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Fig. 5. Mapping of full  QR using the Min-Max + Idle cost function. 

matrix using a four processor, bidirectional ring. The communica- 
tion and computation parameters were set to model the iPSC/860 
multiprocessor. Deviations from column-wrapped input and output 
were penalized as in Section 111-D. The mapping that resulted is 
shown in Fig. 5. Experiments were then conducted on the iPSC/860 
to measure the relative performance of this mapping compared with 
the column-wrap mapping and several random mappings. We found 
that the column-wrap mapping was 16.75% slower that the mapping 
of Fig. 5 .  On average, random mappings were 129.5% slower than 
our mapping. 

VI. CONCLUSION 
We have presented a method for mapping numerical algorithms 

onto multiprocessors. Through case studies of two important DSP 
problems, we showed that the cost function is the critical element 
in achieving good mappings. Our experiments on the iPSC/860 
hypercube indicate that we have succeeded in our goal of defining cost 
functions that are both accurate and tractable. Our experiments with 
the QR decompostion on the iPSC/X60 confirm that our mappings 
are highly concurrent. The approach holds great promise for bringing 
parallel processing to bear on the problems in signal processing as 
i t  frees the user from the need to have an in-depth knowledge of 
parallel programming. 
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Efficient Computational Schemes for the 
Orthogonal Least Squares Algorithm 

E. S. Chng, S. Chen, and B. Mulgrew 

Abstract-The orthogonal least squares (OM) algorithm is an effi- 
cient implementation of the forward selection method for subset model 
selection. The ability to find good subset parameters with only a lin- 
early increasing computational requirement makes this method attractive 
lor practical implementations. In this correspondence, we examine the 
computational complexity of the algorithm and present a preprocessing 
inethod for reducing the computational requirement. 

I. INTRODUCTION 
Nonlinear predictors generated using radial basis functions (RBF) 

121, [4], fuzzy basis functions I S ]  or  Volterra expansions [6] normally 
result in the formation of very large initial models that have the 
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Fig. I .  Nonlinear predictor of order K .  

linear.-in-par-amerel' characteristic (Fig. 1). Such large initial models 
can normally be reduced to a much smaller parsimonious model 
without significant degradation in prediction performance if the subset 
model's parameters are chosen carefully. 

To find the optimum R-parameter subset model from an original 
IC-parameter model. it is required to calculate the performance of 
all the possible R-parameter subset models from the original A -  
parameter system and choose the best one. This requires prohibitively 
large amount of computation and is thus not practical. 

One applicable method of subset model selection for models with 
the linear-in-parameter characteristic is the forward-selection search 
[3]. This method, however, has been criticized for not guaranteeing 
to achieve the optimum solution. Although the criticism is valid, 
subset models found using the fonvard-selection search are generally 
good enough for practical applications. Examples can be found in 
the papers describing the OLS algorithm [ I ] ,  121 and Korenbergh's 
fast orthogonal search [7 ] ;  these two methods are derivatives of the 
forward-selection technique. 

11. OLS ALGORITHM 
Let us represent these nonlinear predictors that have the linear in 

parameter structure as a linear regression model: 

y = X h + e  ( 1 )  

where y is the desired signal vector, X is the information matrix 
of size S x IC, h is the parameter vector of the model, and e the 
error vector of approximating y by Xh. The column vectors y and e 
contain -Y elements, that is, there are -1- data samples and S values 
of error. 

The original X matrix has I< columns. To create a parsimonious 
model which has R parameters, we are actually trying to pick R 
columns from the input matrix X to form a subset input matrix 
X.S. The OLS algorithm selects columns from the input matrix 
sequentially. At each selection, all the unused columns are studied to 
determine how each column will contribute to fit the desired vector 
y with the current subset Xs. The column that provides the best 
combination with X.v to model y will be picked to form the new 

X.S. The above procedure is repeated until the number of columns in 
X.5 equals to I?. The selection procedure is made very efficient by 
employing orthogonalization schemes such as the Gram-Schmidt or 
the Householder transformation [8]. The details of the algorithm can 
be found in Chen et al. [ I ] ,  [2]. 

I l l .  COMPUTATION REDUCTION of OLS METHOD 
The computational requirement in applying the OLS algorithm 

to find subset models from an initial information matrix X is 
proportional to the size of X. In the situation when S >> I<, where 
-Y and I< are the numbers of rows and columns in X respectively, 
it may be possible to reduce computation requirement of the 01,s 
by first introducing an invariant transformation on the matrix X and 
then applying the OLS on the transformed data. 

This is accomplished by premultiplying (1) by an orthonormal 
matrix which spans the column space of X [8] to transform the 
S x I< matrix X and the SX I vector y into a I< x IC matrix 
X and a I<x 1 vector y .  This may be thought of as a preprocessing. 
Thz-OLS algorithm is then employed to select subset model based 
on X and y. 

A .  Reduced-OLS Gr-am-Schmidt Approat,h 

We first examine the classical Gram-Schmidt (GS) procedure 
[8] for generating the orthonormal matrix used for the invariant 
transformation. The information matrix X can be decomposed into 
the product of an -1- x I< matrix Q satisfying Q"Q = I and a I< x I< 
upper triangle matrix B. where I is the identity matrix of appropriate 
dimension. That is 

X = QB. (2) 

Premultiplying both sides of ( I )  by QT yields 

Q'y=Bh+Q'e .  (3) 

If we introduce y = Q"y. X = B,  and e = &"e, we can rewrite 
(3) as 

y = X h + e .  (4) 

y and e are I< x 1 vectors and X is a I< x I< matrix. We can 
then apply the OLS algorithm to perform subset selection based on 
y and X. We call this method the reduced-OLS GS approach. 
.4n I?-term subset model found using the reduced-OLS GS ap- 

proach is identical to that of applying the OLS on the original 
data. This is because the transformed data X and y are created 
by performing a unitary transformation [8] on X and y. As such 
a transformation preserves the length of each (column) vector and 
the angle between two vectors, we have not lost or created any new 
information when we transform ( I )  into (4). 

The amount of computation required to apply the invariant transfor- 
mation by this method requires approximately -Y x I<' multiplications 
[8]. If saving in computation by using X and y for subset selection 
offsets the additional computation of preprocessing, this reduced 
0L.S approach is justified. Computational complexity of this reduced 
0L.S algorithm for subset model selection has been analyzed, and 
we illustrate the results using an example showing the number of 
multiplications needed for subset selection working on a 500 x 84 
information matrix (Fig. 2). The horizontal axis of Fig. 2 shows the 
size of the selected subset model, and the vertical axis shows the 
number of multiplications performed by the OLS or the reduced-01,s 
GS algorithm to find the required subset model. 

The following equation can be used to calculate the number of 
multiplications performed by the OLS to select a subset model of R 
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Fig. 2. Computation requirement for X matrix of size 500 x 84. 

parameters from an information matrix X of size S x IC: 

No. multiplications (OLS) 
K K - 1  

The number of multiplications required to perform the preprocessing 
using the GS decomposition is calculated using 

No. multiplications (GS decomposition) 

= -\-IC2 + SIi. (6)  

Therefore, the total number of multiplications required to perform a 
subset selection by the reduced-OLS GS approach is: 

No. multiplications (reduced-OLS GS) 
I?  

= .\-IC2 + -Y I< + ( 31C( li - i - 1 ) ) 
, = I  

Ii-1 

+ (2IC(IC - i ) ) .  
I =1  

(7) 

B. Rcpduced-OLS SVD Approach 

an approximated matrix X to represent X. We define X and X as 
To further reduce the computational load of the OLS, we can use 

X = UAV" (8) 
X = U,A,V,' ti < I< (9) 

where the columns of U are the left eigenvectors, A is the diagonal 
matrix containing the singular values and the rows of VT are the 
right eigenvectors formed by using singular value decomposition 
(SVD) [8] on X. The singular values in A are arranged such that 
XI 2 X2 2 . . . 2 A,, . The -Y x ti matrix U, is formed by using 
the tirst t i  columns of U, the diagonal K x K matrix A,, is formed 
by using the first I;  rows and columns of A, and the t i  x IC matrix 
VT is formed by using the first ti rows of V'. The matrix X is 
a rank t i  approximation of the matrix X created by the product of 
U,.  A,  and VT. 

-23 

-24 

8 -25 
4 

W 
in 
E 

-26 

-27 

7 
i (a) Reduced-OLS GS 

(b) Reduced-OLS SVD rank 20 
(c) Reduced-OLS SVD rank 40 
(d) Reduced-OLS SVD rank 60 

-28 
0 10 20 30 40 50 60 70 80 90 

No of Parameters 
Fig. 3. 
Wslterra predictor. 

Performance of subset model found using reduced-OLS on the 

If X is used to approximate X, (1) can be approximated by 

y z Xh+ e. (10) 

Premultiplying the previous equation by U:, we get 

U f y  z A,Vfh + Ufe.  (11) 

If' we introduce the ti x 1 vectors y, = U f y  and e, = UT., and 
the ti x li matrix X,, = A,VT, (11) can be written as 

y H  rz X, h + e , .  (12) 

Since the dimensions of yh. and X, are smaller than those of the 
vector y and matrix X in (4), the computation requirement is further 
reduced when the OLS algorithm is applied. This method is only 
appropriate when the approximation of X, i.e., X, is created by a 
sufficiently large rank K ,  otherwise the subset model found may not 
be good. 

IV. RESULTS of REDUCED OLS METHODS 
Computer simulation was carried out to evaluate the quality of 

subset models found using the reduced-OLS methods. Subset models 
were selected from two different 84-tap nonlinear predictors used 
for predicting a chaotic Mackey-Glass time series. The first predictor 
was created using a degree 3 and embedding-vector-length 6 Volterra 
expansion. The second predictor was created by combining a 6-tap 
linear predictor with a 7X-tap RBF predictor. 

For the experiment, 500 samples from the Mackey-Glass time 
series were used to generate the information matrix. The information 
matrix X thus had a size of 500 x 84. To measure the modelling 
quality of the predictor, the normalized mean square error (NMSE) 
was used: 

E;:, E :  

C,=.l .vP 
NMSE = lUlog,,, (7-) (13) 

where s, is the desired signal value at sample i ,  and e ,  = .s, - .i,. 
From ( 1  3), we can see that when we have perfect prediction, i.e., c , = 
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Performance of subset model found using reduced-OLS on the RBF 

0 for all i ,  the NMSE will be --w dB. When there is no prediction, 
i.e. s, = 0, P ,  = 5 ,  for all i ,  the NMSE will be 0 dB. 

The subset models found using the reduced-OLS GS approach 
were identical to those selected by the OLS using the original 
data. This, however, is not true for the models found using the 
reduced-OLS SVD approach. The reason is that the reduced-OLS 
SVD scheme selected subset models based on X, and y, , which are 
approximations of the original data. 

Fig. 3 depicts the predictive performance of subset models selected 
from the Volterra predictor. The results show that when approxima- 
tion rank K = 40 is used, subset models selected with sizes less 
than 22 have almost equivalent performance to those selected using 
the full model. This suggests that information regarding the first 22 
significant regressors was not lost when we approximated the rank 84 
matrix X by the rank 40 matrix X R .  When an approximation rank 
60 is used, there is hardly any difference between the subset models 

. “  

selected by the reduced-OLS SVD algorithm and those chosen by the 
OLS algorithm using the original data. 

Similar results were also found for subset models generated from 
the second nonlinear predictor (Fig. 4). That is, subset models found 
with large approximation rank t i  have very similar predictive perfor- 
mance characteristics to those selected using the original data. 

V. CONCLUSION 
A method of reducing computational requirement of the OLS 

subset model selection algorithm has been presented. This reduction 
is significant when the number of rows in the information matrix X is 
significantly larger than the number of its columns. Two schemes of 
the reduced-complexity OLS method have been proposed. The first 
scheme is based on a Gram-Schmidt preprocessing and will provide 
identical results to those obtained using the original input matrix and 
the desired output vector. For the second scheme, based on an SVD 
preprocessing, it has been shown that we can always trade in subset 
selection performance for computational complexity. 
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