmitter and the linear FIR filter of the trans-
mission medium. At the receiver, a nonlinear equalizer must

Fig. 3. 64-QAM symbol constellation.

be deployed to remove the effects of this Hammerstein channel
in order to recover the transmitted information sequence.

A. Hammerstein Channel

Without loss of generality, we consider the high-order QAM
signaling [53], in which the transmitted signal x(k) takes the
values from the CV M-QAM symbol set

S = {d(2l−√
M − 1)+jd(2q−√

M −1), 1 ≤ l, q ≤ √
M}

(43)

where 2d is the minimum distance between symbol points.
The index k here denotes the discrete time or symbol index.
Each symbol of the M-QAM signaling conveys log2(M) infor-
mation bits. The 64-QAM symbol constellation is illustrated
in Fig. 3. The Hammerstein channel is represented by: 1) the
CV static nonlinearity and 2) the CV FIR filter of order L,
where n(k) is the channel’s AWGN. The signal-to-noise ratio
(SNR) of the system is usually expressed as SNR = Eb/No ,
where No = 2σ 2

n is the AWGNs power, whereas Eb denotes
the average energy per bit for the M-QAM signaling.

Two typical CV nonlinearities �(·) of HPAs are the
traveling-wave tube (TWT) nonlinearity [43] and the nonlin-
earity of solid state power amplifiers [44]. Nonlinear character-
istics of these two types of HPAs are similar. Without loss of
generality, we consider the TWT HPA in this paper. The output
w(k) of the HPA for the given input x(k) = |x(k)| ·exp(j � x(k))
can be expressed as

w(k) = A(|x(k)|) · exp
(

j � x(k) + jϒ(|x(k)|)). (44)

Denote the input amplitude rx (k) = |x(k)|. The output
amplitude A

(

rx (k)
)

and the phase ϒ
(

rx (k)
)

of the TWT HPA
are specified respectively by [43] and [45]

A
(

rx
) =

{ αarx

1 + βar2
x
, 0 ≤ rx ≤ rsat

Amax, rx > rsat
(45)

ϒ
(

rx
) = αφr2

x

1 + βφr2
x

(46)

where the saturating input amplitude is defined as

rsat = 1√
βa

(47)
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while the saturation output amplitude is given by

Amax = αa

2
√

βa
. (48)

The underlying physics require that Amax > rsat and for
the M-QAM signal x(k), rx (k) meets the condition rx (k) ≤√

2
(√

M − 1
)

d . The operating status of the HPA is specified
by the input back-off (IBO), which is defined as

IBO = 10 · log10
Psat

Pavg
(49)

where Psat = r2
sat is the saturation input power, whereas

Pavg = E
{|x(k)|2}

= 1

M

√
M

∑

l=1

√
M

∑

q=1

(

d2(2l−√
M −1

)2+d2(2q−√
M−1

)2
)

(50)

is the average power of the input signal x(k) to the HPA.
Note that Eb = Pavg/ log2 M . A small IBO value indicates
that the HPA operates in the nonlinear saturation region.
In summary, the Hammerstein channel is specified by the
CV HPAs nonlinearity (45) and (46) with the positive RV
parameter vector t = [αa βa αφ βφ]T ∈ R4+ as well as
the FIR filter of order L with the CV parameter vector
h = [

h1 h2 . . . hL
]T ∈ CL .

B. Nonlinear Equalization

Based on the generic technique developed in Section II
for identification and inversion of the CV Hammerstein
system, we design a novel nonlinear Wiener equalizer for
the Hammerstein channel presented in Section III-A. Dur-
ing the training, the receiver has access to the transmitted
M-QAM input signal x(k) = [

x(k) x(k − 1) . . . x(k − L)
]T

for 1 ≤ k ≤ K and the Hammerstein channel output signal
{y(k)}K

k=1. Note that the HPAs output w(k) at the transmitter
is unavailable at the receiver, and the target or desired output
y(k) for identification of the Hammerstein channel is corrupted
by the CV AWGN n(k) with the variance σ 2

n per dimension.
Given the training data {x(k), y(k)}K

k=1, the Hammer-
stein channel model �̂(·) and Ĥ(z) can be identified accu-
rately and efficiently using the identification method of
Section II-C. Since the distributions of xR(k) and xI (k) are
symmetric, the distributions of wR(k) and wI (k) are also
symmetric. Furthermore

Xmax = max
{

xR(k)
} = max

{

xI (k)
} = (√

M − 1
)

d (51)

is known. Therefore, the two knot sequences (4) and (8) can
be chosen to be identical with Umax = Vmax = Xmax, Umin =
Vmin = −Xmax, and NR = NI = √

N . In practice, Po = 4
is sufficient, and an appropriate value of

√
N can be chosen

by trail and error. In particular, the number of internal knots
should be sufficient to provide a good modeling capability
but should not be too large in order to avoid overfitting and
unnecessary computational costs. Since Xmax depends on the
operating condition of the HPA, namely, the value of IBO,

Fig. 4. Case of IBO = 10 dB with the Hammerstein channel’s input x(k)
marked by ·. (a) HPAs output w(k) marked by ×. (b) Noise-free Hammerstein
channel’s output ỹ(k) marked by ×.

Fig. 5. Case of IBO = 5 dB with the Hammerstein channel’s input x(k)
marked by ·. (a) HPAs output w(k) marked by ×. (b) Noise-free Hammerstein
channel’s output ỹ(k) marked by ×.

Fig. 6. Case of IBO = 0 dB with the Hammerstein channel’s input x(k)
marked by ·. (a) HPAs output w(k) marked by ×. (b) Noise-free Hammerstein
channel’s output ỹ(k) marked by ×.

TABLE I

EMPIRICALLY DETERMINED KNOT SEQUENCE

the knot sequence should be empirically tuned according to
the operating condition of the HPA.

Remark 1: Note that the input signal x(k) takes the value
from the symbol set S, which consists of the M discrete
complex values. Under normal operating conditions of the
HPA, namely, the value of IBO is large, rxmax < rsat , where
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TABLE II

IDENTIFICATION RESULTS FOR THE LINEAR FILTER PART, h, OF THE HAMMERSTEIN CHANNEL

the maximum input amplitude rxmax is defined by

rxmax = √
2
(
√

M − 1
)

d = max
x∈S

|x |. (52)

This means that there is no input signal in the input saturation
region of rx ≥ rsat or near rsat . In other words, under normal
operating conditions of the HPA, the system is poorly excited
for the identification task. Since there is no training data near
and in the saturation region of the HPA, we have to purely rely
on the extrapolation ability of the CV B-spline neural network
to capture the nonlinear characteristics �(·) of the HPA near
and in the saturation region.

Given the identified Ĥ(z), the coefficient vector gMMSE
of the linear filter in the Wiener equalizer can be calcu-
lated and stored for the use in online nonlinear equalization
operation during data communication. Based on the estimated
�̂(·) = �̂R(·) + j�̂I (·), an accurate inversion to �(·) =
�R(·) + j�I (·) can readily be obtained. Note that under
normal operating conditions of large IBO values and over the
input range, �R(·) and �I (·) are monotonic. Since �̂(·) is
an accurate estimate of �(·), �̂R(·) and �̂I (·) can also be
assumed to be monotonic over the input range. Therefore,
provided that the AWGN n(k) in the Hammerstein channel
output y(k) is not extremely large, the Gauss–Newton method
of Section II-D based on the inversion of De Boor algorithm
converges to the unique solution �̂−1(·). In particular, define
the input vector to the Wiener equalizer at symbol index k as

y(k) = [y(k) y(k − 1) y(k − Lg)]T (53)

and the output of the linear filter G(z) as

ŵ(k − ι) = gH
MMSE y(k) (54)

where ι is also known as the decision delay. Given ŵ(k − ι),
the algorithm of Section II-D then calculates

x̂(k − ι) = �̂−1(ŵ(k − ι)
)

(55)

which after quantisation provides the estimate or detected
symbol for x(k − ι).

Remark 2: If the HPA is operating in the highly saturated
region, namely, the IBO value is small, symbol points at the
edge of the constellation (43) may be distorted by the HPA
into the output points w(k) with the same amplitude Amax
and only slightly differences in phase. In other words, these
w(k) are extremely close. As the noise in the equalizer input
y(k) will alter the phase of the estimate ŵ(k − ι), the estimate
(54) may not always be related to the true transmitted signal

w(k −ι). Thus, if the HPA is operating in the saturation region
and the AWGN n(k) is large, which is further amplified by the
inverse linear filter (54), �̂R(·) may not always be guaranteed
to be a one to one mapping over the input range, and the
Gauss–Newton method may not always be guaranteed to
converge to the unique solution. This will increase the error
probability of the decision (55), and will degrade the equaliza-
tion accuracy or the achievable system’s bit error rate (BER).

C. Simulation Example

We considered the 64-QAM Hammerstein channel with the
static nonlinearity described by the HPA (45) and (46) and an
FIR filter of order L = 3. The parameters of this Hammerstein
channel were given as

tT = [2.0 1.0 4.0 9.0],
hT = [0.75 + j0.2 0.15 + j0.1 0.08 + j0.01]. (56)

The serious nonlinear and memory distortions caused by this
Hammerstein channel are illustrated in Figs. 4–6. It is clear
that even in the absence of the channel’s AWGN n(k), the
output of this Hammerstein channel is so seriously distorted
that the achievable BER is practically 50%. Note that, for
the case of IBO = 10 dB, the HPA is operating in the
normal operating region with rxmax < rsat , and for the case of
IBO = 5 dB, the HPA is operating near the saturation region
with rxmax ≈ rsat, whereas for the case of IBO = 0 dB, the HPA
is operating well inside the saturation region with rxmax � rsat.
Since H (z) in this Hammerstein channel is minimum phase,
the equalizer’s decision delay was set to ι = 0.

1) Results of Hammerstein Channel Identification: The
64-QAM training sets each containing K = 1000 data samples
were generated given the Hammerstein channel’s parameters
(56) and with various values of the HPAs IBO and the
channel’s SNR, respectively. The piecewise cubic polynomial
(Po = 4) was chosen as the B-spline basis function, and
the number of B-spline basis functions was set to

√
N = 8.

The empirically determined knot sequences for different HPA
operating conditions are listed in Table I. The alternating LS
estimation algorithm of Section II-C was used to identify this
Hammerstein channel, in particular, to provide the estimate
of the channel’s linear filter coefficient vector ĥ and the
B-spline neural network’s weight vector ω̂. It was observed
that no more than four iterations were sufficient for the
algorithm to converge. The results obtained are summarized
in Table II as well as illustrated in Figs. 7–9.
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Fig. 7. Comparison of the HPAs static nonlinearity �(·) and the estimated static nonlinearity �̂(·) under IBO = 10 dB. (a) Eb/No = 30 dB.
(b) Eb/No = 20 dB. (c) Eb/No = 10 dB.

Fig. 8. Comparison of the HPAs static nonlinearity �(·) and the estimated static nonlinearity �̂(·) under IBO = 5 dB. (a) Eb/No = 30 dB.
(b) Eb/No = 20 dB. (c) Eb/No = 10 dB.

Observe from Table II that the identification of the linear
subsystem in the Hammerstein channel was achieved with high
accuracy across wide range of the IBO values as well as under
the high channel’s AWGN condition. In order to achieve an
accurate identification of a nonlinear system, the nonlinear
system should be sufficiently excited over all the amplitudes
concerned by the input signal, which is known as the persis-
tent excitation condition. Note that, under the identification
condition of IBO = 10 dB, there were no data points near
or in the HPAs saturation region. Consequently, the amplitude

response and phase response of the estimated B-spline neural
network �̂(·) exhibit noticeable deviation from the HPAs true
amplitude response A(rx ) and true phase response ϒ(rx ) in
the region rx ≥ rsat, particularly under a high noise condition,
as shown in Fig. 7. This of course does not matter, as this
region is well beyond the given operating region of the HPA.
Interestingly, as the IBO value reduced, the estimated HPA
response inside the region of rx ≥ rsat became much more
accurate, as can be noted from Figs. 8 and 9, because of the
better excitation of the input signal. From Figs. 7–9, it can
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Fig. 9. Comparison of the HPAs static nonlinearity �(·) and the estimated static nonlinearity �̂(·) under IBO = 0 dB. (a) Eb/No = 30 dB.
(b) Eb/No = 20 dB. (c) Eb/No = 10 dB.

Fig. 10. Case of IBO = 10 dB and Eb/No = 30 dB. (a) HPAs output w(k)
is marked by ·, whereas the Wiener equalizer’s linear filter output ŵ(k) is
marked by ×. (b) Hammerstein channel’s input x(k) is marked by ·, whereas
the Wiener equalizer’s output x̂(k) is marked by ×.

Fig. 11. Case of IBO = 10 dB and Eb/No = 20 dB. (a) HPAs output w(k)
is marked by ·, whereas the Wiener equalizer’s linear filter output ŵ(k) is
marked by ×. (b) Hammerstein channel’s input x(k) is marked by ·, whereas
the Wiener equalizer’s output x̂(k) is marked by ×.

also be seen that the channel’s AWGN n(k) has more serious
influences on the accuracy of the estimated phase response.

2) Results of Nonlinear Equalization: We employed the
estimated Hammerstein channel model to design the Wiener

Fig. 12. Case of IBO = 5 dB and Eb/No = 30 dB. (a) HPAs output w(k)
is marked by ·, whereas the Wiener equalizer’s linear filter output ŵ(k) is
marked by ×. (b) Hammerstein channel’s input x(k) is marked by ·, whereas
the Wiener equalizer’s output x̂(k) is marked by ×.

equalizer. The length of the nonlinear equalizer’s inverse filter
was set to Lg = 12, and the inverse linear filter’s coefficient
vector was set to the MMSE solution (35). The nonlinear static
mapping �̂−1(·) of the Wiener equalizer was calculated using
the Gauss–Newton algorithm of Section II-D. For the case
of IBO = 10 dB and Eb/No = 30 dB, the output ŵ(k) of
the Wiener equalizer’s inverse linear filter is compared with
the HPAs output w(k) in Fig. 10(a), whereas the Wiener
equalizer’s output x̂(k) is compared with the Hammerstein
channel’s input x(k) in Fig. 10(b). Compared with the Ham-
merstein channel’s output ỹ(K ) depicted in Fig. 4(b), it can
be seen that the nonlinear equalizer designed based on the
estimated Hammerstein channel model successfully removes
the serious distortions caused by the Hammerstein channel.
The equalization results for the case of IBO = 10 dB and
Eb/No = 20 dB are illustrated in Fig. 11, where it can be
seen again that the nonlinear equalizer successfully removes
the serious nonlinear and memory distortions caused by the
Hammerstein channel. In addition, from Fig. 11, the noise
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Fig. 13. Case of IBO = 5 dB and Eb/No = 20 dB. (a) HPAs output w(k)
is marked by ·, whereas the Wiener equalizer’s linear filter output ŵ(k) is
marked by ×. (b) Hammerstein channel’s input x(k) is marked by ·, whereas
the Wiener equalizer’s output x̂(k) is marked by ×.

Fig. 14. MSE versus IBO performance.

enhancement phenomenon of the postinversion becomes evi-
dent. To investigate the achievable equalization performance
when the HPA operates near the saturation region, we next
set the IBO value to 5 dB. Figs. 12 and 13 depict the
equalization results for Eb/No = 30 and 20 dB, respectively.
We note that the residual nonlinear distortion coupled with the
noise enhancement degrades the achievable equalization per-
formance, in comparison with the case that the HPA operates
in the normal operating region of rxmax < rsat. Nevertheless,
comparing Fig. 13(b) with Fig. 5(b), it can be seen that most
of the nonlinear and memory distortions of the Hammerstein
channel have been removed by the nonlinear equalizer.

The achievable performance of the nonlinear equalizer
designed based on the estimated Hammerstein channel model
was further assessed using the MSE metric defined by

MSE = 1

Ktest

Ktest
∑

k=1

|x(k) − x̂(k)|2 (57)

and the system’s BER, where Ktest was the number of test data.
With Ktest = 105, the resulting MSE as the function of IBO
is plotted in Fig. 14 for the three values of the channel SNR.
The achievable BER performance of the nonlinear equalizer
are plotted in Fig. 15 for the range of IBO values varying from
10 to 4 dB, in comparison with the benchmark BER curve of
the ideal AWGN channel, which is defined by

y(k) = cgainx(k) + n(k) (58)

Fig. 15. BER versus channel SNR performance.

with the channel gain cgain = √

1 + ‖h‖2. Note that the
channel gain of this ideal AWGN channel was set to equal to
the channel gain of the Hammerstein channel. For the Ham-
merstein channel with its HPA operating at IBO = 10 dB, the
nonlinear equalizer based on the estimated Hammerstein chan-
nel model is capable of removing all the nonlinear and memory
distortions of the Hammerstein channel to achieve a BER per-
formance that is very close to the ideal AWGN channel case.
The small degradation from this ideal AWGN channel lower
bound is owing to the inevitable noise enhancement of the
postinverse. From Fig. 15, it can also be seen that, as the HPA
operates closer to the saturation region, the residual nonlinear
distortions coupled with the noise enhancement will cause
notable degradations from the ideal AWGN lower bound.

IV. CONCLUSION

Identification and inversion of the CV Hammerstein systems
have been proposed based on the CV B-spline neural network
approach. Our contribution is twofold. First, the CV nonlinear
static function in the Hammerstein system is modeled based
on the tensor product from two univariate B-spline neural
networks that are constructed using the real and imaginary
parts of the system input. A highly efficient alternating least
squares estimation method has been proposed to estimate
the model parameters that include the CV linear dynamic
model coefficients and B-spline neural network weights, in the
unique closed-form solution. Second, an accurate postinverse
technique has been developed for the CV Hammerstein model.
In particular, the inversion of the CV nonlinear static function
in the Hammerstein system is calculated efficiently using the
Gaussian–Newton algorithm based on the estimated B-spline
neural network model with the aid of De Boor algorithm that
utilizes naturally both the B-spline curve and first-order deriva-
tive recursions. The effectiveness of our approach for modeling
and inverting the CV Hammerstein systems is demonstrated
with the application to identification and equalization of the
Hammerstein channel that consists of the nonlinear HPA at
the transmitter and the dispersive transmission medium. This
application is particularly challenging, because the identifica-



1684 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 25, NO. 9, SEPTEMBER 2014

tion task suffers inherently from poor excitation and the postin-
version or equalization causes inevitable noise enhancement.
Despite of these difficulties, our proposed approach works well
in this challenging application.
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