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Abstract— A key characteristic of biological systems is the
ability to update the memory by learning new knowledge and
removing out-of-date knowledge so that intelligent decision can be
made based on the relevant knowledge acquired in the memory.
Inspired by this fundamental biological principle, this article
proposes a multi-output selective ensemble regression (SER)
for online identification of multi-output nonlinear time-varying
industrial processes. Specifically, an adaptive local learning
approach is developed to automatically identify and encode a
newly emerging process state by fitting a local multi-output
linear model based on the multi-output hypothesis testing. This
growth strategy ensures a highly diverse and independent local
model set. The online modeling is constructed as a multi-output
SER predictor by optimizing the combining weights of the
selected local multi-output models based on a probability metric.
An effective pruning strategy is also developed to remove the
unwanted out-of-date local multi-output linear models in order to
achieve low online computational complexity without scarifying
the prediction accuracy. A simulated two-output process and two
real-world identification problems are used to demonstrate the
effectiveness of the proposed multi-output SER over a range of
benchmark schemes for real-time identification of multi-output
nonlinear and nonstationary processes, in terms of both online
identification accuracy and computational complexity.

Index Terms— Adaptive local learning, multi-output nonlinear
time-varying industrial processes, multivariate statistic hypothe-
sis testing, pruning, selective ensemble.
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I. INTRODUCTION

GENERALLY, a biological system has two types of
evolution or adaptation. The first type of evolu-

tion or long-term adaptation is over many generations
of a biological system, based on the famous survival
of the fittest principle. Many artificial learning algorithms
mimic this long-term evolution principle, including genetic
algorithm [1] and differential evolutionary algorithm [2].
A biological system also experiences the second type of
adaptation or short-term evolving during its “daily life.”
In its existence, a biological system must evolve or adapt
to fast-changing environment and, therefore, it constantly
updates its memory or “brain” by learning new knowledge
and removing out-of-date knowledge in order to make an
intelligent decision based on the relevant knowledge stored
in its memory. Inspired by this fundamental short-term
biological adaptation principle, in this work, we design a
multi-output selective ensemble regression (SER) for online
identification of multi-output nonlinear time-varying industrial
processes.

Many real-life processes exhibit inherently nonlinear and
nonstationary dynamic behaviors [3]–[9], where the underly-
ing data-generating mechanisms are fast-changing over time.
Under such circumstances, a predictive model must have the
flexibility of adapting its structure and parameters from the
fast-arriving nonstationary data stream in order to maintain its
performance in the changing environment.

Construction of neural network models can be interpreted as
learning and encoding the nonlinear dynamic information of
the system presented in the training data in their hidden-layer
nodes. For example, each hidden node of the radial basis
function (RBF) network encodes a process state. When the
system is nonstationary, it is necessary for a model to acquire
the newly emerging process state by updating its structure.
A classical approach for estimating and tracking the temporal
variations of a nonlinear process is to employ adaptive algo-
rithms, such as recursive least square (RLS) [10], [11] and
its more recent variant multi-innovation RLS (MRLS) [12].
In particular, if the process’s input space is known a prior,
by covering the input space with sufficiently dense nodes,
the online sequential extreme learning machine (OS-ELM)
only needs to update model weights online using the RLS
algorithm [13]–[15]. Because the size of OS-ELM has to be
very large to cover the training data space, online adaptation
of the model weights is computationally costly and, moreover,
there is no guarantee that fixed hidden nodes, no matter how
dense they are, will also cover the changing nonstationary
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data space well. Hence, the OS-ELM is unsuitable for fast
time-varying data.

An alternative to single-global nonlinear modeling approach
is the ensemble learning that employs multiple models to
separately model the data space. The online ensemble learn-
ing (OEL) has attracted considerable attention recently, but
most of the researches focus on online classification [16]–[23]
and the regression problem is rarely discussed. The develop-
ment of OEL for nonstationary systems is a challenging task,
as the ensemble learner must not only maintain highly diverse
models to cover a wide range of the observed data subspaces
but also learn the new concept as fast as possible to timely
capture the changing dynamics. The ensemble of OS-ELM
(EOS-ELM) [24], however, does not have this capability, as all
the base ELM models are trained on the same data set, and
they are not updated online.

To design better OEL models, we take the inspiration from
the aforementioned fundamental learning principle of biolog-
ical systems, namely, the ability to update the memory by
learning new knowledge and removing out-of-date knowledge
so that intelligent decision can be made based on the most
relevant knowledge acquired in the memory. For single-output
nonlinear and nonstationary processes, the recently proposed
selective ensemble-based multiple local model (SEMLM)
learning [25] enables automatically identifying newly emerg-
ing process states online and combining the most up-to-date
local linear models to make an accurate SER-based prediction.
The SEMLM, however, does not have the ability to remove
out-of-date process states that are no longer needed. Hence,
a potential problem associated with the SEMLM is that for fast
time-varying systems, over a long period of online adaptation,
the local model set may grow to be very large, which may
impose high online computational complexity. To overcome
this drawback and in particular to fully consider the afore-
mentioned short-term evolving principle of the biological
learning system, the work [26] further proposed a growing
and pruning SER (GAP-SER) for nonlinear and nonstationary
data modeling. The GAP-SER can not only learn the newly
emerging concept but also forget the past accumulated old
concepts that are no longer relevant, hence balancing well the
so-called stability-plasticity dilemma of a learning system. The
experimental results of [26] show that the GAP-SER typically
outperforms the SEMLM, in terms of both online prediction
accuracy and computational complexity.

Although the GAP-SER achieves great success in online
modeling of nonstationary data, it is suitable only for
single-output nonlinear and nonstationary systems. This is
because the key components of the GAP-SER, including its
local model growing and pruning strategies and selective
ensemble prediction, are restricted to single-output modeling,
and they are not applicable to multi-output modeling. Practical
systems and processes often contain multiple manipulated
variables and controlled variables that exhibit strong cou-
pling. Although we may apply the GAP-SER to identify
the multiple single-output models for a multi-output system,
this will increase the modeling effort considerably and more
importantly, and it will lead to the degradation in achievable
online prediction accuracy. The latter is owing to the fact that

the multiple single-output models ignore the correlation or
coupling effects of the different output variables.

Therefore, it is necessary to investigate efficient identifica-
tion techniques for multi-output nonlinear and nonstationary
systems. The online multi-output regression problem remains
largely understudied. To the best of our knowledge, most
of the existing online modeling approaches are restricted
to single-output systems. For example, like the GAP-SER,
the methods of [27]–[29] are restricted to single-output sys-
tems. Although a few studies have developed predictive mod-
els for multi-output nonlinear systems, such as the support
vector regression (SVR) [30], the ELM [31] and the orthogonal
LSs (OLSs) method [32]–[35], these models are designed
specifically for stationary systems, and they cannot directly
be applied to highly nonstationary systems. In the online
soft sensor design, developing multi-output soft sensor to
predict multiple primary variables has been demonstrated to
be vital to achieve better performance than building multiple
single-output soft sensors [36]. This motivates our current
work.

In this article, we propose a multi-output SER-based evolv-
ing model for online identification of multi-output nonlinear
and time-varying processes, which is inspired by the fun-
damental evolving principle of biological systems for cop-
ing with a fast-changing environment. As aforementioned,
the short-term evolving of a biological system involves three
levels of adaptation: adaptively acquiring new knowledge,
adaptively making an intelligent decision based on the most
relevant knowledge stored in the memory, and adaptively
removing the out-of-date knowledge which are no longer valid
from memory. Our multi-output SER-based evolving system
also involves these three levels of adaptation. At the level of
acquiring new knowledge, the newly emerging process state
is automatically identified, and a multi-output local linear
model is fitted to it. Note that the growth strategy of [26]
cannot be applied to the multi-output system as it is based
on the single-output statistical testing. We develop a new
adaptive local learning approach with the appropriate statistics
for multi-output hypothesis testing in order to construct a
highly diverse and independent multi-output local model set.
At the level of making an intelligent decision or online pre-
diction, we construct a multi-output SER predictor based on a
probability metric by optimizing the corresponding combining
weights of the selective ensemble of the local multi-output
linear models. At the level of removing out-of-date knowledge,
a pruning strategy is developed to remove reliably the old local
multi-output linear models that are no longer needed in order
to further reduce the online computational complexity without
degrading the prediction accuracy.

The main contribution of this work, therefore, is to develop
a highly efficient and accurate online evolving model for
multi-output selective ensemble identification of nonlinear
and time-varying processes, with the completed design of
online adaptive growing and pruning strategies and SER based
adaptive prediction modeling. This new multi-output SER
evolving model fully complies with the aforementioned bio-
logical system learning principle. Three case studies, a simu-
lated two-output nonlinear system, a nonisothermal continuous
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stirred-tank reactor (CSTR) process [37], [38] and a real-world
microwave heating system [39], are used to demonstrate the
superior performance of our proposed multi-output SER over
a range of benchmark schemes, in terms of both real-time
prediction accuracy and online computational complexity.

II. PROPOSED METHOD

To achieve high online prediction accuracy while imposing
low computational complexity, our proposed evolving model
mimics the fundamental learning principle from biological
systems in coping with a fast-changing environment, namely,
the ability to update memory by learning new knowledge,
to make an intelligent decision based on the most relevant
knowledge in the memory, and to remove out-of-date knowl-
edge from memory. Consequently, it involves three levels
of adaptation, namely, adaptive local learning that grows
the multi-output local linear model set by identifying the
newly emerged process state, adaptive online prediction by
a selective ensemble of the most relevant local models from
memory, and adaptive removal of the most out-of-date local
linear models in the memory to free space for acquiring new
knowledge. We now detail these levels of adaptation or the
three components of our proposed evolving model.

A. Adaptive Local Learning via Multivariate Statistic

At the first level of adaptation, the evolving model absorbs
new information from the fast-arriving data stream, and this
is achieved by an adaptive local learning strategy which auto-
matically encodes the newly emerging process states. Consider
a nonlinear time-varying process with m-dimensional input
x(t) ∈ R

m and p-dimensional output y(t) ∈ R
p. The task

of local learning is to establish the local experts { f l}L
l=1 that

accurately model the process’s L local states or local regions,
represented by the subdata sets {X l, Y l}L

l=1, where f l are
linear models. The local linear model set { f l}L

l=1 correspond
to the process states observed over time and, therefore, they
represent the knowledge of the process acquired and stored in
the evolving model’s memory.

The basic idea of adaptive local learning is as follows.
Let a local window Wini = {

X ini ∈ R
WG ×m, Y ini ∈ R

WG ×p
}

with WG consecutive samples {x(t), y(t)}tini+WG
t=tini

be initially
set. A multi-output local linear model f ini is built on it as

Ŷ ini = f ini

(
X ini

) = �� (1)

where � = [
1WG X ini

] ∈ R
WG×(1+m), 1WG is the WG -

dimensional vector whose elements are all one, and the model
parameter matrix � ∈ R

(1+m)×p is given by the LSs estimate
as

� = (
�T�

)−1
�TY ini. (2)

In the challenging situation of the singular input observation
matrix � and multicollinearity among the inputs, we may
change the LS estimate to the regularized LS estimate

� = (
�T� + λIm+1

)−1
�TY ini

where the regularization parameter λ is a very small positive
number, e.g., λ=10−6 and In is the n×n identity matrix. The
predicted error or residual matrix of this local model is

ϒ ini = Y ini − f ini

(
X ini

) ∈ R
WG×p. (3)

By shifting the data window one sample ahead, a new
window Wsft = {

Xsft, Y sft
}

is obtained, which contains the
samples {x(t), y(t)}tini+1+WG

t=tini+1 . If the two local data regions Wini

and Wsft are not significantly different, it can be considered
that the data within Wsft follow the same distribution as in Wini

and the window continues to be shifted forward. Otherwise,
Wsft is considered to represent a new process state different
from the one for Wini, and a new local linear model f new
should be developed based on Wsft. Let the estimation error
matrix produced by f ini on Wsft be denoted as

ϒsft = Y sft − f ini

(
Xsft

) ∈ R
WG ×p. (4)

Whether the two local data regions Wini and Wsft are similar
or not can then be turned into the equivalent testing that
tests whether ϒ ini and ϒsft are significantly different or not.
Since f ini is a p-output linear model, ϒ ini and ϒsft are
considered not significantly different when both their mean
vectors and covariance matrices are the same. Accordingly,
two null hypotheses H μ

0 and H �
0 are set as

H μ
0 : μini = μsft (5)

H �
0 : �ini = �sft (6)

where the mean vectors of μini and μsft, and the covariance
matrices of �ini and �sft come from the populations of ϒ ini

and ϒsft, respectively. Since f ini is an unbiased estimator,
μini = 0p and �ini = (1/WG)ϒT

iniϒ ini, where 0p denotes the
p-dimensional zero vector. In order to determine whether or
not to accept H μ

0 and H �
0 , two statistics Fμ and F� are

constructed as [40]

Fμ = (WG − p)WG

(WG − 1)p

(
μ̂sft − μini

)
�̂

−1
sft (μ̂sft − μini)

T (7)

F� = (WG −1)
(

ln|�ini|− p−ln
∣∣�̂sft

∣∣+tr
(
�̂sft�

−1
ini

))
(8)

where μ̂sft and �̂sft are the mean vector and covari-
ance matrix of ϒsft, respectively, estimated with μ̂sft =
(1/WG)

∑WG
i=1 ϒsft(i, :) and �̂sft = (1/WG − 1)

∑WG
i=1

(
ϒsft(i, :

) − μ̂sft

)T(
ϒsft(i, :) − μ̂sft

)
, in which ϒsft(i, :) denotes the i th

row of ϒsft, while |·| and tr(·) are the determinant and trace
operators, respectively.

Assuming that both ϒ ini and ϒsft follow the multivariate
normal distributions, then Fμ follows the F distribution with
the degrees of freedom p and WG − p, denoted as Fμ ∼
F(p, WG − p), when H μ

0 holds, while F� follows the F
distribution with the degrees of freedom f1 and f2, denoted
as F� ∼ bF( f1, f2), when H �

0 holds, where b = ( f1/1 −
D1 − f1/ f2), f1 = (p(p + 1)/2), f2 = ( f1 + 2/D2 − D2

1),
D1 =(2 p+1−2/(p+1)/6(WG−1)), and D2 =((p−1)(p+2)/)
6(WG − 1)2. See for example [40]. Therefore, the condition of
accepting both H μ

0 and H �
0 are

Fμ < λμ & F� < λ� (9)
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where λμ is the threshold value given the significance level
αμ which satisfies Pr{Fμ < λμ} = 1 −αμ, while λ� is the
threshold value given the significance level α� which satisfies
Pr{F� <λ�}=1−α�.

Let the local model set contains L > 1 independent local
linear models { f l}L

l=1, and f ini = f L . When condition (9) is
violated, Wini and Wsft are significantly different, and the new
local linear model f new = f sft is different from f L . We still
need to test whether f new differs from { f l}L−1

l=1 . This task is
also fulfilled based on the hypothesis testing. Let the prediction
error matrices of Wnew ={

Xsft ∈R
WG ×m, Y sft ∈R

WG×p
}

based
on f new and f l be defined, respectively, by

ϒnew = Y sft − f new

(
Xsft

) ∈ R
WG×p (10)

ϒ l = Y sft − f l

(
X sft

) ∈ R
WG ×p, 1 ≤ l ≤ L − 1. (11)

To test whether ϒnew and ϒl are significantly different or not,
two null hypotheses H μl

0 and H �l
0 are set as

H μl
0 : μl = μnew (12)

H �l
0 : �l = �new (13)

where the mean vectors μl and μnew, and the covariance
matrices �l and �new come from the populations of ϒ l and
ϒnew, respectively. Here, μnew and �new are estimated based on
ϒnew as μnew =0p and �new =(1/WG)ϒT

newϒnew, respectively.
Again, to determine whether or not to accept H μl

0 and H �l
0 ,

two statistics are constructed as

F (l)
μ = (WG − p)WG

(WG −1)p

(
μ̂l − μnew

)
�̂

−1
l

(
μ̂l − μnew

)T
(14)

F (l)
� = (WG −1)

(
ln|�new|− p−ln

∣∣�̂l

∣∣+tr
(
�̂l�

−1
new

))
(15)

where μ̂l and �̂l are the mean vector and covariance matrix
of ϒ l , respectively, estimated with μ̂l =(1/WG)

∑WG
i=1 ϒ l(i, :)

and �̂l = (1/WG − 1)
∑WG

i=1

(
ϒ l(i, :) − μ̂l

)T(
ϒ l(i, :) − μ̂l

)
.

Under the assumption that ϒ l and ϒnew follow the multivariate
normal distributions, F (l)

μ ∼F(p, WG − p) when H μl
0 holds,

and F (l)
� ∼ bF( f1, f2) when H �l

0 holds. Hence, f l and f new
are regarded to be identical if the following condition is met

F (l)
μ < λμ & F (l)

� < λ� . (16)

Under this circumstance, either f l or f new is redundant and
one of them should be removed. Since f l is “older” than the
f new, f new is kept and f l is removed. On the other hand,
if condition (16) is violated ∀l ∈ {1, 2, . . . , L−1}, f new is
different from f l for 1 ≤ l ≤ L. Thus, we have identified a
new process state, and we add f new to the local model set by
setting L = L+1 and f L = f new.

The significance level αμ and α� are usually set to small
values, e.g., 0.05, 0.01, and they can be different according
to the process data characteristics. Similar to our previous
work [25], [26], the selection of window size WG is a tradeoff
between the adaptive ability to capture the local characteristics
and the accuracy of the local model. The proposed local
learning procedure is summarized in Algorithm 1.

Remark 1: This local learning procedure can operate both
offline and online. During online operation, when the newest
data sample {x(tnext), y(tnext)} is available, the data window

Algorithm 1 Adaptive Local Learning
1: Initialization
2: Collect Wini with WG consecutive samples from historical

data, and construct multi-output LS linear model f ini on
Wini.

3: Calculate ϒ ini, and estimate μini and �ini.
4: Set L = 1, {WL , f L} = {Wini, f ini} and Wsft = WL .
5: Step 1: New local model detection
6: When a new data sample is available, shift Wsft one sample

ahead.
7: Calculate ϒsft, and estimate μ̂sft and �̂sft.
8: Construct Fμ and F� statistics using (7) and (8).
9: If condition (9) is satisfied

10: Go to Step 1.
11: End if
12: Construct multi-output LS linear model f sft on Wsft.
13: Set Wnew = Wsft and f new = f sft.
14: Calculate ϒnew, and estimate μnew and �new.
15: Step 2: Redundant local model deletion
16: For l = 1, 2, . . . , L − 1
17: Compute ϒ l , and estimate μ̂l and �̂l .
18: Construct F (l)

μ and F (l)
� statistics using (14) and (15).

19: If condition (16) is satisfied
20: Delete f l , set f i = f i+1 for i = l, l + 1, . . . , L − 1,

set L = L − 1, then go to Step 3.
21: End if
22: End for
23: Step 3: Add new local model
24: Set L = L + 1, WL = Wnew and f L = f new.
25: Return to Step 1.

shift one sample ahead, and the corresponding learning pro-
cedure can then be carried out. Unlike our previous work for
single-output modeling [26], we consider multi-output mod-
eling via multivariate statistics. This local learning procedure
automatically encodes a newly emerging process state in the
memory as a new local linear model. The local models in
the memory are independent and represent different states
of the process. Hence, our proposed learner is capable of
achieving the desired maximum diversity, and it is capable of
acquiring all the different process states that have appeared.

B. Multi-Output Selective Ensemble-Based Online Prediction

To mimic the adaptive intelligent decision making procedure
of biological systems, at the second level of adaptation, our
evolving model constructs a selective ensemble of the most
relevant subset local linear models to produce an accurate
prediction at each sample. Specifically, after the online opera-
tions at sample t , the local linear model set { f l}L

l=1 has been
produced by Algorithm 1, which represents the knowledge that
the evolving system has acquired and stored in its memory.
At the next sample of tnext = t+1, the task of online modeling
is to produce the model prediction ŷ(tnext) for the process’s
true output y(tnext), given the process input x(tnext) and the
available local model set { f l}L

l=1. Our evolving model adopts
an ensemble of the selected M local linear models from
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the model library { f l}L
l=1 based on the q latest labeled data

{x(t − i), y(t − i)}q−1
i=0 . Let the modeling error matrix of the lth

multi-output local linear model f l over the prediction window
{x(t − i), y(t − i)}q−1

i=0 be defined as

ϒ l(t) = [
el(t) el(t − 1) · · · el(t − q + 1)

]T ∈ R
q×p (17)

where for 0 ≤ i ≤ q − 1

el(t − i) = y(t − i) − f l(x(t − i))

= [
el,1(t − i) el,2(t − i) · · · el,p(t − i)

]T
. (18)

The performance metric of the lth local model is defined by

Jl(t) = tr
(
ϒT

l (t)ϒ l(t)
)
. (19)

The sum of squared errors Jl(t) is further transformed into
a probability metric. Specifically, Jl(t) is first converted to a
similarity measure [41] ranging from 0 to 1 as follows:

Sml(t) = 1
1+Jl (t)

. (20)

The probability metric Prl(t) of the lth model is computed as
the normalized similarity measure according to

Prl(t) = Sml (t)∑L
i=1 Smi (t)

. (21)

Prl(t) quantifies the contribution of the lth local model to the
ensemble, since a large Prl(t) indicates that the lth model is
a good identifier for the ensemble model and vice versus.

Arrange all the L local models according to their probability
values in descending order as

Prl1(t) ≥· · ·≥ PrlM (t) ≥ PrlM+1(t) ≥· · ·≥ PrlL (t). (22)

We select the first M best local models for constructing the
ensemble model when the termination criterion

1 −
M∑

m=1

Prlm (t) < ξ (23)

is met, where 0<ξ <1 is the desired tolerance. The selected
models yield the M model outputs

ŷlm (t − i) = f lm (x(t − i)), 1 ≤ m ≤ M (24)

for 0 ≤ i ≤ q−1. Denote y(t−i)=[y1(t−i) · · · yp(t−i)]T and
ŷlm (t)= [

ŷlm ,1(t − i) · · · ŷlm ,p(t − i)
]T

. The estimate ŷ j(t − i)
of the j th system output y j(t − i) is given as the weighted
sum of the M selected subset models, which is computed by

ŷ j(t − i) =
M∑

m=1

θm, j (t)ŷlm , j(t − i) 0 ≤ i ≤ q − 1 (25)

for 1≤ j ≤ p, where the nonnegative θm, j (t) is the combining
coefficient for the mth selected local model of the j th output,
and the combining coefficients must satisfy the constraint

M∑
m=1

θm, j(t) = 1, 1 ≤ j ≤ p. (26)

The j th estimation errors for 1 ≤ j ≤ p

ε j(t − i) = y j(t − i) − ŷ j(t − i), 0 ≤ i ≤ q − 1 (27)

are utilized to determine the combining coefficients of j th
output. Specifically, the optimal combining coefficients can
be obtained by minimizing the following cost function

V (t) = 1

2

p∑
j=1

Vj(t) =
p∑

j=1

q−1∑
i=0

ε2
j (t − i). (28)

Minimizing V (t) is equivalent to minimizing each Vj(t), 1≤
j ≤ p, separately. Because of the constrain

∑M
m=1 θm, j (t)=1

Vj (t) = 1

2

q−1∑
i=0

(
y j(t − i)−

M∑
m=1

θm, j(t)ŷlm , j (t − i)

)2

= 1

2

q−1∑
i=0

( M∑
m=1

θm, j(t)y j (t−i)−
M∑

m=1

θm, j (t)ŷlm , j (t−i)

)2

= 1

2

q−1∑
i=0

( M∑
m=1

θm, j (t)elm , j(t−i)

)2

= 1

2
θT

j (t)Ē j(t)θ j (t)

(29)

for 1 ≤ j ≤ p, where θ j(t)= [
θ1, j(t) · · · θM, j (t)

]T
and Ē j(t)

is the estimated error covariance matrix of the j th output,
which is given by

Ē j (t)=
q−1∑
i=0

⎡
⎢⎣

e2
l1, j (t − i) · · · el1, j (t − i)elM , j (t − i)

...
. . .

...
el1, j (t − i)elM , j(t − i) · · · e2

lM , j(t − i)

⎤
⎥⎦.

(30)

Hence, we can form the following optimization problem to
determine the optimal θ j(t) for the j th output:

min
θ j

1

2
θT

j (t)Ē j (t)θ j (t),

s.t.
M∑

m=1

θm, j (t) = 1 (31)

where 1≤ j ≤ p. The Lagrangian function for the single-output
optimization (31) is given by

L
(
θ j (t); γ

) = 1

2
θT

j (t)Ē j (t)θ j(t) + γ
(
1T

Mθ j(t) − 1
)

(32)

where γ > 0 is a Lagrange multiplier. Letting (∂L/∂θ j(t))=
0M yields

Ē j(t)θ j(t) + γ 1M = 0M , 1 ≤ j ≤ p. (33)

This suggests that the optimal combining vector θ̂ j can be
obtained as follows. First, calculate

θ̃ j (t) = [
θ̃1, j(t) · · · θ̃M, j(t)

]T = Ē−1
j (t)1M (34)

which is followed by the normalization:
θ̂m, j (t) = 1∑M

i=1 θ̃i, j(t)
θ̃m, j(t), 1 ≤ m ≤ M. (35)

The j th prediction ŷ j(tnext) for the j th system’s true output
y j(tnext) is produced as the selected ensemble

ŷ j(tnext) =
M∑

m=1

θ̂m, j (t) flm , j
(
x(tnext)

)
, 1 ≤ j ≤ p (36)

where flm , j (x(t)) denotes the j th element of f lm (x(t)).
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Algorithm 2 Multi-Output Selective Ensemble Prediction
1: Initialization
2: Give WG , q and ξ .
3: At beginning of online operation with sampling instance t ,

local model set { f l}L
l=1 has been constructed.

4: Step 1: Online prediction
5: Give input x(tnext) at new sample time tnext = t + 1.
6: Calculate probability Prl(t) of each local model using (21)

for 1 ≤ l ≤ L.
7: Select M subset models with termination criterion (23).
8: Calculate error covariance matrix Ē j (t), 1 ≤ j ≤ p, for

each output using (30).
9: Calculate optimal combining coefficients θ̂ j(t), 1 ≤ j ≤ p,

using (34) and (35).
10: Predict true system outputs y j(tnext), 1 ≤ j ≤ p, with

selective ensemble prediction (36).
11: Step 2: Model adaptation
12: When y(tnext) is available, add {x(tnext), y(tnext)} to dataset

with t = t+1.
13: Carry out relevant operations to adapt local model set.
14: Set tnext = tnext + 1, and go to Step 1.

Algorithm 2 summarizes the multi-output selective ensem-
ble-based online prediction. In line 13 of Algorithm 2, the rel-
evant operations may include lines 6–24 of adaptive local
learning in Algorithm 1.

Remark 2: The two algorithmic parameters for selective
ensemble prediction are the desired tolerance of ξ and the
number of latest labeled data q . A large q benefits the
accuracy of the online SER prediction but imposes high
computational complexity. A small q , on the other hand, offers
high adaptability and is suitable for highly time-varying data.
The threshold ξ trades off the accuracy of the SER prediction
and the computational complexity. From all the L acquired
independent local models that include the newest process state
information, this SER procedure selects the most relevant
subset of M local models to form an accurate prediction of
the current process output. Obviously, the size of the selected
ensemble M is different for different prediction samples.
A very small positive regularization term λE can be added
to the diagonal elements of Ē j(t) for 1 ≤ j ≤ p to ensure
invertibility.

C. Local Model Set Pruning

In a fast-changing environment, a biological system must be
capable of removing out-of-date knowledge that is no longer
relevant from its memory to free up memory space for fast
acquiring new knowledge. This characteristic is also vital for
our multi-output SER evolving model, because for highly
nonstationary processes, the base local model set is likely to
become very large over a long period of online adaptation,
and this imposes high online computational complexity in
constructing the SER predictor. Therefore, at the third level
of adaptation, a pruning strategy is adopted to remove out-
of-date local models from memory, and hence, to alleviate
the online computational burden. The essence of local model

Algorithm 3 Multi-Output Local Model Pruning
1: Initialization
2: Give WP , set counters of all local models countl = 0 for

1 ≤ l ≤ L, set t = tini and index = 0.
3: Step 1: Pruning in pruning model window
4: Perform multi-output selective ensemble prediction.
5: If (t − tini ≤ WP )
6: For l = 1, 2, . . . , L
7: If fl is not selected at current sample t
8: countl = countl + 1.
9: End if

10: End for
11: Set t = t + 1 and go to Step 1.
12: Else
13: For l = 1, 2, . . . , L
14: If countl = WG

15: Add l to pruning model index set 	, and set index =
index + 1.

16: End if
17: End for
18: Delete fl for all l ∈ 	, and set L = L − index.
19: End if
20: Step 2: Pruning model window update
21: Clear counters for all local models, set tini = t and index =

0, and go to Step 1.

pruning is to remove those local base models that are far from
the current data dynamics since these local models are not
needed in modeling the current process dynamics.

Recalling (17)–(23), M local linear models are selected to
produce the ensemble prediction, which also suggests a way
of the local model set pruning. For example, the lM+1th to
lL th models are not selected for the current prediction, and
thus, they may be removed. However, pruning a model based
on its “one-sample” prediction horizon may not be sufficiently
reliable, as these unselected models at the current sample may
be important at tnext +1. To make the pruning more reliable,
the work [26] introduced the concept of “memory depth” for
an ensemble learner. In the local learning procedure, a local
linear model is constructed based on a data window with
the window size WG . Within this data window, the process’s
dynamics are assumed to be stationary. Similarly, we introduce
a data window for model pruning with the window size WP .
Specifically, if a local model is never selected for the consec-
utive WP samples of the window, then it can be removed with
high confidence.

The multi-output local model pruning strategy is listed
in Algorithm 3. Line 4 of Algorithm 3 corresponds to the
SER prediction operations of lines 6–10 in Algorithm 2. The
rest pruning operations in Algorithm 3 occur at line 13 of
Algorithm 2. Since we have a window size WG for adaptive
local learning, we can conveniently set WP =WG .

Remark 3: Since the newest local model fL represents the
newly emerged process state, it is critical to keep it in the
current prediction horizon. Thus, we always set countL to
zero. To maintain the local model set diversity, and hence,
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the identification accuracy, a minimal number of local model
Lmin should be guaranteed. If the number of those unselected
local models in 	 exceeds L − Lmin, only the oldest L − Lmin

local models can be removed. Let L ini be the number of
local linear models obtained in the initial training. We can set
Lmin = L ini. This pruning strategy provides good plasticity
to our multi-output SER learner, and it can dramatically
reduce the online computational complexity in adaptive SER
prediction.

III. CASE STUDIES

The performance of the proposed multi-output SER learning
method is evaluated using three case studies, which are:
a simulated two-output nonlinear system, a nonisothermal
CSTR process [37], [38], and an industrial microwave heating
system [39]. The testing prediction error covariance Cov(E)
is used to evaluate the multi-output online modeling perfor-
mance, where Cov(E) = (1/N −1)

∑N
i=1(Ei − E)(Ei − E)T,

N is the number of test samples and E is the sample average
of E. The online computational complexity is quantified by
its averaged computation time per sample (ACTpS). The
experiments are carried out on MATLAB 2017a, running on
a PC with i7-3770 3.40-GHz processor of 4 cores and 16 GB
of RAM.

The performance of our proposed method is compared
with existing typical online learning approaches, including
the multi-output OLS (MOLS) [32]–[35], the OS-ELM [14],
the EOS-ELM [24], and the recently proposed single-output
GAP-SER [26], which is denoted as the S-SER. For the
MOLS, nonlinear modeling is achieved by using the Gaussian
RBF kernel and the initial training is carried out by construct-
ing a compact multi-output RBF model using the OLS learning
algorithm. During online operation, the weight adaptation
is performed by the RLS algorithm with the fixed model
structure. For the OS-ELM, an RBF network is initialized
during training by randomly selecting a large number of input
data points as its RBF centers, and the online adaptation of
the OS-ELM involves the weight updating using the RLS algo-
rithm. Similarly, for the EOS-ELM, a number of OS-ELM base
models are trained on the same data set, and each base model’s
centers are randomly selected from the training data points as
in OS-ELM. The forgetting factor of the RLS algorithm is set
to 0.98. For the S-SER, the multiple single-output SER models
are constructed using the single-output GAP-SER of [26], one
for modeling output of the system.

A. Simulated Two-Output Nonlinear System

The simulated two-output nonlinear system of [33] and [34]
is considered. The data set contained 1000 noisy observations
generated using the model

y1(t) = 0.5y1(t−1) + u(t−1) + 0.4 tanh(u(t − 2))

+ 0.1 sin(πy1(t−2))y2(t−1) + ε1(t),

y2(t) = 0.3y2(t−1) + 0.1y2(t−2)y1(t−1)

+ 0.4 exp(−u2(t−1))y1(t−2) + ε2(t), (37)

where the system input u(t) is uniformly distributed in
[−0.5, 0.5], and the zero-mean Gaussian noise ε(t) =
[ε1(t) ε2(t)]T has a covariance matrix 0.04I2. Initial conditions

are set as y1(0) = y2(0) = y1(−1) = y2(−1) = 0 and
u(0)= u(−1)= 0. The first 500 data generated from (37) are
used for training and the rest 500 samples for testing. Note
that our proposed approach and the MOLS and the S-SER
do not really need such a large number of training samples
but the ELM-based models need a large number of training
samples, as an ELM model must contain a large number of
hidden nodes. In modeling this system, we use the model input
vector as

x(t)=[y1(t−1)y1(t−2)y2(t−1)y2(t−2)u(t−1)u(t−2)]T ∈R
6.

(38)

In the simulation, 100 independent realizations are generated.
The performance of each method are presented by its means
and standard deviations (STDs) of the test log(det(Cov(E)))
and ACTpS, respectively, over the 100 realizations.

For our proposed model, the window size, innovation length,
and decision threshold are empirically chosen to be WG =30,
q = 10 and ξ = 0.9, respectively. For the S-SER, three
algorithmic parameters are chosen to be WG = 20, q = 10
and ξ = 0.1 to achieve the best prediction performance.
Note that we do not attempt to optimize the algorithmic
parameters in training, as such an optimal algorithmic set-
ting is only meaningful when the underlying system is sta-
tionary. For online identification of a nonstationary system,
the optimal algorithmic setting is fast time varying, and it
is prohibitive to online learn this fast time-varying optimal
algorithmic setting. Since each algorithmic parameter has a
clear physical interpretation, the appropriate value can be set
empirically. The detailed analysis can be found in our previous
work [25], [26].

The test results of all the five methods, including the model
size, the ACTpS, the error covariance log(det(Cov(E))), and
the average ensemble size, are summarized in Table I. This
system is not seriously time varying, and all the methods
are expected to perform well. This is confirmed by Table I.
More specifically, the MOLS with 10 RBF nodes outper-
forms the OS-ELM with 100 nodes and the EOS-ELM of
5 base models with each base model having 100 nodes,
in terms of both online modeling accuracy and computa-
tional complexity, and its performance is even slightly bet-
ter than the S-SER. Among all the models, our proposed
method attains the lowest log(det(Cov(E))) and its aver-
age SER size is much smaller than that of the multiple
(p = 2) S-SER models. The comparison of average error
covariance learning curves for various models is shown
in Fig. 1.

B. Nonisothermal CSTR Process

The nonisothermal CSTR with an irreversible reaction
(A→B) is widely used as a benchmark for nonlinear and
time-varying process modeling and identification [37], [38].
Based on the underlying physical-chemical laws, it is well
known that this process is governed by the following two
nonlinear ordinary differential equations [42]

dCA

dt
= q f

V
(CA f −CA)−K0 CA exp

(
− E

RT

)
φc(t)
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TABLE I

SIMULATED TWO-OUTPUT NONLINEAR SYSTEM: COMPARISON OF ONLINE PREDICTION AND ADAPTIVE MODELING PERFORMANCE (AVERAGE±STD)
FOR THE OS-ELM, EOS-ELM, MOLS, S-SER, AND THE PROPOSED METHOD

Fig. 1. Comparison of average log(det(Cov(E))) learning curves of var-
ious models for the simulated nonlinear system. The EOS-ELM has total
of 500 hidden nodes, and the MOLS has 10 hidden nodes. The OS-ELM has
a very close learning curve with the EOS-ELM and is omitted here.

dT

dt
= q f

V
(T f −T )+ (−H )K0CA

ρCp
exp

(
− E

RT

)
φc(t)

+ ρcCpc

ρCpV
qc

(
1−exp

(
− h A

qcρCpc
φh(t)

))
(Tcf −T )

(39)

where φh(t) is the fouling coefficient, φc(t) is the deactivation
coefficient, CA is the effluent concentration (controlled vari-
able), T is the output temperature (controlled variable), qc is
the coolant flow rate (manipulated variable), q f is the feed flow
rate (manipulated variable), CAF is the feed concentration,
T f is the feed temperature, and Tcf is the coolant inlet
temperature. The other process parameters, together with the
operating conditions, are given in Table II.

Accurate simulator of the nonisothermal CSTR is built by
first-order differencing the ordinary differential equation (39)
[37], [38]. To obtain the multiple operating conditions, ±5%
step changes are added to both coolant (qc) and feed (q f )
flow rates. The step size is set to be 0.1. We follow the
same approach to generate the process input–output data. The
process inputs are q f and qc, and its outputs are CA and T .

TABLE II

NOMINAL CSTR OPERATING CONDITION

For this process, the system input vector is chosen as

x(t) = [
CA(t−1) T (t−1) q f (t−1) qc(t−1)]T ∈R

4 (40)

and the system output vector is

y(t) = [
CA(t), T (t)]T ∈ R

2. (41)

1) Constant Deactivation and Fouling Coefficients: We first
consider the case that the deactivation coefficient φc(t) and the
fouling coefficient φh(t) are both constant, which are set to 1.
Then, 991 samples are generated with the first 500 samples
for training and the remaining 491 data samples for testing.
For our proposed method, the three algorithmic parameters
are empirically chosen to be WG = 100, q = 20 and ξ =0.9,
respectively. For each single-output model of the S-SER,
the three algorithmic parameters are chosen to be WG = 10,
q =20 and ξ =0.9 to achieve its best modeling accuracy.

The test performance of the five models is compared
in Table II. The OS-ELM with 500 nodes and the EOS-ELM
with 5 base models each having 500 nodes attain a similar
performance of log(det(Cov(E)))=−10.07, but they impose
very high ACTpS of 6.58 and 58.54 ms, respectively. The
MOLS with 20 nodes has a slightly worst accuracy but
imposes the lowest ACTpS of 0.09 ms. The S-SER approach
attains a better accuracy than the OS-ELM and EOS-ELM
while imposing a significantly lower ACTpS of 1.04 ms.
Our proposed method achieves the most accurate prediction
with an ACTpS of 2.73 ms. The online prediction values
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TABLE III

NONISOTHERMAL CSTR PROCESS WITH TWO CONSTANT PROCESS PARAMETERS: COMPARISON OF ONLINE PREDICTION AND ADAPTIVE MODELING
PERFORMANCE FOR THE OS-ELM, EOS-ELM, MOLS, S-SER, AND THE PROPOSED METHOD

Fig. 2. Online identification of CSTR process with two constant process
parameters: (a) Effluent concentration and (b) Output temperature.

of the MOLS with 20 nodes, the EOS-ELM with a total
of 2500 nodes, the S-SER and our proposed method are
compared with the actual process output observations in Fig. 2.
Fig. 3 shows the error covariance learning curves of various
models.

Fig. 3. Comparison of log(det(Cov(E))) learning curves of various models
for the CSTR process with two constant process parameters. The EOS-ELM
has total of 2500 hidden nodes, and the MOLS has 20 hidden nodes.

Fig. 4. Comparison of online local model set learning curves of the two
SER methods for the CSTR process with two constant process parameters.

From Table II, it can be seen that the online modeling efforts
of our proposed multi-output SER method are lower than
those of the S-SER method. Specifically, it imposes a smaller
model set size and smaller average ensemble, compared with
the multiple S-SER models. This is confirmed by the local
online model set learning curves of the two SER methods
shown in Fig. 4. Observe the red curve in Fig. 4 that our
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TABLE IV

NONISOTHERMAL CSTR PROCESS WITH TWO TIME-VARYING PARAMETERS: COMPARISON OF ONLINE PREDICTION AND ADAPTIVE
MODELING PERFORMANCE FOR THE OS-ELM, EOS-ELM, MOLS, S-SER, AND THE PROPOSED METHOD

proposed growing and pruning strategies can effectively add
new local linear models and remove out-of-date ones, respec-
tively, within the model memory WG = 100 (blue rectangle).
However, the recorded ACTpS of the proposed method is
higher than that of the S-SER. This is owing to MATLAB soft-
ware implementation. The high-dimensional matrix calculation
in MATLAB is complicated and time consuming. In real-time
operation with other programming platforms, we expect that
the online ACTpS of the proposed method will be significantly
lower than that of the S-SER.

2) Time-Varying Deactivation and Fouling Coefficients:
We next consider time-varying φc(t) and φh(t). Fouling and
catalyst deactivation phenomena present two main sources to
produce nonstationary characteristics in the CSTR process
during its normal operation. These time-varying dynamic
characteristics are governed by the following equations:

φh(t) = 1 − 0.01t, φc(t) = exp

(
−0.00067

E

RT
t

)
(42)

where the fouling effect is caused by deposing material on
the heat transfer surface, and catalyst is deactivated due to
poisoning. Again, 991 samples are generated with the first
500 data for training and the rest 491 data for testing.

Table IV compares the performance of different models.
For this seriously nonstationary process, the S-SER signifi-
cantly outperforms the OS-ELM and EOS-ELM, in terms of
both online prediction accuracy and computational complexity.
Furthermore, our proposed method considerably outperforms
the S-SER in online prediction accuracy. The MOLS has
the poorest accuracy but imposes the lowest ACTpS. Online
prediction values by the various models are compared with
the actual system output observations in Fig. 5, while Fig. 6
shows the error covariance learning curves of various models.
Again although the recorded ACTpS of the proposed method is
higher than that of the SER, it actually requires smaller model
set size and much smaller average ensemble than the multiple
S-SER models, as confirmed by the local online model set
learning curves of the two SER methods given in Fig. 7.

Fig. 5. Online identification of CSTR process with two time-varying process
parameters: (a) effluent concentration and (b) output temperature.

C. Microwave Heating Process

Microwave heating technology has found wide-ranging
applications due to its many advantages over conventional
heating methods, including selective and volumetric heating,
rapid heat transfer, and pollution-free environment. However,
a major drawback of microwave heating is the temperature
runaway, caused by properties of the material and the inner
electromagnetic field distribution, which may lead to unwanted
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TABLE V

MHP: COMPARISON OF ONLINE PREDICTION AND ADAPTIVE MODELING PERFORMANCE FOR THE OS-ELM,
EOS-ELM, MOLS, S-SER, AND THE PROPOSED METHOD

Fig. 6. Comparison of log(det(Cov(E))) learning curves of various mod-
els for the CSTR process with two time-varying process parameters. The
EOS-ELM has total of 2500 hidden nodes and the MOLS has 20 hidden
nodes.

Fig. 7. Comparison of online local model set learning curves of the two SER
methods for the CSTR process with two time-varying process parameters.

combustion and destruction in industrial processes [39]. There-
fore, in the control of the microwave heating process (MHP),
material temperature is important feedback information. How-
ever, establishing a temperature model from the first prin-
ciple is challenging since the MHP involves multiphysical

Fig. 8. Industrial microwave heating system.

fields coupling. Hence, assumptions have to be made and,
consequently, unmodeled dynamics always exist in a model
derived from the first principle [43], [44]. This motivates us
to investigate data-driven predictive model [45]–[47].

A distributed microwave heating system [48], [49] is shown
in Fig. 8. It consists of five microwave generators and
waveguides. Microwave generated by each microwave gen-
erator is transmitted through the corresponding waveguide,
fed into the cavity, and absorbed by the heated material.
The material is continuously transported through cavity by
the conveyor belt, whose speed can be adjusted by a motor
driver. Three fiber optical sensors (FOSs), denoted as FOS1 to
FOS3, are placed at three different locations to online record
multiple-points of temperature. During the real-time operation
of this MHP, the control center receives the measured tem-
perature values from the FOSs and sends control commends,
including the five microwave powers u pi (t), 1≤ i ≤5, for the
five microwave generators and the conveyor speed v(t) to the
cavity. Thus, the control inputs to this MHP are given by

u(t) = [
u p1(t) u p2(t) u p3(t) u p4(t) u p5(t) v(t)

]T
. (43)

Each FOS measures the temperature at its location, which
is the MHP’s output yi(t), 1 ≤ i ≤ 3. Because of near
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Fig. 9. Online identification of MHP by various models: (a) FOS1, (b) FOS2,
and (c) FOS3.

instantaneous response of MHP, the process’s temperatures
y(t)=[

y1(t) y2(t) y3(t)]T can be adequately modeled as

y(t) = f nn(x(t); t) (44)

where f nn(·; t) represents the unknown nonlinear time-varying
system mapping with the input vector given by

x(t) = [
yT(t − 1) uT(t − 1)

]T ∈ R
9. (45)

Fig. 10. Comparison of log(det(Cov(E))) learning curves of various models
for MHP identification. The EOS-ELM has total of 2500 hidden nodes, while
the MOLS has 10 hidden nodes.

Fig. 11. Comparison of online local model learning curves for MHP
identification.

From this distributed microwave heating system, 3000 process
data have been collected. We first normalize the microwave
power inputs and the temperature measurements according to

ū pi (t) = u pi (t)

1000
, 1 ≤ i ≤ 5, (46)

ȳi(t) = yi(t) − yimin

yimax − yimin

, 1 ≤ i ≤ 3 (47)

where yimin and yimax are the minimum and maximum temper-
atures recorded by the i th FOS, respectively. We use the first
500 samples for training, and the last 2500 samples for online
prediction and adaptive modeling. For our proposed method,
the three algorithmic parameters are empirically chosen to
be WG = 110, q = 25 and ξ = 0.95, respectively. For each
S-SER model, the three algorithmic parameters are chosen to
be WG =20, q =25, and ξ =0.5.

Table V compares the performance of different predictive
models. The predictor outputs versus the actual process outputs
by various models are shown in Fig. 9, where the EOS-ELM
has a total of 2500 hidden nodes and the MOLS has 10
hidden nodes. Furthermore, the comparison of error covariance
learning curves is given in Fig. 10. In this case, the OS-ELM
with 500 nodes and the EOS-ELM with a total of 2500 nodes
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outperform both the S-SER and MOLS, but they impose
extremely higher online computational complexity. In par-
ticular, the EOS-ELM with a total of 2500 nodes requires
the highest ACTpS of 57.57 ms. By contrast, our proposed
multi-output SER achieves the best prediction performance
with a reasonable online computation time of ACTpS =
1.44 ms. The comparison of the local online model set learning
curves of the two SER methods is given in Fig. 11, which also
confirms that our proposed method needs a smaller model set
and smaller average ensemble, compared with the three S-SER
models.

IV. CONCLUSION

In this article, a novel multi-output SER evolving model
has been developed for multi-output nonlinear and nonsta-
tionary process identification. Our proposed online adaptive
learner has been inspired by the fundamental biological system
learning principle, namely, the ability to acquire new knowl-
edge to the memory and to remove out-of-date knowledge
from the memory so that intelligent decision can be made
based on the newest and relevant knowledge in the memory.
Hence, our contribution has been threefold. First, our adaptive
local learning enables automatically identifying every newly
emerging process state and constructing a matching local
multi-output linear model via multivariate statistic hypothesis
testing. Second, the optimal online prediction of the system’s
multi-outputs is obtained by a selective ensemble of the most
relevant subset of local linear models. Third, an effective prun-
ing strategy removes the most out-of-date local linear models
that are no longer needed in modeling the process in order to
free up the memory for fast acquiring the new process knowl-
edge. This pruning strategy also significantly reduces online
computational complexity without scarifying the prediction
accuracy. Extensive studies have been conducted, including a
simulated nonlinear system, a simulator-based CSTR process
and a real-world microwave heating system identification.
The results obtained have demonstrated that our proposed
multi-output selective ensemble identification technique attains
the best online modeling accuracy, compared with a range of
the state-of-art methods for online identification of nonlinear
and nonstationary multi-output processes, while imposing a
reasonably low online computational complexity which meets
the real-time operation constraint. This study, therefore, has
provided a reliable and accurate online system model for
designing efficient real-time control strategy for multi-output
nonlinear and nonstationary processes.
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