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Adaptive Minimum-BER Linear Multiuser Detection
for DS-CDMA Signals in Multipath Channels

Sheng Chen, Senior Member, IEEE, Ahmad K. Samingan, Bernard Mulgrew, Member, IEEE, and Lajos Hanzo

Abstract—The problem of constructing adaptive minimum bit
error rate (MBER) linear multiuser detectors is considered for di-
rect-sequence code division multiple access (DS-CDMA) signals
transmitted through multipath channels. Based on the approach
of kernel density estimation for approximating the bit error rate
(BER) from training data, a least mean squares (LMS) style sto-
chastic gradient adaptive algorithm is developed for training linear
multiuser detectors. Computer simulation is used to study the con-
vergence speed and steady-state BER misadjustment of this adap-
tive MBER linear multiuser detector, and the results show that it
outperforms an existing LMS-style adaptive MBER algorithm first
presented at Globecom’98 by Yehet al.

Index Terms—Adaptive algorithms, linear multiuser detectors,
minimum bit error rate, minimum mean square error, stochastic
gradient algorithms.

I. INTRODUCTION

W ITHIN the class of linear multiuser detectors for
DS-CDMA signals, the minimum mean square error

(MMSE) detector [1]–[5] is the most popular one as it provides
good performance and can readily be implemented using stan-
dard adaptive filter techniques such as the LMS and recursive
least squares algorithms [3], [5]. However, it is well known that
the MMSE solution is not always optimal in this application,
and the BER of the MMSE linear multiuser detector can, in
certain situations, be distinctly inferior to the optimal MBER
solution [6]–[9]. Gradient optimization for obtaining the
theoretical MBER linear multiuser detector is considered in
[6]1 for narrowband Gaussian CDMA channels [i.e., channels
that do not introduce intersymbol interference (ISI)]. Gradient
optimization to achieve the theoretical MBER solution is also
addressed in [7], where constraints are added to ensure a global
solution by gradient-based algorithms at the expense that the
solution obtained may not be the true MBER solution. There
are two stochastic gradient adaptive algorithms for realizing
the MBER linear multiuser detector in the literature [8], [9].

The adaptive algorithm given in [8] uses a difference ap-
proximation to estimate the gradient of one-sample error prob-
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1The “adaptive” algorithm in [6] is, in fact, nonadaptive as it requires the
received signal minus the noise component. This is the same to an off-line opti-
mization with the perfect channel knowledge and all user bits.

ability and moves the detector weights in the negative direction
of the estimated stochastic gradient. The algorithm only adjusts
the detector weight vector when the detector makes an error.2

The main drawback of this algorithm is therefore a very slow
convergence, particularly when the error rate is very low. For
the sake of distinguishing this stochastic adaptive MBER algo-
rithm from others, it will be called the difference approxima-
tion adaptive MBER (DMBER) algorithm. The adaptive algo-
rithm reported in [9], which is called the approximate MBER
(AMBER) detector, is appealing due to its computational sim-
plicity. It is a stochastic gradient algorithm that is identical to the
signed-error LMS algorithm [10], except in the vicinity of the
decision boundary, where it is modified to continue updating the
weights when the signed-error LMS algorithm would not. The
AMBER algorithm therefore can continuously update when the
detector weight vector has reached the regions of very low error
rate.

Adaptive MBER linear equalizers have been investigated for
a longer time [11]–[16]. In particular, the adaptive MBER equal-
izer presented in [15] and [16] is a LMS-style stochastic gra-
dient algorithm and has been shown to outperform the approxi-
mate MBER linear equalizer first reported in [17], which is the
counterpart of the AMBER linear multiuser detector of [9]. In
this study, we extend the adaptive MBER algorithm of [15] and
[16] to multiuser detection for DS-CDMA channels and develop
a new adaptive MBER linear multiuser detector. For the pur-
pose of distinguishing it from the two above-mentioned adap-
tive algorithms, this new LMS-style stochastic gradient adap-
tive algorithm will be referred to as the least BER (LBER) al-
gorithm. Our investigation involving simulation shows that this
new LBER linear multiuser detector is superior in performance
over the AMBER linear multiuser detector of [9].

The paper is organized as follows. Section II presents the
DS-CDMA system model used and provides the necessary no-
tations and definitions. Section III is devoted to formulating the
MBER solution for the linear multiuser detector and developing
a gradient search algorithm. In Section IV, the proposed adaptive
MBER multiuser detector is derived. Kernel density estimation
is employed to approximate the BER as a smooth function of
training data, and this leads to the formulation of a LMS-style
stochastic gradient adaptive algorithm called the LBER. Com-
parison with the two existing stochastic adaptive algorithms (the
DMBER and the AMBER) is also given in this section. Sec-
tion V gives some computer simulation results, and the paper
concludes in Section VI.

2More precisely, when the difference of the detector decisions corresponding
to the weights perturbed in opposite directions is nonzero.
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Fig. 1. Discrete-time model of synchronous CDMA downlink.

II. SYSTEM MODEL

The discrete-time baseband model of the synchronous
DS-CDMA downlink system with users and chips per
symbol is depicted in Fig. 1, where denotes the

th symbol of user , the unit-length signature sequence for
user is

(1)

and the transfer function of the channel impulse response (CIR)
is

(2)

The baseband model for received signal sampled at chip rate is
given by [4], [18]

...
...

...
. . .

. . .

...

...
(3)

where denotes the noise-free received signal; the white
Gaussian noise vector

with (4)

the user symbol vector

(5)

the user signature sequence matrix

(6)

the diagonal user signal amplitude matrix

diag (7)

that is, is the user signal power; the CIR matrix
has the form

...
...

...

(8)

and the system matrix

...
...

...
. . .

. . .
(9)

The channel ISI span depends on the length of the CIR
related to the length of the chip sequence. For
; for ; for ;

and so on. The model (3) adopted in this study is a wideband
synchronous DS-CDMA channel, and it can be extended to the
case of asynchronous DS-CDMA downlink systems.

We will study the linear multiuser detector of the form

sgn with (10)

where

(11)

denotes the detector weight vector for user. Let the
possible combinations or sequences of

be

...
(12)

and let be the th element of . Define the
noise-free received signal states

(13)

and the set of scalars

(14)

III. MBER L INEAR MULTIUSER DETECTOR

In this section, we derive the theoretical MBER solution for
the linear multiuser detector and present a gradient search algo-
rithm for finding this MBER solution. This will provide some
insight into the development of our LMS-style stochastic gra-
dient adaptive algorithm. The error probability of the linear de-
tector (10) is

Prob sgn (15)
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Following [15], [16], define the signed decision variable

sgn

sgn (16)

where

...
(17)

and

sgn (18)

Notice that can only take the values from the set de-
fined in (14), and is Gaussian with zero mean and vari-
ance . Under the assumption that , are
equiprobable, the probability density function (pdf) of
is

sgn
(19)

Thus

(20)

where

(21)

and

sgn sgn
(22)

The gradient of with respect to is

sgn (23)

The following steepest-descent gradient algorithm can be
used to find the MBER solution:

(24)

where indicates the iteration, and is an adaptive step size.
Notice that the orientation of the weight vectordefines the
decision boundary and, thus, the BER and not the size of. It
is computationally advantageous to normalizeto a unit-length
after every iteration:

(25)

With this rescaling, the gradient can be simplified as

sgn (26)

The steepest-descent gradient algorithm (24) may converge
slowly, and a Gauss–Newton algorithm is computationally
expensive. The conjugate gradient method [19] offers a better
alternative. A simplified conjugate gradient algorithm is
summarized.

Initialization: Choose step size and termination scalar
; given and ; set .

Loop: If
: gotoStop.

, gotoLoop.
Stop. is the solution.
At a local minimum, . Therefore, the small

positive scalar determines the accuracy of the solution ob-
tained. A gradient algorithm can, in general, find a local min-
imum of . To ensure a unique global solution, certain
constraints can be added to the optimization problem, as shown
in [7], at a possible cost that the solution found may deviate
slightly from the true MBER solution.

In general, the global MBER solutions are infinitely many,
and they form a half hyperplane in the-dimensional weight
space. The normalization (25) has an effect of fixing the solu-
tion to a unique unit-length one. Consider the following simplest
example with two equal-power users and two chips per bit. The
two chip codes are and , respectively, and the
transfer function of the CIR is .
The SNR for user 1 SNR, is 25 dB. The BER sur-
face for user 1 is plotted in Fig. 2. For this example, there are
only global minimum solutions, and all the MBER solutions
form a half line [half hyperplane in the two-dimensional (2-D)
space]. The point marked in the MBER solution half line is the
unit-length one. The MMSE solution for this example is also
depicted in Fig. 2, where it can be seen that the MMSE solution
is very different from the MBER ones. In fact, for the MMSE
solution, , whereas for an MBER one,

BER .

IV. A DAPTIVE MBER LINEAR MULTIUSER DETECTOR

The key to developing an effective adaptive algorithm is the
pdf of the signed decision variable. Kernel density
estimation is known to produce reliable pdf estimates with short
data records and, in particular,is extremely natural in dealing
with Gaussian mixtures [20], [21]. Given a block of training
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Fig. 2. Bit error rate surface of user-one detector for a simple two-user system
with two chips per bit and SNR= 25 dB.

samples , a kernel density estimate of the pdf is
given by

sgn
(27)

where the radius parameter is related to the noise standard
deviation . A lower bound of is [20]

(28)

From the estimated error probability

(29)

can be calculated as

sgn (30)

Thus, block adaptive gradient algorithms can readily be devel-
oped by substituting with in the steepest-de-
scent or conjugate gradient updating mechanisms.

A. LBER Stochastic Adaptive Algorithm

Our aim is, however, to develop a LMS-style adaptive algo-
rithm with sample-by-sample adjustment, as in [15] and [16].

The LMS algorithm can be viewed as replacing the ensemble
average of the gradient in its related steepest-descent gradient
algorithm by a single data-point estimate of the gradient. In a
similar manner, at sample, a point estimate of the pdf is simply

sgn
(31)

Using the instantaneous or stochastic gradient

sgn (32)

and rescaling after each update to ensure gives
rise to a LMS style stochastic algorithm

sgn (33)

which we refer to as the LBER algorithm.
Two important issues for any stochastic gradient adaptive

MBER algorithm are the convergence speed and steady-state
BER misadjustment (with respect to the optimal MBER). A
theoretical analysis of these two properties for the LBER (33)
is extremely complex and is still under investigation. We will
use computer simulation to study these two properties.

B. Comparison with the DMBER and AMBER Adaptive
Algorithms

The motivation of the above LBER multiuser detector is dif-
ferent from those of the existing DMBER and AMBER detec-
tors [8], [9]. For the purpose of a comparison, we present a mod-
ified version of the DMBER adaptive algorithm reported in [8].
Define the one-sample decision distortion measure3

(34)

Notice that this distortion measure is a function of, as
sgn . Obviously, is

the one-sample error probability. The following difference
approximation for the gradient of is adopted as

(35)

with

(36)

3In [8], the distortion measure is defined in terms of two samples: one for
b (k) = �1 and the other forb (k + 1) = 1, which lead to some complica-
tions in sample-by-sample adaptation. Our modification has a nature and simple
adaptive implementation and is equivalent to the original formulation.
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where for some , and denotes theth
coordinate unit vector. The DMBER adaptive algorithm takes
the form

(37)

where is an adaptive step size.
In theory, the DMBER should work, as it attempts to min-

imize the BER directly. As a difference approximation of the
stochastic gradient is used, the algorithm does not rely on the
assumption of a Gaussian channel noise at a cost of increased
complexity. (The DMBER has a complexity of , whereas
the AMBER and LBER has a complexity of .) However,
in practice, its rate of convergence is very slow after the weight
vector has reached the region of small error rate. This is obvious
since will be zero most of the time.

A more efficient stochastic gradient adaptive algorithm is the
AMBER [9], which can be expressed as

sgn (38)

with the error signal

(39)

and the indicator function

sgn (40)

where is a non-negative threshold parameter. In terms of the
algorithm-tuning requirements, the two adaptive algorithms [the
LBER (33) and AMBER (38)] are similar. The former requires
the tuning of the adaptive gainand kernel width , whereas
the latter needs the tuning of the adaptive gainand threshold
parameter .

The following comparison of the two adaptive mechanisms
(the LBER and AMBER) can be made [15], [16]. The algorithm
(38) in its simplest form has , and it only updates when a
decision error is observed. When the algorithm is initialized, it is
unlikely to separate all the noise-free statescorrectly. Thus,
the indicator function will be on most of the time, in
which case, it is equivalent to the signed-error LMS algorithm
[10]. When the algorithm has converged to a point where it can
separate the noise-free states correctly, the probability of the al-
gorithm updating may be low because in this region, errors will
be predominated by noise, and hence, further convergence may
be slow. Introducing the thresholdessentially defines a region
around decision boundary where the algorithm will continue to
update, even when errors do not occur. This region is defined by

(41)

In the algorithm (33), the effect of the distance from the
decision boundary is controlled by the exponential term

. This can be viewed as a soft distance
measure. The size of an update is a continuous and decreasing
function of the distance from the boundary. The distance is
scaled by the kernel width , which in turn is a function of the
noise root mean square .

Fig. 3. Linear detector BERs for user 1 of Example 1. SNR= SNR .

Fig. 4. Linear detector BERs for user 2 of Example 1. SNR= SNR .

V. SIMULATION RESULTS

Computer simulation was conducted to investigate the
convergence speed and steady-state BER misadjustment for
the three stochastic adaptive algorithms. For the DMBER
algorithm, a fixed step-size was used with a time-varying
difference step (as was used in [8]). For
the AMBER algorithm, the threshold was fixed with a
time-varying adaptive step-sizegiven by

(42)

The LBER algorithm had a constant width and employed
the time-varying adaptive step size, as given by (42). The two
algorithm parameters and for the DMBER, and for the
AMBER, and and for the LBER, were chosen to give an
adequate combined result of convergence rate and steady-state
error for the respective algorithm.

Example 1: A two-user system with four chips per symbol
was used in the simulation. The code sequences of the two users
were and , respectively,
and the transfer function of the CIR was

(43)

The two users had equal signal power, that is, SNRwas equal
to SNR . Figs. 3 and 4 depict the linear detector BERs for the
two users, respectively. The BER formula (20) was used with the
detector weight vector set to the MMSE and MBER solutions,
respectively, to produce the corresponding error rate curves. For
this example, the difference between the MMSE and MBER
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Fig. 5. Distribution of the signed decision variable for user 1 of Example 1.
SNR = SNR = 16:5 dB, the detector weight vector was set to the MBER
solution, and the kernel estimate was constructed from 100 data samples.

Fig. 6. Convergence behaviors of the two block adaptive MBER algorithms
for user 1 of Example 1. Length of the data block is 100,and SNR= SNR =

16:5 dB.

solutions for user 1 is significant for the range of SNR14 to
26 dB.

The kernel density estimate (27) constructed from 100 data
samples at SNR SNR dB is compared with the true
pdf (19) in Fig. 5 for user 1, where the detector weight vector
was set to the MBER solution. For this example, the kernel esti-
mate and the true density are indistinguishable. Using the con-
structed kernel density estimate with the detector weight vector

, the block adaptive steepest-descent and conjugate gradient
algorithms were applied to find the MBER solutions, and the
two iterative procedures are illustrated in Fig. 6. It can be seen
that starting from the MMSE solution, the block adaptive con-
jugate gradient algorithm took fouriterations to converge to the
MBER solution.

The three stochastic gradient adaptive algorithms (the
DMBER, AMBER and LBER) were applied to user 1 with
SNR SNR dB and the initial weight vector set to
the MMSE solution. For the DMBER, and
was used. The AMBER used and , whereas
the LBER had and noise variance).
These algorithm parameters were found in simulation to be
adequate for the respective algorithm. The convergence per-
formance of these three algorithms are shown in Fig. 7, where
the results were averaged on 100 runs. The standard LMS with

Fig. 7. Learning curves of the three stochastic adaptive MBER algorithms and
the LMS algorithm for user 1 of Example 1. SNR= SNR = 19 dB.

Fig. 8. Linear detector BERs for user 1 of Example 2. SNR; 1 � i � 4 are
identical.

an adaptive gain 0.01 is also depicted in Fig. 7. The value of
the learning curve at is the true BER of (20) for
the given weight vector and not any approximation. For
this example, it can be seen that the proposed LBER algorithm
is superior over the other two adaptive MBER algorithms in
terms of convergence speed and steady-state error.

Example 2: This was a four-user system with 8
chips per symbol. The code sequences for the four
users were

and , respectively, and the
transfer function of the CIR was

(44)

The four users had equal signal power. Figs. 8–10 depict the
linear detector BERs for the four users, respectively. For users 2
and 4, the MMSE and MBER solutions are indistinguishable.

Fig. 11 shows the kernel estimate and true pdf of the signed
decision variable for user 1 at SNR dB ( ).
The pdf estimate was constructed from 1500 data samples, and
the detector weight vector was set to the MBER solution. It
can be seen that for this example, the kernel estimate approx-
imates the true density reasonably well. Based on the kernel
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Fig. 9. Linear detector BERs for user 3 of Example 2. SNR; 1 � i � 4 are
identical.

Fig. 10. Linear detector BERs for users 2 and 4 of Example 2. SNR; 1 �

i � 4 are identical. The MMSE and MBER solutions for these two users are
indistinguishable.

Fig. 11. Distribution of the signed decision variable for user 1 of Example 2.
SNR = 16 dB for 1 � i � 4, the detector weight vector was set to the MBER
solution, and the kernel estimate was constructed from 1500 data samples.

density estimate, the iterative procedures of the block adaptive
steepest-descent and conjugate gradient algorithms are depicted
in Fig. 12. It can be seen that starting from the MMSE solution,
the block adaptive conjugate gradient algorithm took five itera-
tions to converge to a near-MBER solution.

The three stochastic gradient adaptive algorithms were tested
for user 1 at SNR dB, and with the initial
weight vector set to the MMSE solution. The two algorithm

Fig. 12. Convergence behaviors of the two block adaptive MBER algorithms
for user 1 of Example 2. Length of the data block is 1500, and SNR= 16 dB
for 1 � i � 4.

Fig. 13. Learning curves of the three stochastic adaptive MBER algorithms
for user 1 of Example 2. SNR= 15 dB for 1 � i � 4.

parameters were found to be and for the
DMBER, and and for the AMBER. For this
example, the LBER used and
noise variance). The learning curves of these three algorithms
are given in Fig. 13, where the results were averaged on 50 runs.
For this example, the very slow convergence of the DMBER is
apparent when the BER is below . It can also be seen that
the LBER algorithm (33) has a superior performance over the
AMBER algorithm (38).

VI. CONCLUSION

The MBER linear multiuser detection has been considered
for DS-CDMA systems. Motivated from the kernel density es-
timation of the BER as a smooth function of the training data,
block-based adaptive gradient algorithms have been developed
to realize the MBER linear multiuser detector. This has further
led to the derivation of a LMS-style adaptive MBER algorithm
for linear multiuser detectors. A desired feature of this stochastic
gradient algorithm is that the amount of the weight updating is a
continuous and decreasing function of the distance from the de-
cision boundary. Simulation results indicate that this adaptive
MBER detector outperforms an existing LMS-style MBER al-
gorithm called the AMBER in terms of convergence speed and
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steady-state BER misadjustment. Theoretical analysis of con-
vergence and steady-state misadjustment for the proposed new
adaptive MBER algorithm is still under investigation.
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