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Asymptotic Bayesian Decision Feedback Equalizer
Using a Set of Hyperplanes

Sheng ChenSenior Member, IEEBBernard MulgrewMember, IEEEand Lajos Hanzo

Abstract—We present a signal space partitioning technique for is well known that the optimal solution for the symbol-deci-
realizing the optimal Bayesian decision feedback equalizer (DFE). sion finite-memory equalizer structure with a fixed delay is the
It is known that when the signal-to-noise ratio (SNR) tends to in- Bayesian DFE [11], [17], and this equalization solution has an

finity, the decision boundary of the Bayesian DFE is asymptotically ivalent f ¢ dial basis functi work. Th
piecewise linear and consists of several hyperplanes. The proposeaequ'va ENLIOMM 10 a radial DasIS IUNCLON NEIWOTK.The Compu=

technique determines these hyperplanes explicitly and uses themtational complexity of the Bayesian DFE is, however, consider-
to partition the observation signal space. The resulting equalizer ably more than that of the simple linear-combiner DFE. Various
is made up of a set of parallel linear discriminant functions and neural network equalizers can be regarded as realizations or ap-

a Boolean mapper. Unlike the existing signal space partitioning ,ximations of this Bayesian solution with various degrees of
technique of Kim and Moon, which involves complex combina- complexity

torial search and optimization in design, our design procedure is . . .
simple and straightforward, and guarantees to achieve the asymp- ~ Geometrically, the conventional DFE partitions the observa-

totic Bayesian DFE. tion space with a hyperplane. The optimal Bayesian decision
Index Terms—Asymptotic decision boundary, Bayesian decision boundary, however, is a hypersurface in the observation Spf”lce
feedback equalizer, signal space partition. [11]. It can be shown that asymptotically, as the SNR tends to in-

finity, the Bayesian hypersurface becomes piecewise linear and
is made up of a set of hyperplanes [18]. In practice, at large
|. INTRODUCTION rather than infinite SNR, the performance difference between
QUALIZATION technique plays an ever-increasing rold3ayesian decision boundary and a piecewise linear approxima-
E in combating distortion and interference in communicdion is negligible. This motivates research using multiple hyper-
tion links [1], [2] and high-density data storage systems [3planes to partition the signal space. Kim and Moon [19], [20] re-
[4]. The equalization topic is well researched, and a variety oéntly developed a signal space partitioning technique for equal-
solutions are available. The maximuarposterioriprobability ization. This technique basically determines a set of hyperplanes
(MAP) sequence detector [5]-[7], although providing the lowe#hat separate clusters of noiseless channel states or signals. A
bit error rate (BER) attainable, finds little application in praccombinatorial search and optimization process is carried out to
tice due to it computational complexity. The more popular sénd these hyperplanes, which requires extensive computational
guence detector is the maximum likelihood sequence estingdforts. The convex regions associated with individual channel
tion (MLSE) based on teh Viterbi algorithm [8], which is stillstates are constructed by appropriately intersecting hyperplanes.
computationally expensive and requires a sufficiently long d&he overall decision region is then formed from these convex re-
cision delay to guarantee the optimal or near optimal perfagions.
mance. Many practical techniques employ a symbol-decisionKim and Moon’s design method results in an equalizer
finite-memory structure with a fixed delay and are based @tructure consisting of parallel linear discriminant functions
adaptive linear filter algorithms [1] with very low complexity.and a many-to-one Boolean mapper. The decision complexity
In particular, the conventional or linear-combiner DFE offergand performance of the detector are controlled during design
acceptable performance in many practical situations. by a specified minimum separating distance. Although it is
The BER gap between the MLSE and the conventional DRBSssible to achieve the asymptotic Bayesian solution by an
for practical SNR conditions is large, and recent research appropriate choice of the minimum separating distance, this
neural network equalizers [9]-[15] has attempted to fill in this by no means guaranteed as the combinatorial search and
gap and to strike a good balance between performance and coptimization process does not necessarily produce the set
plexity. A discussion on why it is worth considering the appliof hyperplanes that form the asymptotic Bayesian decision

cation of neural networks to equalization is given in [16]. lpoundary.
In this paper, we propose a much simpler alternative design.
Specifically, the set of hyperplanes that form the asymp-
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and definitions. The proposed new signal space partitioniagd them x (d + 1 + n) channel impulse response matfix
technique is presented in Section lll. Simulation results ahas the form
provided in Section 1V, and concluding remarks are given in

Section V. F=[n B ()

with them x (d+ 1) matrix £; andm x n matrix F» defined by
Il. BAYESIAN DECISION FEEDBACK EQUALIZER

We will assume that the channel is modeled as a finite impulse o m a1
response filter with an additive noise source. Specifically, the 0 a X :
received signal at sampleis = (8)
Do ay
Ng—1
(k) =7(k) +e(k) = 3 as(k—d)+ek) () L0 0 ao
= and
0 0 0 7
where
7(k) noiseless channel observation; Ono—1 0
g channel length; _ .
a; channel tap weights; 2= an,—2 an ' 0 1 ®)
{e(k)} Gaussian white noise sequence having zero mean : 0
and variances?; '
{s(k)} independently identically distributed symbol se- L @ T Ong—2 Gng—1 ]
quence and is uncorrelated wittk). Past decisions on the symbais: — d — ), 1 < i < n are
The SNR of the system is defined as used to cancel intersymbol interference terms from observation
_— samples. In this process, past decisiéfis— d — i), 1 < i <
(X 2\ o, 2 n are assumed to be correct. Under this assumpsigit,) =
SNR= <§% ai> 0% /o7 ) & (k), and

wheres? is the symbol variance. In this study, for the purpose of

easy geometrical visualization, we will assume that the channg{ys, the decision feedback can be viewed as a translation of
is real-valued and that the transmitted symb@t) is binary, the original space(k) into a new space’(k):
taking value from the sgtt-1}. There is no difficulty, however,
to apply the current results to complex-valued channels and mul- r'(k) £ r(k) — Fa8, (k). (11)
tilevel signaling schemes. )

The structure of a generic DFE is depicted in Fig. 1. THeetz *{} be the unitdelay operator. The elements'¢;) can
equalization process defined in Fig. 1 uses the informati&¢ Computed recursively according to

present in the channel observation vector = 1) = 2= (= i+ 1) — an 80k — d— 1)
(k) =r(k). (12)

and the past detected symbol vector ) ) .
The DFE structure of Fig. 1 is therefore equivalent to the equal-

So(k) = [8(k —d—1), -, 4k — d — n)]* 4) ization structure of Fig. 2.
(k) = [ ) ( ) ) Let the Ny = 24+! sequences or states of(k) bes; ;,
to produce an estimaték — d) of s(k — d), where the integers 1 < j < Ny. Define the set of the noiseless channel states in
d, m, andn are the decision delay and the feedforward arffi€ translated space by
feedback orders, respectively. Without the loss of generality, we A .
: . : =lir; = i, 1<ji< .
will choosed = n,—1, m = n, andn = n,—1 as this choice of R={r;=Fisp; 1< < Ny} (13)
the DFE structure parameters is sufficient to guarantee the ling@jis set can be partitioned into two subsets conditioned ba
separability (see Proposition 1 in this section). The observatigy — 41
vector (3) can be arranged as

R 2 {r; € R: s(k — d) = +1}. (14)
r(k) = F's(k) +e(k) (5) - .
We have the following linear separability property.
where e(k) = [e(k), -, e(k — m + D7, s(k) =  Proposition 1: R® andR(~) are linearly separable.
[sT(k)sT (k)] with The proof is straightforward. Choose the weights of a hyper-

planeH(r) = wir = 0 to be

sp(k) = [s(k), -+, s(k — d)* _ 1
sf(k)z[s(k—d—l),---,s(k—d—n)]T} ©) WT_[O"”’O’ a_o}' (15)
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The decision boundary of this Bayesian DFE

Dp = {r: fp(r) = 0} (18)
decision | (k) is generally a hypersurface. Before describing the asymptotic
device Bayesian decision boundary for SNR oo (or 02 — 0), we

introduce the following definition.
Definition 1: A pair of opposite-class statést), r(=)) is
said to bedominantf Vr; € R, r; #r™®), r; # r(:

[ = rol* > [|r) — ro|? (19)
where
(+) (=)
ro = % (20)

Proposition 2: Asymptotically, the decision bounda® g
is piecewise linear and made up of a set of hyperplanes. Each
of these hyperplanes is defined by a pair of dominant channel
states, and the hyperplane is orthogonal to the line connecting
the pair of dominant states and passes through the midpoint of

the line.
filtering Proof: Considerfs(r) = 0. Aso? — 0, lltis [18] has
J/ 7 shown that a necessary condition for a paipte Dp is
+ - + -7+
decision rp = x40 v - (21)
device 2 2
> 1 wherex denotes an arbitrary vector in the subspace orthogonal

tox, r(*), andr(~) are a pair of dominant states; the sufficient
conditions forrg € Dy are

n JESE A
s(k-d) s(k-d-1)

Fig. 2. Translated decision feedback equalifes the decision variable. ‘ rg — ) 2 <|rs — I‘i||2, Vr; € R(+), r; # rH
Foranyr(t) ¢ R andr(™) ¢ R(™), we havew’r(t) = 1 > y (22)
0andw’r(-) = -1 < 0. ‘ rg— || <|rp—r;|% Vr; € RO, r; #r?)

Proposition 1 states a well-known fact that it is always (23)
possible to construct a single hyperplane to correctly sepa- 2
rate opposite-class channel states. What is interesting is tr?atB — D =|rs -2 (24)

the weight vector (15) is the limit of the minimum meary,

square error (MMSE) solution for the conventional DFE with Remark 1: The section of the decision boundaPy; within
SNR— oo [21]. This implies that the MMSE solution does noy, “influencing domain” of a dominant p&ir(+), r()), as de-
g(l::héev: thet full petrfor:nan(_:e Ipotent_tlal IOL the Ilrlwear-;:ombllr_l%ed by (22) and (23), is a section of the hyperplane that passes
th - nowlo CBOIQFSR rluc asing E_OP IEEE )h/perg ane (()j(;ea 'Ztﬁéoughthe midpoint of the line connecting the pair, as indicated
. elenlmdurgz inear-combiner as been addressi (21) and (24). Although the boundary described in Proposi-
n '[I'h ] ?n [ 1.‘ | solution for th lizati truct t'ton 2 is only exact in the limit case of infinite SNR, our empir-

_'he frue optimal solution Tor the: equaiization SIUCIUTe gl experience, and others such as [18], have shown that for the
Fig. 2, _howeve_r, cannot be realized using a sm_gle hyper_pla \Rs on the order of 10—20 dB, the true Bayesian bouriiary
Assummg eqylprobable channgl states, f[he optimal SOIUt'O_n grclosely approximated by the asymptotic multiple hyperplane
the equalization structure of Fig. 2 is given by the foIIowmgorm and the two forms are often indistinguishable

roposition 2 follows as a direct consequence.

Bayesian decision function [11], [15]: Remark 2:1t should be emphasized that the pairs

s I Ik ) (r™), r(=)) needed to define the boundary hyperplanes
fo(d'() =" > ew < r'(k) —x; H /20€> are only a subset of all the possible signal states or the
e eRH generic channek = [ao, a1, - -+, a,,_1]%, itis impossible to

12 determine a theoretic bound for the number of the dominant
- Z exp <— r’(k)—rg» )H /202) : o
€ pairs L. Empirically, we have found that usually; < N;
r{) CRO for n, > 2. In addition, L always appears to be odd. For the
(16) two-tap channel with the DFE structure defined oy = 2,
d = 1, andn = 1, it can easily be shown that the asymptotic
Bayesian boundary consists of either a single hyperplane or
Sk —d)y = {—i-l, fB(r'(k)) >0 17) three hyperplanes, and there is no other possibility. Two typical
-1, fg(r'(k)) <O. scenarios fon, = 2 are depicted in Fig. 3.

with the minimum-error-probability decision defined by
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dominant pair

{+) (+)
T I
1 2 (k-d)

()

Boolean Mapper

hyperplane

Fig. 4. Asymptotic Bayesian DFE using a set of hyperplanes.

Each pair(r§+), r§—>) € Rasym determines a hyperplane

(b) H(r)=wir+b =0 (25)

that is a part of the asymptotic Bayesian decision boundary. The
weight vectomw; and biag; of the hyperplane can be computed
straightforwardly as

Fig. 3. Two typical cases of the asymptotic Bayesian decision boundary for 2 (r§+) - rg_))
channela = [aq, a,]7. Wi=—_—"—"""3 (26)
i 7]
lll. A symPTOTIC BAYESIAN DFE USING HYPERPLANES and .
_ _ o . (r§+) _ rg—)) (r§+) + r(—))
In a previous work [23], the Bayesian solution is approxi- by =— 27)

mated by only using the set afdominant state pairs, which de-
termine the asymptotic Bayesian decision boundary, in the com-
putation of the Bayesian decision variable (16). In this studiotice that we have applied the theory of support vector ma-
we consider using the multiple-hyperplane detector structuredffines E22], [24], [25] in determining the hyperplaig with

Kim and Moon [19], [20] (see Fig. 4) to realize the asymptoti(;r§+), rl_)) as its two support vectors. That is, the hyperplane
Bayesian DFE. Our design procedure for constructing the d¢efined by (26) and (27) is @anonicalhyperplane [24] having
tector, which is very different from that of Kim and Moon, is aghe propertyHl(r§+)) =1 andHl(rg’)) = —1. Let us intro-
follows: duce the definition of sufficient separability.

Step 1) Select alL pairs of dominant channel states from Definition 2: A stater; € R is said to besufficiently sepa-
the state sek. For each pair, compute a hyperplanéab|e by the hyperplané?; if H; can separate; correctly with
that separates these two opposite-class states. & “canonical distancerw!Tri + 0| = 1. .

Step 2) A Boolean logic function is obtained to make a final Notice thatr; & R is sufficiently separable byf; if and
decision based on the location of the observatigly if w/'r; +b > 1. Similarly, r; € R is sufficiently
vector relative to each hyperplane. This is achieveggparable byd; if and only if wj'r; + b < —1. All the states
by first defining a convex region associated withn £ are tested to see they can be separated sufficiently;by

each state in a given class and then forming a unign< ! < L. This generates the following matrix:

2
e

of these regions. (=) (=) (-) +) +)
.. .. . . (I‘l I‘2 T r]\r rl Tt r]\r )

From the proof of Proposition 2, it is easily seen that pairs s s
of dominant states that define the asymptotic boundary can be ry rp -~ Iy, TN41 0 TNy
selected using the following algorithm: H, hii hio - hin, hinor - hiw
s s PEAR] IRAN] s AV S
H, h2, 1 h2, 2 e h2, N, h2, Ny+1 " h2, Ny

= 0 H hoi h hix. hia h

FOR r§+) e R L L,1 L,2 " LN, RLN+1 - RL N,

FOR r'™ ¢ RO whereh;; € {0,1}, Ny = N;/2, and states are numbered

‘= rr) ||1“(+) x| such thatr; € R(-) for1 < ¢ < N, andr; € R™) for
= —(f) ; 277 = |lr; G - ) 14+ N, < i < Nj;. The rule in generating this matrix is as
IF (e, =x|* >n,¥r, ™" € R, 1 #4) AND follows: If r; can sufficientlybe separated byd;, h;; = 1;
(e = %[> >, ve{™ € RO, 14 ) otherwise ; ; = 0. Notice that in every row, there are at least
L+ =1 A two nonzero elements (associated with a dominant pair), and in
Ragym — (P(LJF)’ P(rf)) = (rgﬂ’ PJH)? every column, there is at least one nonzero element.
END IF The half-spacé{l(J’) defined by a hyperplang; is

NEXT r{™
NEXT r{™ HP 2 {r: H(r) > 0}. (28)
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To construct a convex regio’REJ’) corresponding to a state TABLE |
(+) + . _MATRIX OF SEPERATING HYPERPLANES ANDCHANNEL STATES FORTHE
r; e(f; ), select those hyperplanes that can sufficiently sep EXAMPLE GIVEN IN FIG. 3(b)
arater,”’ and denote
A hyperplane r(f) rgf) rgﬂ r§+)
G 2l hy iy, = 1) (29) 7, T 01 I
) ) H, 0o 1|1 o0
Then,R;"" is obtained by the intersection of all th€;"” with Hs i 1|0 1
jeam
TABLE I
rR(-I-) — ﬂ H(+) (30) COMPARISON OFDECISION COMPLEXITY FOR THE CONVENTIONAL DFE, FULL
K 77 BAYESIAN, AND OUR MULTIPLE-HYPERPLANE DETECTORS L (USUALLY
jEGf.+> <K 2”‘1) IS THE NUMBER OF HYPERPLANES AND 1, IS THELENGTH OF
CHANNEL IMPULSE RESPONSE THE DFE STRUCTURE IS CHOSEN TOBE
In fact, it may not be necessary to use every hyperplanes defined m=ned=mns—1,ANDR =n, -1
in ) (+ ;
in G;" to constructk,;" . A subs+e)t of these hyperplanes will Full Bayosian | Multiplo-hyperplanc | Conventional
be enough in the constructlonﬁiﬁ , provided that every state - detector detector DFE
in R(-) can sufficiently be separated by at least one hyperpland 2 pications i"“;;jj e Xl e
in the subset. The overall decision regiBft) associated with Others T exp() Togic ANDs < 77T .
the decisioni(k — d) = 1 is simply formed as the union of all function evaluations a logic OR
the REJ’)

~ procedure is summarized in the Appendix, where it can be seen

R — U R (31) that a combinatorial search process with nonlinear gradient
et ’ optimization and integer programming is performed to find

a set of separating hyperplanes, given a specified minimum

For an illustration, consider Fig. 3(b). It is easily seedistance. Their design procedure therefore requires extensive

thatH1(r(7)) = -1, H1(r§7)) > 0, Hl(r§+)) = 1, and computation. Furthermore, their procedure is not guaranteed to
Hl(r§+)) > 1. Thus,hi1 = his = hiy = 1, andh;» = 0. converge to the infinite-SNR asymptote of the optimal Bayesian
The complete matrix of the separating hyperplanes and chandelector. The performance of their detector will generally lie
states is given in Table I. From Table I, it can be seen thiag¢tween the conventional DFE and the asymptotic Bayesian
the stater§+) requires two hyperplane&l; and H, to be DFE, depending on the specified minimum distance in the

separated from the statesii~). The regionR{" for r{?) is design.

the intersection of the two half Spacﬁgﬁ) and’}—[§+) defined  Table Il compares decision complexity for the conventional

by H, and Ha. The hyperplandds can separateé” fromthe PFE the full Bayesian DFE, and our multiple-hyperplane de-

states inkR(—). The regionRgJ’) for rg+) is thus the half-space fcector. The conventional DFE has the lowest complexity as it

+) . - () is made up of a single hyperplane. Our detector generally has
H?’, defm(eg byHg.('I+')he overall decision regioR"*” is the much simpler decision complexity than the full Bayesian de-
union of R;™" andRy"".

2 . . tector since usuallyl. < V. Obviously, the decision com-
_The _Boolean logic functlon_ for the detector depicted iBlexity of Kim and Moon’s multiple-hyperplane detector can
Fig. 4 is now completely defined. Let a threshold detectgjy simijar to the conventional DFE or similar to or higher than
output3;(r'(k)) for a linear discriminant functiod?;(r'(k)) oy detector, depending on the actual number of hyperplanes se-
have Boolean logic value 1 or 0 depending®(k) € H](»J’ lected in the design.

or not. A Boolean logic valuéEJ’)(r’(k)) indicating whether

r'(k) € REJ’) or not is obtained via a logiaND operation IV. SIMULATION RESULTS

of {3;(r'(k)): j € GEH}-_A Boolean logic value indicating  Tyo channels were used to demonstrate the proposed new
whethen’ (k) € R [that is, 3(k — d) = 1] or notis obtained  signal space partitioning technique. The BER performance of
via a logicor operation of{ 6" (r'(k))} for all i. This detector the multiple-hyperplane detector was compared with those of
achieves, asymptotically, the optimal Bayesian performang full Bayesian DFE and the conventional MMSE DFE. Ex-
since it realizes exactly the asymptotic Bayesian decisi@@pt otherwise explicitly stated, all the BER results were ob-
boundary. tained with detected symbols being fed back.
) In Oll" desfign,hthe bdetermination of appropriate muIti.pIﬁ Channel A: The impulse response was specified by
yperplanes for the observation space partitioning is straight-
forward. The required number of hyperplankss specified a=[ao, a1, az]" = [0.4, 0.7, 0.4]". (32)
by the asymptotic Bayesian decision boundary and, therefofdie structure parameters of the DFE were accordingly set to
is defined by the channel impulse response. The algorithm = 3, d = 2, andn = 2. The channel state sét had
automatically selects the set éf hyperplanes, which specify eight states. The algorithm selected five hyperplanes. The ma-
the asymptotic Bayesian decision boundary, with very loftix of the separating hyperplanes and channel states is listed in
computational efforts in this design stage. This should @@ble Ill. The required Boolean logic function was easily ob-
compared with Kim and Moon’s signal space partitioningained using Table 1ll. The staluf’) requires the two hyper-
technique [19], [20]. For purposes of comparison, their designanesH; and H» to be separated from all the opposite-class
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stateskR(, and therefore, the convex regi®{™ for r{* is TABLE I
the intersection of the two half spaces™ and #{". The MATRIX OgHSAENPNEjL“R.N;'ﬁiﬂpi”{’;‘&?i’gﬂ?ﬁg‘i?‘y“riiﬁms FoR
statesrS™ andr{" are separated fromk(=) by the two hy- ’
perplanesH; and H. Thus,RSY = Rt is the intersection hyperplane RO R
of the half spaces(§" andH(J’% The stater(*) is separated by 1;111 (1) (1) (1) (1) i é (1) (1)
the single hyperplan& 5 from all the opposﬂe-class states, and Hz 11100111
the convex regioR|™ for r{™ is the half-spacé{™ defined H, 000 1|1 110
by Hs. The overall decision regioR(+ is the union ofR{", Hy 1111/0001
RP) andR(P.

The resulting detector requires 15 multiplications and 15 ad- 0 TIVIGE
ditions to detect a symbol, compared with 32 multiplications, . AB
47 additions, and eightxp(-) evaluations required by the full il \“\\\ FB —
Bayesian detector and only three multiplications and two addi- € .2 AN
tions required by the conventional DFE. The BERs of this mul- § \\\
tiple-hyperplane detector are compared with those of the full w-3 \
Bayesian DFE in Fig. 5 under different SNR conditions. It can %_4 h
be seen from Fig. 5 that there is hardly any BER performance o \
difference between the two equalizers. The BER curve of the =5 1
conventional MMSE DFE is also depicted in Fig. 5. %

Channel B: Channel B had an impulse response given by 4 6 8 10 12 14 16 18
Signal to Noise Ratio (dB)

a = [a07 a1, a2, a3]T = [035, 0.8, 1.0, 0~8]T~ (33) Fig. 5. Performance comparison of the conventional MMSE DFE (MMSE:
dashed line), the multiple-hyperplane detector (AB: points), and the full
. Bayesian DFE (FB: solid line) with detected symbols being fed back for

The DFE structure was defined oy = 4, d = 3, andn = 3.  channel A.

The state sek had 16 states. The asymptotic Bayesian decision
boundary in this case consisted of seven hyperplanes, and they TABLE IV
were automatically selected by the algorithm. The matrix of th'@ATR'X OF SEPERATING HYPiERPLANEs ANDCHANNEL SI'ATES FOR?HANNEL

separating hyperplanes and channel states is given in Table IV. = (e e PP e Y e )
The statesf’), (+) (+) andr(+) require only the hyperplane  %yperplane RO R
H, to separate them from aII the opposite-class states. Thus H,; 111111111 011T00T1FO0
R RED, REY, andR{P are defined by the half-spagé ™ Hy 111011000111 1111
specified byH; . As the states(+) andré” are separated from gz i i (1) } i } (1) (1) (1) (1) 1 i (1) (1) i }
R() by the two hyperplane#l, andHs, RSY = R{ is the Hs 11001 11111111011
intersection of the two half-spaces;" andHéJ’) The state H (111111100011011]1
(+) requires the two hyperplanég, andH; to separate it from L 01001 101)1 1111111
aII the opposite- class states, and the convex re@bﬂ is thus
the intersection oH4 anngJ’).Slmnarly, the convex region 0 MMSE -
RGP for (P is the intersection of((" and#{". The overall ~ S ég -
decision regioriR () is the union of the four convex regions T \\\

() ) ) ) L2
R, R, REY, andRg . 5 N

This multiple-hyperplane-based detector requires 28 multi- w-3 ~
plications and 28 additions to make a decision, compared with §_4 \\
80 multiplications, 127 additions, and &&p(-) evaluations re- = \
quired by the full Bayesian detector and four multiplications and 2.5 A
three additions required by the conventional DFE. Fig. 6 com- ’
pares the BER’s of this multiple-hyperplane detector with those '68 10 12 14 16 18 20 22
of the full Bayesian DFE and the conventional MMSE DFE. Signal to Noise Ratio (dB)

Again, there exists hardly any BER performance difference be- _ ,
6. Performance comparison of the conventional MMSE DFE (MMSE:

tween our multlple hyperplane detector and the full BayeS'%@shed line), the multiple-hyperplane detector (AB: points), and the full
detector. Bayesian DFE (FB: solid line) with detected symbols being fed back for
With decision feedback, there is no performance advantagj@nnel B.

in implementing the full Bayesian detector over the piecewise

linear approximation. At high to infinite SNR, the two decisiortonfirmed in the two simulation examples. The BER gap be-
boundaries are almost identical. At medium to low SNR, ariyeen the two detectors can only be observed in low SNRs when
theoretical performance advantage offered by the full Bayesitire original transmitted symbols are artificially used in feedback
detector is offset by the effects of error propagation. This w@shich is the original assumption of correct decision feedback).
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06 [
0.8 N
y
12 X
-1.4 N
16 3
18
2

log10(Bit Error Rate)

0 2 4 6 8 10 12 14
Signal to Noise Ratio (dB)
4)
Fig. 7. Performance comparison of the multiple-hyperplane detector (AB:

dashed line) and the full Bayesian DFE (FB: solid line) with correct symbols
being fed back for channel B.

Fig. 7 shows the performance differences between the multiple-
hyperplane detector and the full Bayesian DFE with correct
symbols being fed back in low SNR conditions for channel B.
(1]
V. CONCLUSIONS

A novel equalizer has been derived based on the observatio%Z]
signal space partitioning. The equalizer consists of a set of lineaf3]
discriminant functions and a Boolean logic function. The de- 4]
sign procedure involves automatically finding the set of domi-
nant opposite-class state pairs and constructing a separating h¥—
perplane for each pair using support vector machines. The re g
sulting decision boundary is exactly the asymptotic Bayesian
decision boundary. Unlike the existing signal space partitioningl6]
technique due to Kim and Moon, which requires extensive com-
putation in design, our design process involves little computa-[7]
tional effort. Moreover, the resulting equalizer is guaranteed to
achieve asymptotically the optimal Bayesian performance and[S]
has much lower decision complexity compared with the full
Bayesian decision feedback equalizer.

(9]
APPENDIX
KiM AND MOON'S DESIGN PROCEDURE

[10]

1) Form allthe possible pairs ofsubs(aﬂé_), REJ’)), where
R ¢ RO, RY ¢ RW), and the total number of [y

states ir(RE_), Rl(+)) is in the range of 2 ten + 1.

2) For each subset pale]("),Rl(J’)), a separating hyper- [12]

planeH(r) = w''r + b is obtained to maximize the min-
imum distance from any state (ﬁ%ﬁ_), R§+)) to the hy-
perplane. This is achieved by solving for the following [13]
nonlinear optimization problem

wlr [14]

max min (—1)f™ < + b) (34)
bw \re(r{7, R) [lwll [15]

subject to||w|| = 1, where
16
1, ifrer”) el
I(r) = 35 7
0, ifreR™M.

1A better way of obtaining such a hyperplane is to apply the method of suppoiftL 8]
vector machines, which only requires solution of a simpler quadratic optimiza-
tion problem; see [22].
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A gradient algorithm is used, which requires many itera-
tions to converge.

Only those hyperplanes that yield the minimum dis-
tance that is greater than or equal to a prescribed value
Bmin are retained for the next step. The specified distance
SGmin determines the performance of the detector.

From the chosen hyperplanes, a “minimum” number of
hyperplanes are obtained by which every pair of opposite-
class signal states can be separated with the prescribed
distances,,;,. This is achieved by solving for an integer
programming problem.

At this stage, a matrix of the separating hyperplane
and channel states has been obtained. The design of the
Boolean logic function for the detector is straightforward,
as described in Section lII.
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