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Asymptotic Bayesian Decision Feedback Equalizer
Using a Set of Hyperplanes

Sheng Chen, Senior Member, IEEE, Bernard Mulgrew, Member, IEEE, and Lajos Hanzo

Abstract—We present a signal space partitioning technique for
realizing the optimal Bayesian decision feedback equalizer (DFE).
It is known that when the signal-to-noise ratio (SNR) tends to in-
finity, the decision boundary of the Bayesian DFE is asymptotically
piecewise linear and consists of several hyperplanes. The proposed
technique determines these hyperplanes explicitly and uses them
to partition the observation signal space. The resulting equalizer
is made up of a set of parallel linear discriminant functions and
a Boolean mapper. Unlike the existing signal space partitioning
technique of Kim and Moon, which involves complex combina-
torial search and optimization in design, our design procedure is
simple and straightforward, and guarantees to achieve the asymp-
totic Bayesian DFE.

Index Terms—Asymptotic decision boundary, Bayesian decision
feedback equalizer, signal space partition.

I. INTRODUCTION

EQUALIZATION technique plays an ever-increasing role
in combating distortion and interference in communica-

tion links [1], [2] and high-density data storage systems [3],
[4]. The equalization topic is well researched, and a variety of
solutions are available. The maximuma posterioriprobability
(MAP) sequence detector [5]–[7], although providing the lowest
bit error rate (BER) attainable, finds little application in prac-
tice due to it computational complexity. The more popular se-
quence detector is the maximum likelihood sequence estima-
tion (MLSE) based on teh Viterbi algorithm [8], which is still
computationally expensive and requires a sufficiently long de-
cision delay to guarantee the optimal or near optimal perfor-
mance. Many practical techniques employ a symbol-decision
finite-memory structure with a fixed delay and are based on
adaptive linear filter algorithms [1] with very low complexity.
In particular, the conventional or linear-combiner DFE offers
acceptable performance in many practical situations.

The BER gap between the MLSE and the conventional DFE
for practical SNR conditions is large, and recent research in
neural network equalizers [9]–[15] has attempted to fill in this
gap and to strike a good balance between performance and com-
plexity. A discussion on why it is worth considering the appli-
cation of neural networks to equalization is given in [16]. It
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is well known that the optimal solution for the symbol-deci-
sion finite-memory equalizer structure with a fixed delay is the
Bayesian DFE [11], [17], and this equalization solution has an
equivalent form to a radial basis function network. The compu-
tational complexity of the Bayesian DFE is, however, consider-
ably more than that of the simple linear-combiner DFE. Various
neural network equalizers can be regarded as realizations or ap-
proximations of this Bayesian solution with various degrees of
complexity.

Geometrically, the conventional DFE partitions the observa-
tion space with a hyperplane. The optimal Bayesian decision
boundary, however, is a hypersurface in the observation space
[11]. It can be shown that asymptotically, as the SNR tends to in-
finity, the Bayesian hypersurface becomes piecewise linear and
is made up of a set of hyperplanes [18]. In practice, at large
rather than infinite SNR, the performance difference between
Bayesian decision boundary and a piecewise linear approxima-
tion is negligible. This motivates research using multiple hyper-
planes to partition the signal space. Kim and Moon [19], [20] re-
cently developed a signal space partitioning technique for equal-
ization. This technique basically determines a set of hyperplanes
that separate clusters of noiseless channel states or signals. A
combinatorial search and optimization process is carried out to
find these hyperplanes, which requires extensive computational
efforts. The convex regions associated with individual channel
states are constructed by appropriately intersecting hyperplanes.
The overall decision region is then formed from these convex re-
gions.

Kim and Moon’s design method results in an equalizer
structure consisting of parallel linear discriminant functions
and a many-to-one Boolean mapper. The decision complexity
and performance of the detector are controlled during design
by a specified minimum separating distance. Although it is
possible to achieve the asymptotic Bayesian solution by an
appropriate choice of the minimum separating distance, this
is by no means guaranteed as the combinatorial search and
optimization process does not necessarily produce the set
of hyperplanes that form the asymptotic Bayesian decision
boundary.

In this paper, we propose a much simpler alternative design.
Specifically, the set of hyperplanes that form the asymp-
totic Bayesian decision boundary can straightforwardly be
determined, thus avoiding the design complexity of Kim
and Moon’s method. Furthermore, our design guarantees to
achieve, asymptotically, the optimal Bayesian solution. The
decision complexity of the detector is solely determined by the
channel geometric structure. Section II reviews the Bayesian
DFE, which also serves to introduce the necessary notations
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and definitions. The proposed new signal space partitioning
technique is presented in Section III. Simulation results are
provided in Section IV, and concluding remarks are given in
Section V.

II. BAYESIAN DECISION FEEDBACK EQUALIZER

We will assume that the channel is modeled as a finite impulse
response filter with an additive noise source. Specifically, the
received signal at sampleis

(1)

where
noiseless channel observation;
channel length;
channel tap weights;
Gaussian white noise sequence having zero mean
and variance ;
independently identically distributed symbol se-
quence and is uncorrelated with .

The SNR of the system is defined as

SNR (2)

where is the symbol variance. In this study, for the purpose of
easy geometrical visualization, we will assume that the channel
is real-valued and that the transmitted symbol is binary,
taking value from the set . There is no difficulty, however,
to apply the current results to complex-valued channels and mul-
tilevel signaling schemes.

The structure of a generic DFE is depicted in Fig. 1. The
equalization process defined in Fig. 1 uses the information
present in the channel observation vector

(3)

and the past detected symbol vector

(4)

to produce an estimate of , where the integers
, , and are the decision delay and the feedforward and

feedback orders, respectively. Without the loss of generality, we
will choose , and as this choice of
the DFE structure parameters is sufficient to guarantee the linear
separability (see Proposition 1 in this section). The observation
vector (3) can be arranged as

(5)

where ,
with

(6)

and the channel impulse response matrix
has the form

(7)

with the matrix and matrix defined by

...
...

...
. . .

. . .
(8)

and

...
...

...

...
. . .

. . .

(9)

Past decisions on the symbols , are
used to cancel intersymbol interference terms from observation
samples. In this process, past decisions ,

are assumed to be correct. Under this assumption,
, and

(10)

Thus, the decision feedback can be viewed as a translation of
the original space into a new space :

(11)

Let be the unit delay operator. The elements of can
be computed recursively according to

(12)

The DFE structure of Fig. 1 is therefore equivalent to the equal-
ization structure of Fig. 2.

Let the sequences or states of be ,
. Define the set of the noiseless channel states in

the translated space by

(13)

This set can be partitioned into two subsets conditioned on
:

(14)

We have the following linear separability property.
Proposition 1: and are linearly separable.
The proof is straightforward. Choose the weights of a hyper-

plane to be

(15)
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Fig. 1. Generic decision feedback equalizer.f is the decision variable.

Fig. 2. Translated decision feedback equalizer.f is the decision variable.

For any and , we have
and .
Proposition 1 states a well-known fact that it is always

possible to construct a single hyperplane to correctly sepa-
rate opposite-class channel states. What is interesting is that
the weight vector (15) is the limit of the minimum mean
square error (MMSE) solution for the conventional DFE with
SNR [21]. This implies that the MMSE solution does not
achieve the full performance potential of the linear-combiner
DFE. How to construct a single optimal hyperplane to realize
the minimum BER linear-combiner DFE has been addressed
in [21] and [22].

The true optimal solution for the equalization structure of
Fig. 2, however, cannot be realized using a single hyperplane.
Assuming equiprobable channel states, the optimal solution for
the equalization structure of Fig. 2 is given by the following
Bayesian decision function [11], [15]:

(16)

with the minimum-error-probability decision defined by

.
(17)

The decision boundary of this Bayesian DFE

(18)

is generally a hypersurface. Before describing the asymptotic
Bayesian decision boundary for SNR (or ), we
introduce the following definition.

Definition 1: A pair of opposite-class states is
said to bedominantif , , :

(19)

where

(20)

Proposition 2: Asymptotically, the decision boundary
is piecewise linear and made up of a set of hyperplanes. Each
of these hyperplanes is defined by a pair of dominant channel
states, and the hyperplane is orthogonal to the line connecting
the pair of dominant states and passes through the midpoint of
the line.

Proof: Consider . As , Iltis [18] has
shown that a necessary condition for a point is

(21)

where denotes an arbitrary vector in the subspace orthogonal
to , , and are a pair of dominant states; the sufficient
conditions for are

(22)

(23)

(24)

Proposition 2 follows as a direct consequence.
Remark 1: The section of the decision boundary within

the “influencing domain” of a dominant pair , as de-
fined by (22) and (23), is a section of the hyperplane that passes
through the midpoint of the line connecting the pair, as indicated
in (21) and (24). Although the boundary described in Proposi-
tion 2 is only exact in the limit case of infinite SNR, our empir-
ical experience, and others such as [18], have shown that for the
SNRs on the order of 10–20 dB, the true Bayesian boundary
is closely approximated by the asymptotic multiple hyperplane
form, and the two forms are often indistinguishable.

Remark 2: It should be emphasized that the pairs
needed to define the boundary hyperplanes

are only a subset of all the possible signal states. For the
generic channel , it is impossible to
determine a theoretic bound for the number of the dominant
pairs . Empirically, we have found that usually,
for . In addition, always appears to be odd. For the
two-tap channel with the DFE structure defined by ,

, and , it can easily be shown that the asymptotic
Bayesian boundary consists of either a single hyperplane or
three hyperplanes, and there is no other possibility. Two typical
scenarios for are depicted in Fig. 3.



3496 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 48, NO. 12, DECEMBER 2000

Fig. 3. Two typical cases of the asymptotic Bayesian decision boundary for
channela = [a ; a ] .

III. A SYMPTOTICBAYESIAN DFE USING HYPERPLANES

In a previous work [23], the Bayesian solution is approxi-
mated by only using the set ofdominant state pairs, which de-
termine the asymptotic Bayesian decision boundary, in the com-
putation of the Bayesian decision variable (16). In this study,
we consider using the multiple-hyperplane detector structure of
Kim and Moon [19], [20] (see Fig. 4) to realize the asymptotic
Bayesian DFE. Our design procedure for constructing the de-
tector, which is very different from that of Kim and Moon, is as
follows:

Step 1) Select all pairs of dominant channel states from
the state set . For each pair, compute a hyperplane
that separates these two opposite-class states.

Step 2) A Boolean logic function is obtained to make a final
decision based on the location of the observation
vector relative to each hyperplane. This is achieved
by first defining a convex region associated with
each state in a given class and then forming a union
of these regions.

From the proof of Proposition 2, it is easily seen that pairs
of dominant states that define the asymptotic boundary can be
selected using the following algorithm:

L = 0;
FOR

FOR

; ;

IF AND

;
;

END IF
NEXT

NEXT

Fig. 4. Asymptotic Bayesian DFE using a set of hyperplanes.

Each pair determines a hyperplane

(25)

that is a part of the asymptotic Bayesian decision boundary. The
weight vector and bias of the hyperplane can be computed
straightforwardly as

(26)

and

(27)

Notice that we have applied the theory of support vector ma-
chines [22], [24], [25] in determining the hyperplane with

as its two support vectors. That is, the hyperplane
defined by (26) and (27) is acanonicalhyperplane [24] having
the property and . Let us intro-
duce the definition of sufficient separability.

Definition 2: A state is said to besufficiently sepa-
rableby the hyperplane if can separate correctly with
a “canonical distance” .

Notice that is sufficiently separable by if and
only if . Similarly, is sufficiently
separable by if and only if . All the states
in are tested to see they can be separated sufficiently by,

. This generates the following matrix:

...
...

...
...

...
...

where , , and states are numbered
such that for and for

. The rule in generating this matrix is as
follows: If can sufficientlybe separated by , ;
otherwise, . Notice that in every row, there are at least
two nonzero elements (associated with a dominant pair), and in
every column, there is at least one nonzero element.

The half-space defined by a hyperplane is

(28)
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To construct a convex region corresponding to a state
, select those hyperplanes that can sufficiently sep-

arate and denote

(29)

Then, is obtained by the intersection of all the with

(30)

In fact, it may not be necessary to use every hyperplanes defined
in to construct . A subset of these hyperplanes will
be enough in the construction of , provided that every state
in can sufficiently be separated by at least one hyperplane
in the subset. The overall decision region associated with
the decision is simply formed as the union of all
the

(31)

For an illustration, consider Fig. 3(b). It is easily seen
that , , , and

. Thus, , and .
The complete matrix of the separating hyperplanes and channel
states is given in Table I. From Table I, it can be seen that
the state requires two hyperplanes and to be
separated from the states in . The region for is
the intersection of the two half spaces and defined
by and . The hyperplane can separate from the
states in . The region for is thus the half-space

defined by . The overall decision region is the
union of and .

The Boolean logic function for the detector depicted in
Fig. 4 is now completely defined. Let a threshold detector
output for a linear discriminant function
have Boolean logic value 1 or 0 depending on

or not. A Boolean logic value indicating whether
or not is obtained via a logicAND operation

of : . A Boolean logic value indicating
whether [that is, ] or not is obtained
via a logicOR operation of for all . This detector
achieves, asymptotically, the optimal Bayesian performance
since it realizes exactly the asymptotic Bayesian decision
boundary.

In our design, the determination of appropriate multiple
hyperplanes for the observation space partitioning is straight-
forward. The required number of hyperplanesis specified
by the asymptotic Bayesian decision boundary and, therefore,
is defined by the channel impulse response. The algorithm
automatically selects the set of hyperplanes, which specify
the asymptotic Bayesian decision boundary, with very low
computational efforts in this design stage. This should be
compared with Kim and Moon’s signal space partitioning
technique [19], [20]. For purposes of comparison, their design

TABLE I
MATRIX OF SEPERATINGHYPERPLANES ANDCHANNEL STATES FORTHE

EXAMPLE GIVEN IN FIG. 3(b)

TABLE II
COMPARISON OFDECISIONCOMPLEXITY FOR THE CONVENTIONAL DFE, FULL

BAYESIAN, AND OUR MULTIPLE-HYPERPLANEDETECTORS. L (USUALLY

� 2 ) IS THE NUMBER OF HYPERPLANES, AND n IS THELENGTH OF

CHANNEL IMPULSE RESPONSE. THE DFE STRUCTUREIS CHOSEN TOBE

m = n , d = n � 1, AND n = n � 1

procedure is summarized in the Appendix, where it can be seen
that a combinatorial search process with nonlinear gradient
optimization and integer programming is performed to find
a set of separating hyperplanes, given a specified minimum
distance. Their design procedure therefore requires extensive
computation. Furthermore, their procedure is not guaranteed to
converge to the infinite-SNR asymptote of the optimal Bayesian
detector. The performance of their detector will generally lie
between the conventional DFE and the asymptotic Bayesian
DFE, depending on the specified minimum distance in the
design.

Table II compares decision complexity for the conventional
DFE, the full Bayesian DFE, and our multiple-hyperplane de-
tector. The conventional DFE has the lowest complexity as it
is made up of a single hyperplane. Our detector generally has
much simpler decision complexity than the full Bayesian de-
tector since usually, . Obviously, the decision com-
plexity of Kim and Moon’s multiple-hyperplane detector can
be similar to the conventional DFE or similar to or higher than
our detector, depending on the actual number of hyperplanes se-
lected in the design.

IV. SIMULATION RESULTS

Two channels were used to demonstrate the proposed new
signal space partitioning technique. The BER performance of
the multiple-hyperplane detector was compared with those of
the full Bayesian DFE and the conventional MMSE DFE. Ex-
cept otherwise explicitly stated, all the BER results were ob-
tained with detected symbols being fed back.

Channel A: The impulse response was specified by

(32)

The structure parameters of the DFE were accordingly set to
, , and . The channel state set had

eight states. The algorithm selected five hyperplanes. The ma-
trix of the separating hyperplanes and channel states is listed in
Table III. The required Boolean logic function was easily ob-
tained using Table III. The state requires the two hyper-
planes and to be separated from all the opposite-class
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states , and therefore, the convex region for is
the intersection of the two half spaces and . The
states and are separated from by the two hy-
perplanes and . Thus, is the intersection
of the half spaces and . The state is separated by
the single hyperplane from all the opposite-class states, and
the convex region for is the half-space defined
by . The overall decision region is the union of ,

, and .
The resulting detector requires 15 multiplications and 15 ad-

ditions to detect a symbol, compared with 32 multiplications,
47 additions, and eight evaluations required by the full
Bayesian detector and only three multiplications and two addi-
tions required by the conventional DFE. The BERs of this mul-
tiple-hyperplane detector are compared with those of the full
Bayesian DFE in Fig. 5 under different SNR conditions. It can
be seen from Fig. 5 that there is hardly any BER performance
difference between the two equalizers. The BER curve of the
conventional MMSE DFE is also depicted in Fig. 5.

Channel B: Channel B had an impulse response given by

(33)

The DFE structure was defined by , , and .
The state set had 16 states. The asymptotic Bayesian decision
boundary in this case consisted of seven hyperplanes, and they
were automatically selected by the algorithm. The matrix of the
separating hyperplanes and channel states is given in Table IV.
The states , , , and require only the hyperplane

to separate them from all the opposite-class states. Thus,
, , , and are defined by the half-space

specified by . As the states and are separated from
by the two hyperplanes and , is the

intersection of the two half-spaces and . The state
requires the two hyperplanes and to separate it from

all the opposite-class states, and the convex region is thus
the intersection of and . Similarly, the convex region

for is the intersection of and . The overall
decision region is the union of the four convex regions

, , , and .
This multiple-hyperplane-based detector requires 28 multi-

plications and 28 additions to make a decision, compared with
80 multiplications, 127 additions, and 16 evaluations re-
quired by the full Bayesian detector and four multiplications and
three additions required by the conventional DFE. Fig. 6 com-
pares the BER’s of this multiple-hyperplane detector with those
of the full Bayesian DFE and the conventional MMSE DFE.
Again, there exists hardly any BER performance difference be-
tween our multiple-hyperplane detector and the full Bayesian
detector.

With decision feedback, there is no performance advantage
in implementing the full Bayesian detector over the piecewise
linear approximation. At high to infinite SNR, the two decision
boundaries are almost identical. At medium to low SNR, any
theoretical performance advantage offered by the full Bayesian
detector is offset by the effects of error propagation. This was

TABLE III
MATRIX OF SEPERATING HYPERPLANES ANDCHANNEL STATES FOR

CHANNEL A. R = fr , r ; r , r g

Fig. 5. Performance comparison of the conventional MMSE DFE (MMSE:
dashed line), the multiple-hyperplane detector (AB: points), and the full
Bayesian DFE (FB: solid line) with detected symbols being fed back for
channel A.

TABLE IV
MATRIX OF SEPERATINGHYPERPLANES ANDCHANNEL STATES FORCHANNEL

B. R = fr , r ; r , r , r ; r , r ; r g

Fig. 6. Performance comparison of the conventional MMSE DFE (MMSE:
dashed line), the multiple-hyperplane detector (AB: points), and the full
Bayesian DFE (FB: solid line) with detected symbols being fed back for
channel B.

confirmed in the two simulation examples. The BER gap be-
tween the two detectors can only be observed in low SNRs when
the original transmitted symbols are artificially used in feedback
(which is the original assumption of correct decision feedback).
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Fig. 7. Performance comparison of the multiple-hyperplane detector (AB:
dashed line) and the full Bayesian DFE (FB: solid line) with correct symbols
being fed back for channel B.

Fig. 7 shows the performance differences between the multiple-
hyperplane detector and the full Bayesian DFE with correct
symbols being fed back in low SNR conditions for channel B.

V. CONCLUSIONS

A novel equalizer has been derived based on the observation
signal space partitioning. The equalizer consists of a set of linear
discriminant functions and a Boolean logic function. The de-
sign procedure involves automatically finding the set of domi-
nant opposite-class state pairs and constructing a separating hy-
perplane for each pair using support vector machines. The re-
sulting decision boundary is exactly the asymptotic Bayesian
decision boundary. Unlike the existing signal space partitioning
technique due to Kim and Moon, which requires extensive com-
putation in design, our design process involves little computa-
tional effort. Moreover, the resulting equalizer is guaranteed to
achieve asymptotically the optimal Bayesian performance and
has much lower decision complexity compared with the full
Bayesian decision feedback equalizer.

APPENDIX

KIM AND MOON’S DESIGN PROCEDURE

1) Form all the possible pairs of subsets , where

, , and the total number of

states in is in the range of 2 to .

2) For each subset pair , a separating hyper-
plane is obtained to maximize the min-
imum distance from any state in to the hy-
perplane. This is achieved by solving for the following
nonlinear optimization problem1

(34)

subject to , where

if

if
(35)

1A better way of obtaining such a hyperplane is to apply the method of support
vector machines, which only requires solution of a simpler quadratic optimiza-
tion problem; see [22].

A gradient algorithm is used, which requires many itera-
tions to converge.

Only those hyperplanes that yield the minimum dis-
tance that is greater than or equal to a prescribed value

are retained for the next step. The specified distance
determines the performance of the detector.

3) From the chosen hyperplanes, a “minimum” number of
hyperplanes are obtained by which every pair of opposite-
class signal states can be separated with the prescribed
distance . This is achieved by solving for an integer
programming problem.

4) At this stage, a matrix of the separating hyperplane
and channel states has been obtained. The design of the
Boolean logic function for the detector is straightforward,
as described in Section III.
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