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Abstract— Sea subsurface temperature, an essential component
of aquatic wildlife, underwater dynamics, and heat transfer with
the sea surface, is affected by global warming in climate change.
Existing research is commonly based on either physics-based
numerical models or data-based models. Physical modeling and
machine learning are traditionally considered as two unrelated
fields for the sea subsurface temperature prediction task, with
very different scientific paradigms (physics-driven and data-
driven). However, we believe that both methods are comple-
mentary to each other. Physical modeling methods can offer the
potential for extrapolation beyond observational conditions, while
data-driven methods are flexible in adapting to data and are capa-
ble of detecting unexpected patterns. The combination of both
approaches is very attractive and offers potential performance
improvement. In this article, we propose a novel framework
based on a generative adversarial network (GAN) combined
with a numerical model to predict sea subsurface temperature.
First, a GAN-based model is used to learn the simplified physics
between the surface temperature and the target subsurface
temperature in the numerical model. Then, observation data
are used to calibrate the GAN-based model parameters to
obtain a better prediction. We evaluate the proposed frame-
work by predicting daily sea subsurface temperature in the
South China Sea. Extensive experiments demonstrate the
effectiveness of the proposed framework compared to existing
state-of-the-art methods.

Index Terms— Generative adversarial network (GAN), numeri-
cal ocean model, ocean physical laws, sea subsurface temperature,
sea surface temperature (SST).

I. INTRODUCTION

SEA subsurface is the part of the ocean below the
sea surface. Its temperature plays an important role in

ocean science research [1]. The sea subsurface temperature is
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important information for understanding the global ocean
ecosystem and Earth climate system. The study of the spatial
and temporal distribution of sea temperature and its variation
law is not only a critical issue in marine geography but also
of considerable significance to the fishery, navigation, and
underwater acoustics. Diverse sources of external factors, such
as radiation and diurnal wind, affect the sea subsurface tem-
perature, and the prediction of the sea subsurface information
is very challenging [2]. Existing studies on sea subsurface
temperature rely on numerical modeling and observational
data [3]–[6].

Numerical modeling is a widely used technique to tackle
complex ocean problems by data simulation based on the
equations of ocean physical laws. Currently, the Prince-
ton ocean model (POM) [7], the HYbrid coordinate ocean
model (HYCOM) [8], and the finite-volume coastal ocean
model (FVCOM) [9] are commonly used in oceanography.
POM is a classic traditional ocean model with a clear structure,
concise model specifications, and thorough model physical
interpretation. The flexible vertical hierarchical structure of
HYCOM makes it more suitable for the significant expansion
of the stratification effect. The FVCOM model includes the
momentum equation, the continuity equation, the thermosalt
conservation equation, and the state equation. The numerical
solution of FVCOM adopts the finite volume method (FVM),
which has the advantages of accurate and fast calculation
and good fitting of coastline boundary and seabed topography
based on the unstructured mesh. This is because FVM can
better guarantee the conservation of each physical quantity
not only in each unit but also in the whole calculation area.
All these numerical models are constructed based on our
knowledge of ocean physics, and they are often applied to sim-
ulate ocean dynamics and predict sea subsurface temperature.
However, their prediction accuracy can hardly be guaranteed
since there exists a large range of environmental factors that
affect marine environments.

In order to improve the prediction accuracy of the
numerical models, assimilation methods are commonly used.
Traditional assimilation methods can improve the model
prediction performance by fusing new observational data
in the dynamic running process of a numerical model.
Smedstad and O’Brien [10] summarized the data assimilation
methods developed before 1991 and classified them into poly-
nomial interpolation methods, optimal interpolation methods,
and variational analysis methods. Anderson et al. [11] also
surveyed the data assimilation methods in Physical Oceanog-
raphy. Although the prediction accuracy of the traditional
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assimilation methods is much higher than that of the numerical
models, there are ample rooms that these methods can be
further improved.

In contrast to the physics-based numerical models,
data-driven models, such as neural networks, rely purely on
observational data to learn the underlying data distribution.
However, it is unclear how these models produce specific
decisions, and interpreting these data-driven models phys-
ically is very difficult. Since these methods only rely on
training data, their generalization ability on unseen data is
often limited, whereas most physics-based models do not
utilize training data and, therefore, may perform well on
unseen data, provided that the physical laws employed to
build these models accurately represent the underlying data
distribution. Nevertheless, the physical rules are often incom-
plete, and these numerical models need to be improved and
supplemented.

A fundamental principle in data modeling is to incorporate
available a priori information regarding the underlying data
generating mechanism into the modeling process. Data-physics
hybrid models that are capable of incorporating prior knowl-
edge typically outperform data-driven modeling [12], [13].
Motivated by this fundamental principle for data modeling,
in this article, we focus on developing a physics-guided frame-
work for training a neural network to predict sea subsurface
temperature, which combines numerical modeling and obser-
vational data modeling. We demonstrate that this data-physics
hybrid modeling approach can not only take advantage of our
prior knowledge of ocean physical laws but also improve the
overall prediction accuracy.

In recent years, deep learning in computer vision [14]–[16]
and natural language processing [17]–[19] have achieved
breakthrough progress. Its underlying motivation is to sim-
ulate the human brain neural connection structures [20]–[23].
When handling high-dimensional data, high-level features are
extracted through multiple layers progressively to identify the
concepts relevant to humans [24]–[26]. Deep learning models
can be roughly divided into two categories: discriminant
models and generative models [27], [28]. Discriminant models
are trained to distinguish the correct output among possible
output choices [29], [30]. On the other hand, generative models
are trained to obtain better understandings of the data samples.
Specifically, a generative model learns a distribution from the
input samples and then generates similar samples based on
this distribution to enhance the model. Goodfellow et al. [31]
proposed the generative adversarial network (GAN), which
uses adversarial training to train a generative network and a
discriminative network jointly. The generative network cap-
tures the potential distribution of the real data, while the
discriminative network is commonly a binary classifier, which
judges whether the input samples are real or not. Many
GAN-based models have been proposed to solve the problem
of high-quality image generation. Isola et al. [32] proposed
Pix2pix for image translation. In Pix2pix, a pair of image
datasets from different domains is fed into the model during
training, and an image can be transformed from one domain
to the other. Zhu et al. [33] proposed CycleGAN to learn
mappings between an input image and an output image when

Fig. 1. Two-stage sea subsurface temperature prediction framework. In the
first stage, generative adversarial training is performed on the model with the
data from the physics-based numerical model. In the second stage, the model
is fine-tuned with observational data.

paired training data are unavailable. A cycle consistency loss
is introduced to achieve this goal.

The deep neural network has strong predictive power, but it
does not follow the laws of physics. By contrast, a numerical
model simulates the ocean dynamics based on the knowledge
of ocean physics. Karpatne et al. [34] blended the numerical
model with multilayer perceptron to correct lake temperature.
In this work, the authors applied all the variables related to
the lake temperature and the output of the numerical model
for the lake temperature as the inputs to the neural network.
If the numerical model accurately simulates the motion of
the lake temperature, the output of their model is generated
by the numerical model; otherwise, the result is generated
by the neural network. This approach basically chooses the
result from either the physics-based numerical model or the
neural network trained by observation data. Ideally, we would
like to design a prediction method by combining both the
physics-based numerical model and the data-driven model.
Jia et al. [35] combined a recurrent neural network (RNN)
model with the numerical model to predict the lake tempera-
ture. Their model was trained over the numerical model data
and then fine-tuned on the limited observation data. However,
their model was applied for each depth separately, and the
data from the same depth are used to predict the lake temper-
ature of the same depth. In addition, they only predicted the
temperature value at one subsurface point, not over an entire
area. We also note that most existing studies concentrate on
sea surface prediction, while there is a paucity of contributions
on the daily sea subsurface temperature prediction. This will
be further discussed in the related work section.

In this article, to tackle the abovementioned limitations in
the existing sea temperature analysis literature, we propose
a new framework to predict the sea subsurface temperature
by combining the physics-based numerical model with deep
neural networks. In our method, we apply the physics-based
numerical model to train the neural network model in the
first phase, and then, observational data are used to calibrate
the model parameters in the second phase. More specifically,
we design two neural networks in the proposed framework,
as illustrated in Fig. 1. The first network learns the simplified
physics laws from the numerical model. The weights of
this first network are shared by the second network. This
effectively encodes the knowledge of ocean physics into this
second network model, and its weights are then fine-tuned
by observational data. It can be seen that the merits of
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both physics-based numerical modeling and observational data
modeling approaches are combined, and consequently, the pre-
diction accuracy is further enhanced. The main contributions
of this article are summarized as follows.

1) A novel GAN-based framework is proposed, which
predicts the daily sea subsurface temperature by learning
the relationship between sea surface temperature (SST)
and subsurface temperature.

2) We explore the use of GAN combined with the
physics-based numerical model for building a hybrid
prediction model incorporating more effectively the
known ocean physics with the observational data
information.

3) We propose a physics-based loss with a mask as prior
knowledge. The mask filters out land locations, and
this loss automatically encodes the knowledge of ocean
physics into the modeling process, leading to prediction
performance improvement.

The rest of the article is organized as follows. Section II
presents the background of GAN models and sea temperature
prediction. Section III details the proposed framework for sea
subsurface temperature prediction. The experimental results
are reported in Section IV. We draw concluding remarks and
discuss the future work in Section V.

II. RELATED WORKS

A. Generative Adversarial Networks

Inspired by the binary zero-sum game, Goodfellow et al.
[31] proposed GAN, in which two neural networks contest
each other in a game. More specifically, GAN is composed
of two networks: a generative network G and a discriminative
network D. The generator G iteratively learns the distribution
of the real input samples, and it generates samples following
the learned distribution. The generated fake samples are then
fed into the discriminator D, and D is trained to judge whether
the input samples are real or fake.

In the training process, the generator G learns the input
data distribution. During this learning process, fake samples
can be identified by the discriminator D from the real data
distribution. In such adversarial learning, the generator G tries
to “fool” the discriminator D by producing samples as similar
as possible to the real samples. With this mutual competitive
reinforcement, the performances of both G and D are jointly
enhanced.

The conditional generative adversarial network (CGAN)
[36] is an extension of GAN in which a conditional setting is
applied. In CGAN, both the generator G and discriminator D
are conditioned on class labels. As a result, the model can learn
mappings from inputs to outputs by feeding it with contextual
information.

Yang et al. [37] solved the stochastic differential equa-
tions by encoding the known physical laws into the GAN.
Lütjens et al. [38] used GAN to learn the latent features of
the numerical model data in order to generate more realistic
coastal floor data. Zheng et al. [39] reconstructed the image
based on its known pixels by employing a GAN model.
These works used the GAN model to learn the latent features

from the numerical model. Then, they applied the pretrained
GAN model to do the corresponding tasks. In other words,
these works used the GAN models to replace part or the
entire numerical model. The works [37]–[39] highlight the
potential application of the GAN model in physical-relevant
tasks. However, the difference between these works with our
hybrid physics-data-based GAN is huge. Not only we pretrain
the GAN with the physics-based numerical model but also we
adopt the observational data to calibrate the pretrained GAN
model. In other words, our GAN model not only learns the
physical laws from the numerical model but also adapts itself
using observational data.

B. Sea Subsurface Temperature Prediction

Temperature is an important factor in marine hydrology
and climate change [40]. Existing studies based on satellite
remote sensing data mainly focus on SST and assessment.
Yang et al. [41] consider the task of sea temperature prediction
as a sequence prediction problem and build an end-to-end
trainable long short-term memory (LSTM) neural network
model. Then, the temporal and spatial features are combined
to predict sea temperature. Wei et al. [42] used Ice Analy-
sis (OSTIA) data to train a neural network for South China
Sea temperature prediction. Deep learning-based methods have
also been utilized to predict the SST in the Bohai Sea and
Indian Ocean [43]–[45].

The abovementioned studies mainly focus on temperature
prediction of the sea surface. However, the sea subsurface
temperature prediction research is scarce. Han et al. [46]
applied the convolutional neural network (CNN) to predict
the subsurface temperature from sets of the remote sensing
data. Lu et al. [47] adopted the preclustered neural network
method to estimate the subsurface temperature, and the results
are better than those obtained without clustering. Wu et al. [48]
used the self-organizing map neural network to predict the
subsurface temperature anomaly in the North Atlantic. These
methods can reliably predict the monthly subsurface temper-
ature using a neural network due to the fact that sufficient
monthly observational data of the subsurface temperature
are available for training neural network models. However,
due to the very limited daily observation data, the predic-
tion of the daily subsurface temperature cannot be carried
out efficiently and accurately only using neural networks.
Zhang et al. [49] used monthly Argo data to predict the sea
subsurface temperature, but no physics-based numerical model
was utilized in this monthly sea subsurface temperature predic-
tion model. These works indicate the lack of research on daily
subsurface temperature prediction. In this article, we combine
deep neural networks and a physics-based numerical model
into a unified framework, which is capable of predicting the
daily sea subsurface temperature.

III. PROPOSED FRAMEWORK

The proposed framework, as depicted in Fig. 2, composes
of two stages: 1) generative adversarial pretraining on numer-
ical model data and 2) fine-tuning of the GAN model with
observational data. In the first stage, the generator learns the
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Fig. 2. Proposed GAN-based sea subsurface temperature prediction framework. Stage 1: generator learns the mapping from the sea surface temperature (SST)
to the target depth temperature in the numerical model. The generator is composed of two components: one single shared network and several task-specific
attention networks. The shared network learns the mapping from SST and random noise to the numerical model data. The task-specific attention networks
capture the mapping between the SST and the sea subsurface temperature. Stage 2: fine-tuning the GAN model with observational data. The weights of the
generator are shared with Stage 1, and the weights of the discriminator are fixed.

mapping from the SST to the target depth temperature using
numerical model data. This effectively encodes the knowledge
of ocean physics into the neural network model. In the second
stage, real-world observation data are used to fine-tune the
weights of the neural network model. This enables the model
to learn the real-data distribution and compensate for the
physics knowledge missing in the numeral model. We now
detail these two stages.

A. Stage 1: Generative Adversarial Training on Numerical
Model Data

Numerical models play an important role in understanding
the ocean’s influence on global climate. They simulate the
ocean properties and circulation based on the equations of
ocean physics laws. Since numerical models approximate the

physical correlations among different depths of the ocean,
we use a GAN model in the proposed framework to acquire
these relationships from the data generated by a numerical
model.

Without loss of generality, we consider predicting the
subsurface temperatures at 50-, 100-, and 150-m underwater
simultaneously. The prediction tasks of different depth temper-
atures can be achieved jointly by multitask learning. In order
to obtain good performance for each task, attention modules
are used to enable both the task-shared and task-specific
feature learning in an end-to-end manner [50]. The generator
architecture is depicted in Fig. 3, which is comprised of
multiple sets of attention modules and the U-NET architecture.
Each set of attention modules can learn the features for
individual tasks. Specifically, each attention module learns
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Fig. 3. Illustration of the generator architecture. The generator comprises the U-NET architecture and the two sets of attention modules. The attention module
is connected with the output of the convolution block and the attention module from the last layer, which is passed one by one.

a soft attention mask, which is dependent on the features in
the shared network. The features in the shared network and
the soft attention masks can be trained jointly to optimize the
generalization of the features across different tasks.

As shown in Fig. 4, the shared features after pooling are
denoted as p, and the learned attention mask in the layer
for task i is denoted as ai . The task-specific features âi are
computed by elementwise multiplication of the attention mask
with the shared features as âi = ai � p, where � denotes
the elementwise multiplication operator. The attention mod-
ule has strong capabilities of emphasizing nontrivial features
and weakening unimportant ones. Moreover, as the seawater
temperature generally decreases with the increase of depth,
we exploit this fact and set it as prior knowledge. If the
seawater temperature in a lower layer is estimated higher than
the one in an upper layer, the model is penalized. Hence,
we apply this physics-based loss to guide the fitting ability
of the model between different depths.1

As mentioned in Section II-A, a GAN model is composed of
two networks: the generative network G and the discriminative

1In some high latitude oceanic regions, seawater temperature at 50 m can
actually be higher than SST. In this case, the physics-based loss should not
be applied to this first underwater layer.

Fig. 4. Illustration of the attention module.

network D. In our model, the generator contains two parts:
one single shared network and three task-specific attention
networks. The shared network uses a conditional GAN model
that learns a mapping from the observed image x and random
noise z to real image y. The network objective is defined as
follows:

L S1(G, D) = Ex,y log D(x, y)

+Ex,z log(1 − D(x, G(x, z))) (1)

where Ex,y denotes the expectation operator with respect to
x and y, D(x, y) distinguishes whether x and y are the
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true paired data, and G(x, z) learns the mapping from the
data x and random vector z to the real data y. As can be
observed in (1), in the shared network, the generator G tries
to minimize the objective while D tries to maximize it. In the
generator model, the input noise z and conditional information
x jointly constitute the joint hidden layer representation in
order to model the same distribution with domain y. To further
improve the prediction performance, we mix the conditional
GAN objective with an L1 distance, which is defined as

L L1(G) = Ex,y,z‖G(x, z) − y‖1. (2)

Besides the shared network, we build three task-specific
attention networks, G0→50, G0→100, and G0→150, to capture
the mappings between the SST and the undersea temperatures
at 50, 100, and 150 m, respectively. Correspondingly, the
discriminative network can be decomposed into three subdis-
criminative networks, namely, D = {D50, D100, D150}.

In our implementation, the SST x0 is obtained from the
HYCOM data [8]. Besides x0, we generate three masks, M0,
M50, and M100. Starting from M0, its value at a given location
is set to 1 if the SST is available from the numerical model
at this location, and the value is set to 0 if the temperature is
not exploitable, e.g., the location is on the land. This mask
can filter out noise regions, such as the land. We further
set the margin to 0.1. If the temperature of the deep layer
is 0.1◦ higher than that of the shallow layer, the model
is penalized. Specifically, we define an objective function
L0∼50(G) as follows:
L0∼50(G)

= Ex,z‖max{(G0→50(x0, z) � M0 − x0 � M0), 0.1}‖1. (3)

The purpose of the mask M0 can be seen clearly from the
objective function L0∼50(G). Only when the temperature at
the 0-m depth is exploitable, i.e., this location is not on land,
the comparison between the temperature at the −50-m depth
and the temperature at the 0-m depth is meaningful. Similarly,
we have the mask M50, whose value at a location is set
to 0 if the numerical model data indicates that this 50-m depth
location is on the land; otherwise, the temperature at this
location is exploitable, and we set M50 = 1. Likewise,
we can calculate M100. Hence, we can define the objectives
L50∼100(G) and L100∼150(G), respectively, as

L50∼100(G) = Ex,z‖max{(G0→100(x0, z) � M50

−G0→50(x0, z) � M50), 0.1}‖1 (4)

L100∼150(G) = Ex,z‖max{(G0→150(x0, z) � M100

−G0→100(x0, z) � M100), 0.1}‖1. (5)

Based on the above three objective functions, we propose
the physics-based loss by using the three masks as prior
knowledge, which leads to improved prediction performance.
Hence, the physics-based loss in Stage 1 is defined as

L P1(G) = L0∼50(G) + L50∼100(G) + L100∼150(G). (6)

It can be seen that this physics-based loss applies “shallower
sea temperature” as masks (SL masks). Specifically, when
comparing the temperature difference of a deeper layer and the

shallower layer, the mask is referencing the shallower-layer
sea temperature. It is natural to ask whether we can adopt
“deeper sea temperature” as masks (DP masks). That is,
when comparing the temperature difference of a deeper layer
and the shallower layer, the mask is referencing the deeper
layer sea temperature. Adopting DP masks in the proposed
physics-based loss corresponds to replacing M0 in the loss (3)
with M50 and replacing M50 in the loss (4) with M100, as well
as calculating the mask M150 and using it to replace M100 in
the loss (5). This DP mask approach, however, is less effective
than the SL mask approach. This is because the land area at
the 0-m depth is smaller than that at the −50-m depth, and
the land area at the −50-m depth is smaller than that at the
−100-m depth, and so on. Therefore, the exploitable values
of M0 (M0 = 1) or the size of M0 is much larger than that
of M50, the size of M50 is much larger than that of M100,
and the size of M100 is much large than that of M150.
Hence, adopting the SL mask approach enables the model
to exploit larger sea subsurface areas. In the ablation study
of Section IV-C, we will demonstrate that better performance
can be obtained by adopting the SL mask approach than the
DP mask approach.

By employing a physics-based loss, the generator can learn
the mapping from the SST to the temperature at 50-, 100-,
and 150-m undersea from the numerical model simultaneously.
According to the prior knowledge, the SST should be higher
than the one at 50-m undersea, which should be higher than
the temperature at 100-m underwater, and so on. If there is
some irregular data, the penalty term will be added to the
training process.

According to the above discussion, the full objective func-
tion in the first stage of generative adversarial training using
the physics-based numerical model data is expressed as

L(G, D) = L S1(G, D) + L L1(G) + L P1(G). (7)

Algorithm 1 implements the first stage of the training
process in our proposed method. The weights of the dis-
criminators and the generator are updated based on the
costs (1) and (7) separately. In our implementation, the
first n1 = 100 epochs maintain a constant learning rate of
l1 = 0.0002, followed by another n2 = 100 epochs with
a linearly decaying learning rate whose decaying factor η
satisfies 0 < η < (l1/n2). This setting is the same as the
original Pix2Pix method [32].

B. Stage 2: Fine-Tuning GAN Model With Observation Data

Since numerical models rely heavily on simplified physics
law, their results sometimes exhibit discrepancies from the
observed data. Therefore, we utilized remotely sensing data,
Argo data [51], to correct numerical data errors.

As illustrated in Fig. 2, AVHRR SST data [52] are fed as the
input of the model, while Argo data are employed as the real
data. The generator shares the weights with the model from the
first stage, while the weights of the discriminators are fixed.
The generator in the second stage is composed of one sin-
gle shared network and two task-specific attention networks.
The objective function of the shared network is given
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Algorithm 1 Stage I Training Procedure
Require: HYCOM model training data x , y, random noise

vector z, sea temperature masks M0, M50 and M100, initial
learning rate l1, learning rate decaying factor η, numbers
of critic iterations n1, n2

Require: Initial generator parameters θg, initial discriminator
parameters θd = {θ i

d}i∈{50,100,150}
Ensure: Generator G and discriminator D ={Di }i∈{50,100,150}
1: while not converged do
2: Set learning rate to l = l1;
3: for t = 0, . . . , n1 do
4: Sample image pair {x i

0}N
i=1 and {yi

50}N
i=1, {x i

0}N
i=1 and

{yi
100}N

i=1, {x i
0}N

i=1 and {yi
150}N

i=1;
5: Update D by gradient descent based on cost (1);
6: Update G by gradient descent based on cost (7);
7: end for
8: for t = n1 + 1, . . . , n1 + n2 do
9: Sample image pair {x i

0}N
i=1 and {yi

50}N
i=1, {x i

0}N
i=1 and

{yi
100}N

i=1, {x i
0}N

i=1 and {yi
150}N

i=1;
10: Update D by gradient descent based on cost (1);
11: Update G by gradient descent based on cost (7);
12: Update learning rate l = l1 − η(t − n1);
13: end for
14: end while

as follows:
L S2(G) = Ex,z log(1 − D(x, G(x, z))) (8)

where the discriminator D does not update its weights, and
only the generator updates its parameters through backprop-
agation. In this stage, the real data are Argo data. As Argo
data contain the temperature information at a single location,
we cannot use Argo data to train the discriminator. Instead,
we have to fix the discriminator in order to predict the
temperatures on the entire area, not at a point location like
Argo data. Since daily Argo data are point data, to predict
values from the point to the entire plane, the discriminator
pretrained in the first stage is used to measure the differences
between the generated samples and the real data according to

Ldot (G) = Ex,z‖G
(
xi, j , z

) − Argoi, j‖1 (9)

where the index pairs i and j denote the locations of the
temperature values from Argo data. Since daily Argo data
only contain one temperature value, we employ L1 distance
to measure the temperature error between Argo data and the
corresponding generated sample in (9). By doing this, the
adjustment from point to plane can be achieved.

It should be noted that, in the second stage, two task-specific
attention networks are employed. Due to the imprecision of
AVHRR SST data, the temperature difference between the sea
surface and 50-m undersea is not taken into account. In the
experiment section, this will be fully explained. Therefore, the
physics-based loss in Stage 2 is defined as

L P2(G) = L50∼100(G) + L100∼150(G) (10)

where L50∼100(G) and L100∼150(G) use the same configura-
tions as the corresponding objective functions in the first stage.

Algorithm 2 Stage II Training Procedure
Require: Remote sensing satellite training data x , Argo train-

ing data Argo50, Argo100 and Argo150, random noise vector
z, sea temperature masks M50 and M100, initial learning
rate l1, learning rate decaying factor η, numbers of critic
iterations n1, n2

Require: Generator parameters θg and discriminator parame-
ters θd = {θ i

d}i∈{50,100,150}
Ensure: Generator G
1: while not converged do
2: Set learning rate to l = l1;
3: for t = 0, . . . , n1 do
4: Sample image pair {x i

0}N
i=1 and {Argoi

50}N
i=1, {x i

0}N
i=1

and {Argoi
100}N

i=1, {x i
0}N

i=1 and {Argoi
150}N

i=1;
5: Update G by gradient descent based on cost (11);
6: end for
7: for t = n1 + 1, . . . , n1 + n2 do
8: Sample image pair {x i

0}N
i=1 and {Argoi

50}N
i=1, {x i

0}N
i=1

and {Argoi
100}N

i=1, {x i
0}N

i=1 and {Argoi
150}N

i=1;
9: Update G by gradient descent based on cost (11);

10: Update learning rate l = l1 − η(t − n1);
11: end for
12: end while

The full objective function employed in the second stage is,
therefore, given by

L(G) = L S2(G) + Ldot (G) + L P2(G). (11)

Algorithm 2 implements the second stage of the training
process in our method.

IV. EXPERIMENTS

A. Study Area and Data

The study was conducted on the South China Sea, a mar-
ginal sea in the western Pacific Ocean, located in the south of
Mainland China. The sea has an area of about 3.5 million
square kilometers, with an average depth of 1212 m and
a maximum depth of 5559 m. A typical study area of
(3.99 ◦N–24.78 ◦N, 98.4 ◦E–124.4 ◦E) was selected.

The numerical model data, satellite remote sensing data,
and Argo data from May 2007 to November 2017 were used
for training. The remote sensing data from January 2004 to
April 2007 were employed as the test input data. The Argo
data from January 2004 to April 2007 were used as the true
values for the comparison with the predictions, i.e., in the
testing, the predicted results are compared with the Argo data.

The numerical model data used in our experiments are
HYCOM from [54]. The HYCOM data format is NetCDF,
and its spatial resolution is 1◦/12◦ × 1◦/12◦. The data are
configured with 32 layers in the vertical direction.

The National Oceanic and Atmospheric Administra-
tion (NOAA) optimum interpolation SST (OISST) data
from [52] is used in this article. The spatial resolution of the
SST data is 0.25◦ × 0.25◦, and daily mean data are employed
in our study.
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The Argo data employed in our study are collected
from [51]. The Argo data are composed of the data collected
from different buoys placed at different locations in the South
China Sea. The daily Argo data are sea subsurface temperature
data acquired at only one point in the whole sea area. As the
Argo data are point data, we randomly choose one point from
the predicted temperature results at the target locations to
compare with the true value of the Argo data at the same
locations.

More specifically, the sea temperatures of the numerical
model data at the depths of 0, −50, −100, and −150 m are
used for the first training stage. In the second training stage,
we train the model over the satellite remote sensing data and
the Argo data at the depths of −50, −100, and −150 m.
The input data for the first stage are constructed in the
format: [3856, 128, 128, 1], where the first number is the size
of the training dataset, the next two numbers are the height
and the width of the input data, respectively, and the last
number represents the gray-scale map with one color channel.
Similarly, the format for the input data is [2020, 128, 128, 1]
in the second training stage, after removing the bad quality
Argo data. In the test stage, the formats of the input data
and the output data are [180, 128, 128, 1] and [540, 128, 128, 1],
respectively, where the output data include equal numbers of
data samples for the sea subsurface temperature at 50, 100,
and 150 m.

B. Baseline Models and Evaluation Metrics

To the best of our knowledge, this article is the first to pre-
dict daily sea subsurface temperature by using methods other
than numerical models. Due to the sparsity of the observational
sea subsurface temperature data for training, it is not feasible
to predict the temperature of a whole ocean area by solely
relying on a neural network. Therefore, in our experimental
evaluation, we combine the neural network methods with the
numerical model and the traditional data assimilation approach
to perform the study. Since there are only a few Argo devices
in the entire China South Sea, the daily sea temperature can
only be obtained in a small set of data points in the entire
region. Thus, our method adopts numerical model data to
do predictions first due to limited observational data, as the
numerical model can simulate ocean dynamics and obtain
sea temperature in the entire region. Then, we use the set
of observational data to fine-tune the model. In the experi-
ments, when we need to compare with other state-of-the-art
methods, we also train the model with numerical model data
using those methods, and then, observational data are applied
for fine-tuning. The data generated by the numerical model
assimilation method are obtained from [54]. This HYCOM
assimilation data have a spatial resolution of 1◦/12◦ × 1◦/12◦,
a temporal resolution of one day, and a vertical resolution
from the sea surface to 5000-m undersea. It is much closer
to the observational data compared to the HYCOM model
data. We compare these data with our method in the following
experiment part.

Furthermore, the following neural network methods are
selected as the baselines to compare with our model:
Pix2pix [32], CycleGAN [33], and PGNN [34]. For Pix2pix

TABLE I

STUDY ON THE MULTITASK LEARNING

and CycleGAN, we use the publicly available source codes
provided by the authors, with the same default parameters.
Specifically, for Pix2pix, λ = 100 and 70 × 70 PatchGAN are
employed, as mentioned in [32]. For CycleGAN, an Adam
solver [53] is with a learning rate of 0.0002. For PGNN, its
output comes from either the neural network or the numerical
model. However, having an output solely relying on a pure
neural network is unsuitable for daily sea subsurface prediction
over the whole sea area. Therefore, we cannot directly compare
the PGNN with our method. Since PGNN uses a physics-based
loss to guide the training of its neural network, in our
experiments, we compare the physics-based loss obtained by
PGNN with the physics-based loss obtained by our method.
In addition, we also compare our method with the methods
of [35] and [49].

The two evaluation criteria, the root mean square
error (RMSE) and the coefficient of determination (R2) [55],
are used to assess the performance of the compared methods.

C. Experiment Design and Ablation Study

All our experiments are implemented on an NVIDIA
GeForce 2080Ti GPU. Training iterations and learning rates
are the same for both phases of our approach. We train our
model for n1 +n2 = 200 epochs. The first n1 = 100 epochs
maintain a constant learning rate of 0.0002, followed by
another n2 = 100 epochs with a linearly decaying learning
rate. The main network of the generator adopts a U-NET
architecture [56], and each convolution is followed by an
attention module. The discriminator applies the same six-layer
convolutional network as in pix2pix [32]. We construct the
data as 128×128 square-shaped heatmaps. Due to the inconsis-
tency of Argo data underwater position, the 1-D interpolation
method was applied to obtain the data of 50-, 100-, and 150-m
underwater. We use the Z-score standardization method to
preprocess the data.

We perform an extensive ablation study to demonstrate the
effectiveness of multitask learning and physics-based loss. The
influence of different margin values in physics-based loss is
also studied. Moreover, the temperature difference between the
sea surface and 50-m undersea is analyzed in detail.

1) Effectiveness of Multitask Learning: Multitask learning
exploits the correlation among different tasks to promote
each other, and consequently, the performance of the whole
model is enhanced. We add multiple task-specific attention
networks (TANs) to learn the mappings from the SST to 50-,
100-, and 150-m undersea simultaneously. Table I illustrates

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on July 07,2023 at 10:41:19 UTC from IEEE Xplore.  Restrictions apply. 



MENG et al.: PHYSICS-GUIDED GANs FOR SEA SUBSURFACE TEMPERATURE PREDICTION 3365

TABLE II

STUDY ON THE MASK IN PHYSICS-BASED LOSS

TABLE III

STUDY ON DIFFERENT MARGINS

the RMSE and R2 results on the usefulness of TANs. By using
TANs, the RSME values improve by 0.0097, 0.0198, and
0.0036, respectively, for predicting the sea subsurface tem-
peratures 50-, 100-, and 150-m undersea. Using TANs also
improves the R2 values. The results of Table I, therefore,
demonstrate that multitask learning is effective to improve the
prediction performance.

2) Effectiveness of the Mask: When we employ the
physics-based loss to guide the network training, the tempera-
ture between the upper and lower layers is compared by using
a mask, and the margin is set to 0.1 here. Here we compare
several schemes: no use of mask (NO mask), deeper-layer
sea temperature as a mask (DP mask), and shallower-layer
sea temperature as a mask (SL mask). Table II summarizes
the RMSE and R2 results obtained with these mask schemes.
It can be seen that the method with the SL mask achieves the
best RMSE and R2 values. Therefore, we adopt the SL mask
in the physics-based loss for our approach [see (3)–(5) and the
discussions after (6)].

3) Analysis of the Margin: Likewise, in order to obtain
better fitting ability, we add a margin in the physics-based
loss. First, we calculated the maximum temperature difference
between the samples of two depths. Then, the margin of the
physics-based loss is scaled from 0 to Max. Table III shows the
prediction results of different margins. The best RMSE and R2

values are obtained when the margin is set to 0.100. Therefore,
in our approach, we set the margin to 0.100 [see (3)–(5)].

4) Analysis of the Physics-Based Loss in Stage 2: In the
second phase of the proposed method, we apply remote
sensing data and Argo data to fine-tune the model. We estimate

TABLE IV

STUDY ON THE PHYSICS-BASED LOSS IN STAGE 2

TABLE V

STUDY ON THE NETWORK ARCHITECTURE

the contribution of L0→50(G) in the physics-based loss in
Table IV. It can be observed that the model without L0→50(G)
performs better. The reason is due to the imprecision of remote
sensing AVHRR SST data, which degrades the performance of
the model with L0→50(G). Therefore, in our proposed method,
we do not take L0→50(G) into account in the physics-based
loss in the second stage [see (10)].

5) Network Architecture Design: We use three attention
modules and three discriminators for the three specific tasks,
respectively. Considering the similarity in these tasks, the
network architecture designs that exploit one attention module
or one discriminator to learn different tasks are also exper-
imented, and the results obtained are compared with our
design in Table V. The experimental results show that using
more attention modules and discriminators can achieve better
performance. Although our model performs better in this study
than the model with a single attention module and single
discriminator, it has a higher computational complexity than
the latter. In the case of predicting the subsurface temperatures
at more than three depths, a single attention module with a
single discriminator may become a better choice.

D. Experimental Results and Analysis

For the Argo data from January 2004 to April 2007, after
removing the invalid data, we obtain 180 daily tempera-
ture observation values. We compare the predicted results
with these 180 remaining Argo observational data. Fig. 5
compares the predicted temperature at 50-m undersea with
the corresponding Argo data. It can be observed that the
predicted results of the proposed method fit well the Argo
data. Similarly, the Argo data and the corresponding predicted
temperatures at 100-m undersea and 150-m undersea are illus-
trated in Figs. 6 and 7, respectively. These results demonstrate
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Fig. 5. Predicted temperature at 50-m undersea versus Argo data.

Fig. 6. Predicted temperature at 100-m undersea versus Argo data.

Fig. 7. Predicted temperature at 150-m undersea versus Argo data.

that the proposed method can generate reliable and accurate
temperature predictions at different depths of the sea.

A correlation scatter plot between the predicted temperature
at 50-m undersea and the Argo data is depicted in Fig. 8.
If the data points are more evenly and densely distributed
near the diagonal red line, the prediction result is better.
Similar scatter plots of the prediction results at 100-m undersea
and 150-m undersea are shown in Figs. 9 and 10, respectively.
As can be observed, the prediction results at 50-m undersea are

Fig. 8. Predicted temperature at 50-m undersea and corresponding Argo data
scatter plot.

Fig. 9. Predicted temperature at 100-m undersea and corresponding Argo
data scatter plot.

better than the results at 100- and 150-m undersea. Evidently,
as depth increases, the prediction accuracy decreases.

Fig. 11 displays the temperatures predicted by the pro-
posed method at different depths (50, 100, and 150 m)
together with the corresponding Argo observations on
November 9, 2006. The visual results show that the pre-
dicted results by the proposed method are very close to the
ground-truth Argo data. This demonstrates that the proposed
method is reliable and accurate.

The temperature prediction experiment for each model is
repeated ten independent runs with different random initial-
izations. We summarize the temperature prediction results,
presented as average ± standard deviation (STD), of different
methods in Table VI, where PGpix2pix and PGcycleGAN
are the pix2pix method with the numerical model and the
CycleGAN method with the numerical model, respectively.
Note that applying neural networks, such as pix2pix and
CycleGAN, without considering the numerical model is
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TABLE VI

SEA SUBSURFACE TEMPERATURE PREDICTION RESULTS (AVERAGE ± STD) OF DIFFERENT METHODS AVERAGED OVER TEN RANDOM RUNS

Fig. 10. Predicted temperature at 150-m undersea and corresponding Argo
data scatter plot.

incapable of predicting daily sea subsurface temperature effec-
tively due to very limited observational data. Consequently,
we have to adapt our idea of physics-guided (PG) enhance-
ment by combining neural networks with a numerical model.
To compare with the methods in [35] and [49], we adopt the
ConvLSTM model to replace the RNN model for acquiring
the sea subsurface temperature prediction in the whole area
of China South Sea, which we refer to as PGConvLSTM.
Specifically, we train the ConvLSTM model by using the same
training mode as ours and removing the mapping from the
surface temperature to the subsurface temperature learned by
the GAN model as the works [35], [49] did. In our proposed
model, we pretrain the GAN on the numerical model data and
then fine-tune the GAN model with the observational data.
To compare with this two-stage training, we also simply con-
catenate the numerical simulation data onto the observational
data together to train the GAN, which we refer to as PGsim.

Our framework uses the physics loss to automatically encode
the knowledge of ocean physics into the modeling process.
In addition to our method with physics loss (our method with
PLoss), the results of our method without physics loss (our
method without PLoss) are also shown in Table VI.

The results of the PGConvLSTM are poor, as this
approach does not exploit the mapping from the surface
temperature to the subsurface temperature learned by the
GAN model [35], [49]. This demonstrates that this mapping is
essential in the prediction of the daily subsurface temperature.
Our proposed GAN-based framework effectively exploits the
merits of both the numerical model and a neural network, and
can learn the map from the surface to the subsurface well
through the proposed two-stage training. By contrast, simply
concatenating the numerical data and the observational data
together to train the model (PGsim) is less accurate than our
approach. It can be seen from Table VI that our proposed
method with the physics loss attains the best performance.
In terms of RMSE, it outperforms PGpix2pix by 0.0126 ◦C,
0.0407 ◦C, and 0.056 ◦C for predicting the sea temperatures
50-, 100-, and 150-m undersea, respectively. In terms of
R2 statistic, our method outperforms PGpix2pix by 0.0163,
0.0376, and 0.0673 for predicting the sea subsurface tempera-
tures at these depths, respectively. In addition, our method and
PGpix2pix have similar STDs for both performance metrics.
Also, observe that our method with physics loss outperforms
the one without physics loss. Hence, the experimental results
clearly demonstrate that the proposed method is capable of
enhancing the daily sea subsurface temperature prediction over
the existing state-of-the-art methods.

Currently, only the traditional assimilation method can
predict the daily sea subsurface temperature. Our proposed
method is the first, which can significantly improve the accu-
racy of the daily sea subsurface temperature prediction com-
pared with the assimilation method. We believe that exploiting
the numerical model data and the two-stage training mode that
we propose are essential to perform the daily sea subsurface
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Fig. 11. Display of predicted temperature values and measurements at different depths on November 9, 2006.

temperature prediction task. Multitask learning is integrated
into the proposed method to enable the prediction of the tem-
peratures at 50-, 100-, and 150-m underwater simultaneously.
A physics-based loss is also added to our model to further
improve the accuracy of the daily sea subsurface temperature
prediction. The experimental results have verified the effec-
tiveness of our proposed method. Furthermore, our proposed
framework also benefits other existing neural network-based
methods. Although only applying the pix2pix framework or
other neural network is incapable of predicting the daily sea
subsurface temperature effectively due to the very limited
observational data, by adopting our idea of combining neural
network and the numerical model, PGpix2pix becomes capa-
ble of significantly outperforming the assimilation method.
The experimental results confirm that our proposed method
outperforms the existing state-of-the-art methods. Compared
with PGpix2pix, although the performance gain is small, our
method can predict the temperatures for all the target depths
simultaneously, while PGpix2pix needs multiple models to
predict the temperatures of different depths.

In our experiments, we have to discard a lot of data since not
every daily Argo data are valid. It is clear that, by using more
usable datasets to provide sufficient training and testing data,
the accuracy of prediction can further be improved. In addition,

our experimental results will also be enhanced by looking for
better quality remote sensed images.

V. CONCLUSION AND FUTURE WORK

In this article, we have proposed a novel GAN-based
framework for challenging daily sea subsurface temperature
prediction. In our method, a physics-based numerical model
is employed in a GAN to acquire the simplified physical laws
at different ocean depths, and observational data are used for
fine-tuning the model parameters to obtain better prediction
results. Our method has effectively exploited the complemen-
tary merit of the physics-based numerical model and observa-
tional data-based neural network. Moreover, a physics-based
loss based on a mask has been employed, which leads to
improved prediction performance. The experimental results
have demonstrated that the proposed method can achieve better
performance in daily sea subsurface temperature prediction
compared with the state-of-the-art baselines.

In the future, we plan to extend our work to temporal
dimensions with better quality and large scales traits, which
will provide more information to further improve the pre-
diction accuracy. In addition, we also plan to investigate the
use of several self-attention networks to enhance the overall
performance of our model.
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