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Maximum Likelihood Joint Channel and
Data Estimation Using Genetic Algorithms

S. Chen and Y. Wu

Abstract—A batch blind equalization scheme is developed based on
maximum likelihood joint channel and data estimation. In this scheme,
the joint maximum likelihood optimization is decomposed into a two-
level optimization loop. A micro genetic algorithm is employed at the
upper level to identify the unknown channel model, and the Viterbi
algorithm is used at the lower level to provide the maximum likelihood
sequence estimation of the transmitted data sequence. As is demonstrated
in simulation, the proposed method is much more accurate compared with
existing algorithms for joint channel and data estimation.

Index Terms—Blind equalization, genetic algorithms, maximum likeli-
hood estimation.

I. INTRODUCTION

Since the pioneering work of Sato [1], three families of blind
equalization techniques have emerged. The first family of blind
adaptive algorithms, which is commonly known as Bussgang al-
gorithms, constructs a transversal equalizer directly to unravel the
effects of the channel impulse response [1]–[4]. This class of blind
equalizers has very low computational complexity but suffers from
the drawback of slow convergence. The second family of blind
equalization algorithms is based on higher order cumulants [5]–[8].
This second class of blind equalizers, although very general and
powerful, requires a large amount of received data samples and
extensive computation to estimate higher order cumulants. The third
family of blind adaptive algorithms uses some blind approximations
of the maximum likelihood sequence estimation (MLSE) to perform
a joint channel and data estimation [9]–[12]. The resulting blind
equalizers are therefore computationally very expensive. A major
advantage of this third approach is that relatively few signal samples
are required to achieve the equalization objective.

When both the channel and transmitted data sequence are unknown,
in theory, their optimal estimates can be obtained via the maximum
likelihood (ML) optimization over channel and data jointly. The
computational requirement of such a joint optimization procedure
is, however, prohibitively large. In practice, approximations are
adopted. A straightforward way is to employ a batch iterative process
between data decoding and channel estimation [9]. Seshadri [10]
presented a recursive algorithm for joint channel and data estimation.
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This algorithm may be viewed as an “enhanced” Viterbi algorithm
(VA) that retains several surviving sequences and associated channel
estimates for each state of the trellis. The quantized channel algorithm
[11] is a batch procedure that maintains a family of candidate channels
with discrete parameters. Each channel model is used by the VA
to decode data, and the algorithm selects the most likely quantized
channel. In this correspondence, we propose a novel scheme for
joint channel and data estimation using genetic algorithms (GA’s)
[13]–[16].

We develop a two-layer strategy for joint optimization over channel
and data by combining the GA with the VA. At the top layer, an
efficient version of GA known as the micro-GA (�GA) [15] searches
the channel parameter space to optimize the ML criterion. The bottom
layer consists of a number of VA units: one for each member of the
channel population. Each VA unit decodes data based on the given
channel model and feeds back the corresponding likelihood metric
value to the GA. The performance of this GA scheme is investigated
in a simulation study. The results obtained clearly demonstrate that
the GA-based scheme has superior performance over other existing
methods for joint channel and data estimation.

II. M AXIMUM LIKELIHOOD BLIND EQUALIZATION

Throughout this study, the channel is modeled as a finite impulse
response filter with an additive noise source [17]. Specifically, the
received signal at samplek is given by

r(k) =

n �1

i=0

ais(k � i) + e(k) (1)

where

na channel length;
ai channel taps;
e(k) Gaussian white noise with zero mean and variance�2e ;

and the symbol sequencefs(k)g is independently identically dis-
tributed with a variance�2s . We will assume that the multilevel pulse
amplitude modulation (M -PAM) scheme is used. The signal-to-noise
ratio (SNR) of the system is defined as

SNR= �
2

s

n �1

i=0

a
2

i =�
2

e : (2)

Joint channel and data estimation can be performed based on the
ML criterion. Let

r = [r(1)r(2) � � � r(N)]T

s = [s(�na + 2) � � � s(0)s(1) � � � s(N)]T

a = [a0a1 � � � an �1]
T (3)

be the vector ofN received data samples, the transmitted data
sequence, and the vector of channel taps, respectively. The probability
density function of the received data vectorr conditioned on the
channel impulse responsea and the symbol vectors is

p(rja; s) =
1

(2��2e)
N=2

� exp �
1

2�2e

N

k=1

r(k)�

n �1

i=0

ais(k � i)

2

: (4)

The joint ML estimate ofa ands is obtained by maximizingp(rja; s)
over a ands jointly. Equivalently, the ML solution is the minimum
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of the cost function

J(a; s) =

N

k=1

r(k)�
n �1

i=0

ais(k � i)

2

(5)

over a and s, that is

(a
�

; s
�

) = arg min
a; s

J(a; s) : (6)

Two special cases of the ML solution(a�; s�) are well known. When
a training sequence is available, the ML estimate of the channela is
the usual least squares solution. The MLSE for the data sequences

when the channel is known can be obtained using the standard VA.
When neithera nor s are known, in theory, the joint ML estimate

(a�; s�) can be obtained. However, such an optimal solution is
too expensive to compute, except for the simplest case. In practice,
suboptimal solutions are adopted for computational purposes. The
algorithm based on a blind trellis search technique [10] is such an
example. In the standard VA with the known channel, one surviving
sequence is retained for each state of the trellis. When the channel is
unknown, an enhanced VA is adopted that retainsm > 1 surviving
sequences for each state of the trellis. Each of thesem surviving
sequences is used to adapt a channel model. This enhanced VA
decoding andm-channel estimation process can be implemented
recursively.

The joint minimization process (6) can also be performed using
an iterative loop first over the data sequencess and then over all the
possible channelsa

(a
�

; s
�

) = arg min
a

min
s

J(a; s) : (7)

The inner optimization can be carried out using the VA. In order
to obtain the true optimal solution, the outer optimization must be
performed over all the possible channelsa, the complexity of which
is generally prohibitive. Suboptimal solutions are usually sought by
constraining the search to a finite set. For example, the quantized
channel algorithm [11] uses a family of2n quantized channels. GA’s
are natural choices for performing the outer optimization in (7) since
they can search the channel space efficiently with a finite population.

III. GENETIC ALGORITHMS

The first step in applying GA’s is to encode the parameters to be
optimized. We use the popular binary encoding scheme [13]. A simple
GA usually consists of three operations, namely, selection, crossover,
and mutation [14], at each cycle. An “elitist” strategy [16], which
automatically copies a few of the best solutions in the population
into the next generation, is often incorporated. Two commonly used
methods of selection are the proportional and tournament selections
[14], [15]. In the crossover operation, we adopt multiple crossover
points [14], and the number of crossover points in our application is
equal to the number of the parameters.

For many engineering problems, the goal is to find a global
optimum solution as quickly as possible rather than a good average
performance of potential solutions. For this purpose, the so-called
�GA [15] seems to offer certain advantages. The population size used
in a�GA is much smaller than that used in “standard” versions of GA.
Simply adopting a very small population size and letting the search
converge just once, however, is not very useful apart from quickly
allocating some local optimum. Therefore, in a�GA, after the search
has converged, the population is reinitialized with random values,
whereas the best individual found up to that point is automatically
copied to the newly generated population. The reinitialization is
repeated until no further improvement can be achieved.

A population size of five was suggested in [15] for the�GA.
Generally speaking, however, the more complex the search space is,
the larger the population size should be. An appropriate population
size also depends on the application problem. In our application,
the population sizenp is given by np = 5 � na, where na is
the channel length. This is still considerably smaller than a typical
population size used by standard GA’s. In our�GA implementation,
the crossover rate is set to 1.0 to facilitate a high rate of information
exchange, whereas the mutation rate is set to 0.0 (no mutation) as the
reinitialization of the population will keep the diversity of potential
solutions fairly well. Another consequence of small population size
is the method of selection. Due to the small population size of�GA,
the law of averages does not hold well, and the tournament selection
is used in choosing parents for reproduction.

IV. GAS FOR JOINT CHANNEL AND DATA ESTIMATION

The proposed scheme, consisting of a�GA and np VA units,
involves an initialization phase and two loops. In the initialization,
a set of channel modelsfâig

n

i=1 is randomly chosen, and the best
channel vector found up to that pointâRec is randomly selected from
the initial population. It is assumed that each channel model in the
population is normalized according to

n �1

i=0

a
2

i = 1:0: (8)

This is realistic since the channel energy(
n �1

i=0
a2i )�

2

s can always
be estimated, and�2s is known. The search range for each parameter
is, therefore,(�1; 1). The inner loop of the�GA-based scheme is
summarized as follows.

Step 1) For1 � i � np, the ith VA unit decodes data based on
given âi and feeds back the likelihood metric, which is
the fitness function valuefi corresponding tôai.

Step 2) Letfbest be the best fitness value of the current popula-
tion, and let the corresponding channel model beâbest.
If

n

i=1

(fbest � fi) < �fbest (9)

the inner loop is terminated, where� is a predefined small
positive constant. Otherwise, a new generation offâig

n

i=1

is produced, and the algorithm goes back to Step 1.

After the convergence of the inner loop, the convergence of the
overall process is tested. If

kâbest � âReck < �
p
4na (10)

the outer loop is terminated, where the small positive scalar� defines
the search accuracy, and

p
4na is the Euclidean norm of the search

space [as the search range for each parameter is(�1; 1)]. Otherwise,
the population is reinitialized,̂aRec is reset toâRec = âbest, and
the inner loop restarts. It is possible that a reinitialization of the
population may sample the same regions of the search space as the
previous population did. To increase the chance of converging to a
global optimum, the outer loop test can be amended as follows: The
overall process has converged only if the test (10) has been satisfied
for several consecutive times.

Convergence properties of the proposed�GA scheme are ex-
tremely difficult to analyze due to the highly complex nature of
the underlying optimization problem (7). Since GA’s are global
optimization techniques, our method is more likely to find a global
optimal solution than the methods of [9] and [11]. Strictly speaking,
it can only be said thaton average, the�GA converges to a global
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optimum because of the probabilistic nature of the�GA. It does
not guarantee that, for any particular realization of the noisy signal
r and any particular run of the�GA, convergence to an optimal
solution of the ML joint channel and data estimation can always be
ensured. In our simulation study, however, we have not encountered
a nonconvergent case.

Let CVA be the complexity of the VA required to decode a data
sequence ofN samples, and letNVA be the total number of VA calls
required for the�GA algorithm to converge. The complexity of the
�GA-based scheme is obviouslyNVA � CVA. This is considerably
more than Seshadri’s algorithm. Our experimental results suggest that
a population sizenp of around5� na for the�GA implementation,
rather thannp = 5, is appropriate for our application. This population
size is smaller than that used by the quantized channel algorithm
[11]. For 2-PAM problems, the quantized channel algorithm requires
a family of 2n channel models. A straightforward application of
the quantized channel algorithm toM -PAM problems would require
a family of Mn channel models, which would be impractical
to compute for high-orderM . Therefore, a reduced constellation
approach has to be adopted in order to maintain a family of2

n

channel models. Our�GA-based method does not need to adopt a
reduced constellation approach.

V. SIMULATION STUDY

Computer simulation was conducted to test the proposed�GA
scheme using three channels taken from [17]. The impulse response
of these three channels is given by

Channel 1

Channel 2

Channel 3

a = [0:407 0:815 0:407]
T

a = [�0:21�0:50 0:720:36 0:21]T

a = [0:227 0:4600:6880:4600:227]
T (11)

respectively. In practice, the performance of the algorithm can only
be observed through the best estimated mean square error (MSE)
defined by

MSE=
1

N

N

k=1

r(k)�

n �1

i=0

~ai~s(k � i)

2

(12)

where âbest = [~a0~a1 � � � ~an �1]
T is the most likely channel model

in the population, and~s = [~s(�na + 2) � � � ~s(1) � � � ~s(N)]
T is the

ML sequence associated witĥabest. In simulation, the performance
of the algorithm can also be assessed by the mean tap error (MTE)

MTE = k � âbest � ak2: (13)

In (13),�âbest is used ifâbest converges to�a. Otherwise,̂abest is
used. This is necessary as the most likely channel model can converge
to eithera or �a.

Figs. 1–6 depict the MTE performance versus the number of VA
evaluations for the three channels in (11) with 2-PAM and 8-PAM
symbols and different noise levels, respectively. These results were
obtained assuming the correct channel lengthna and were averaged
over 100 different runs. Compared with the results of using the
quantized channel algorithm given in [11], our�GA scheme required
a smaller number of VA evaluations to achieve a same level of MTE
performance. The final results obtained by the�GA method were
also more accurate, particularly for high-order PAM. Table I shows
the means and variances of the MSE and MTE over 100 runs for
channel 1. The convergence of our�GA scheme is consistent, as is
evident from the very small variances of the MSE and MTE.

Seshadri’s algorithm [10] is regarded as one of the best methods
for joint channel and data estimation. A performance compari-
son between our�GA method and Seshadri’s algorithm is not

Fig. 1. Mean tap error as a function of VA evaluations averaged over 100
different runs. Channel 1, 2-PAM and the number of data samplesN = 50.

Fig. 2. Mean tap error as a function of VA evaluations averaged over 100
different runs. Channel 1, 8-PAM and the number of data samplesN = 100.

Fig. 3. Mean tap error as a function of VA evaluations averaged over 100
different runs. Channel 2, 2-PAM and the number of data samplesN = 100.

Fig. 4. Mean tap error as a function of VA evaluations averaged over 100
different runs. Channel 2, 8-PAM and the number of data samplesN = 300.

straightforward as the former is a batch algorithm and the latter a
recursive algorithm. Nevertheless, we compare the accuracy of the
two methods. Tables II and III summarize the MTE performance
and the number of received data samples used for the two methods.
The results of Seshadri’s algorithm were estimated from the graphs
in [10], which were also obtained by averaging over 100 runs. Our
�GA method is clearly much more accurate, particularly for high-
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Fig. 5. Mean tap error as a function of VA evaluations averaged over 100
different runs. Channel 3, 2-PAM and the number of data samplesN = 100.

Fig. 6. Mean tap error as a function of VA evaluations averaged over 100
different runs. Channel 3, 8-PAM and the number of data samplesN = 200.

TABLE I
RESULTS (MEANS � VARIANCES) FOR CHANNEL 1 AVERAGED OVER 100 RUNS

TABLE II
PERFORMANCE COMPARISON. 2-PAM AND SNR= 10 dB

TABLE III
PERFORMANCE COMPARISON. 8-PAM AND SNR= 30 dB

order PAM. This advantage is, of course, obtained at the cost of
computational complexity.

In reality the channel length is unknown and has to be estimated.
A simple and effective solution is to run the�GA method with a set
of different lengths. It is obvious that if the channel length used by
the �GA scheme is the true channel length, the MSE provided by
the algorithm will reach a minimum value. In this way, the correct
channel length can be identified. Figs. 7 and 8 illustrate the MSE

Fig. 7. Mean square error as a function of estimated channel length averaged
over 100 different runs. Channel 1, 4-PAM and the number of data samples
N = 100.

Fig. 8. Mean square error as a function of estimated channel length averaged
over 100 different runs. Channel 2, 2-PAM and the number of data samples
N = 100.

versus the estimated channel length. As expected, when the estimated
channel length is correct, the MSE curve achieves the minimum.

VI. CONCLUSIONS

A batch method using the GA has been developed for blind
equalization based on the ML joint channel and data estimation. Com-
pared with other batch-type methods, such as the quantized channel
approach, the GA-based scheme is more accurate and computationally
more efficient in terms of the total number of required VA evaluations.
Our simulation study has demonstrated that the GA-based scheme
requires less received data samples to achieve much more accurate
blind equalization results at the expense of computational complexity,
compared with the best recursive blind trellis search technique.
Simulation results have also shown that our GA-based method
converges consistently with very small estimation variances.

REFERENCES

[1] Y. Sato, “A method of self-recovering equalization for multilevel
amplitude-modulation systems,”IEEE Trans. Commun.,vol. COMM-23,
pp. 679–682, 1975.

[2] D. Godard, “Self-recovering equalization and carrier tracking in two-
dimensional data communication systems,”IEEE Trans. Commun.,vol.
COMM-28, pp. 1867–1875, 1980.

[3] J. R. Treichler and B. G. Agee, “A new approach to multipath correction
of constant modulus signals,”IEEE Trans. Acoust., Speech, Signal
Processing,vol. ASSP-31, pp. 459–472, Apr. 1983.

[4] G. Picchi and G. Prati, “Blind equalization and carrier recovering using
a stop-and-go decision-directed algorithm,”IEEE Trans. Commun.,vol.
COMM-35, pp. 877–887, 1987.

[5] K. S. Lii and M. Rosenblatt, “Deconvolution and estimation of transfer
function phase and coefficients for non-Gaussian linear processes,”Ann.
Statist.,vol. 10, pp. 1195–1208, 1982.

[6] H.-H. Chiang and C. L. Nikias, “Adaptive deconvolution and identifi-
cation of nonminimum phase FIR systems based on cumulants,”IEEE
Trans. Automat. Contr.,vol. 35, pp. 36–47, 1990.



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 5, MAY 1998 1473

[7] D. Hatzinakos and C. L. Nikias, “Blind equalization using a tricepstrum-
based algorithm,”IEEE Trans. Commun.,vol. 39, pp. 669–682, May
1991.

[8] F.-C. Zheng, S. McLaughlin, and B. Mulgrew, “Blind equalization of
nonminimum phase channels: Higher order cumulant based algorithm,”
IEEE Trans. Signal Processing,vol. 41, pp. 681–691, Feb. 1993.

[9] M. Ghosh and C. L. Weber, “Maximum-likelihood blind equalization,”
in Proc. SPIE,San Diego, CA, 1991, vol. 1565, pp. 188–195.

[10] N. Seshadri, “Joint data and channel estimation using blind trellis
search techniques,”IEEE Trans. Commun.,vol. 42, pp. 1000–1011,
Feb./Mar./Apr. 1994.

[11] E. Zervas, J. Proakis, and V. Eyuboglu, “A quantized channel approach
to blind equalization,” inProc. ICC, Chicago, IL, 1992, vol. 3, pp.
351.8.1–351.8.5.

[12] J. G. Proakis, “Adaptive algorithms for blind channel equalization,” in
Proc. 3rd IMA Conf. Math. Signal Process.,Univ. Warwick, Warwick,
U.K., 1992.

[13] J. H. Holland, Adaptation in Natural and Artificial Systems.Ann
Arbor, MI: Univ. Michigan Press, 1975.

[14] D. E. Goldberg,Genetic Algorithms in Search, Optimization, and Ma-
chine Learning. Reading, MA: Addison-Wesley, 1989.

[15] K. Krishnakumar, “Micro-genetic algorithms for stationary and nonsta-
tionary function optimization,” inProc. SPIE Intell. Cont. Adapt. Syst.,
1989, vol. 1196, pp. 289–296.

[16] L. Yao and W. A. Sethares, “Nonlinear parameter estimation via the
genetic algorithm,”IEEE Trans. Signal Processing,vol. 42, pp. 927–935,
Apr. 1994.

[17] J. G. Proakis,Digital Communications. New York: McGraw-Hill,
1983.


